On the Cowling-Price theorem for SU(1,1)

Mitsuhiko Ebata

Abstract

M. G. Cowling and J. F. Price showed a kind of uncertainty principle on Fourier analysis: If v and w grow very rapidly then the finiteness of $||vf||_p$ and $||w\hat{f}||_q$ implies that f=0, where \hat{f} denotes the Fourier transform of f. We give an analogue of this theorem for SU(1,1).

1 Introduction

The Hardy theorem asserts that if a measurable function f on \mathbf{R} satisfies $|f(x)| \leq Ce^{-ax^2}$ and $|\hat{f}(y)| \leq Ce^{-by^2}$ and $ab > \frac{1}{4}$ then f = 0 (a.e.). Here we use the Fourier transform defined by $\hat{f}(y) = (1/\sqrt{2\pi}) \int_{-\infty}^{\infty} f(x) e^{\sqrt{-1}xy} dx$. M. G. Cowling and J. F. Price [3] generalized the Hardy theorem as follows: Suppose that $1 \leq p, q \leq \infty$ and one of them is finite. If a measurable function f on \mathbf{R} satisfies $\|\exp\{ax^2\}f(x)\|_{L^p(\mathbf{R})} < \infty$ and $\|\exp\{by^2\}\hat{f}(y)\|_{L^q(\mathbf{R})} < \infty$ and $ab \geq 1/4$ then f = 0 (a.e.). The case where $p = q = \infty$ and ab > 1/4 is covered by the Hardy theorem. S. C. Bagchi and S. K. Ray [1] showed that if ab > 1/4, then the Hardy theorem is equivalent to the Cowling-Price theorem.

A.Sitaram and M.Sundari [10] obtained the Hardy theorem in the case of noncompact semisimple Lie groups with one conjugacy class of Cartan subgroups, $SL(2, \mathbf{R})$ and Riemannian symmetric spaces of the noncompact type. Recently J. Sengupta [8] and M. Ebata et al. [5] obtained the Hardy theorem for all Lie groups of Harish-Chandra class and all connected semisimple Lie groups with finite center respectively. Also, M. Cowling, A. Sitaram and M. Sundari [4] gave another simple proof of the Hardy theorem for connected real semisimple Lie groups with finite center. On the other hand, S. C. Bagchi and S. K. Ray [1] obtained the Cowling-Price theorem for some Lie groups and M. Eguchi, S. Koizumi and K. Kumahara [6] also obtained the Cowling-Price theorem for motion groups. Further, J. Sengupta [9] obtained the Cowling-Price theorem on Riemannian symmetric spaces of the noncompact type. In this note, we prove the Cowling-Price theorem for SU(1,1) under the assumption that $1 \leq p, q \leq \infty$ and ab > 1/4.

2 Notation and preliminaries

If \mathcal{H} is a complex separable Hilbert space, $\mathbf{B}(\mathcal{H})$ denotes the Banach space comprised of all bounded operators on \mathcal{H} with operator norm $\|\cdot\|_{\infty}$. For $T \in \mathbf{B}(\mathcal{H})$ and

 $1 \leq p < \infty$, we indicate its Schatten norm by $||T||_p$, that is, $||T||_p = (\operatorname{tr}(T^*T)^{p/2})^{1/p}$, T^* being the adjoint operator of T. For a complex separable Hilbert space \mathcal{H} and a σ -finite measure space (X,μ) , we denote by $L^p(X,\mathbf{B}(\mathcal{H}))$ the Banach space comprised of all $\mathbf{B}(\mathcal{H})$ -valued L^p functions on X. Here the L^p -norm $||F||_{L^p(X,\mathbf{B}(\mathcal{H}))}$ of $F \in L^p(X,\mathbf{B}(\mathcal{H}))$ is given by the following:

$$||F||_{L^{p}(X,\mathbf{B}(\mathcal{H}))} = \left(\int_{X} ||F(x)||_{p}^{p} d\mu(x)\right)^{1/p}, \ (1 \le p < \infty),$$

$$||F||_{L^{\infty}(X,\mathbf{B}(\mathcal{H}))} = \operatorname{ess.} \sup_{x \in X} ||F(x)||_{\infty}.$$

Here G denotes the matrix group SU(1,1), that is,

$$G = \left\{ g = \begin{pmatrix} \alpha & \beta \\ \bar{\beta} & \bar{\alpha} \end{pmatrix} ; |\alpha|^2 - |\beta|^2 = 1 , \alpha, \beta \in \mathbf{C} \right\}.$$

For $\varepsilon = 0, 1$ and $\nu \in \mathbf{R}$, let

$$\mathcal{H}_{\varepsilon,\nu} = \left\{ \varphi \in L^2(K) \; ; \; \varphi(k(\pm I)) = (\pm 1)^{\varepsilon} \varphi(k), \; k \in K \right\}.$$

We define the action $\pi_{\varepsilon,\nu}$ on $\mathcal{H}_{\varepsilon,\nu}$ by

$$(\pi_{\varepsilon,\nu}(g)\varphi)(k) = e^{(\sqrt{-1}\nu - 1/2)t(g^{-1}k)}\varphi(k_{\theta(g^{-1}k)}).$$

Then $\pi_{\varepsilon,\nu}$ is a unitary representation on $\mathcal{H}_{\varepsilon,\nu}$ and is called a principal series representation. Let $I_{\varepsilon,\nu}$ be the standard intertwining operator defined by Knapp and Stein. For each $\varepsilon = 0, 1$, it is satisfied that

$$I_{\varepsilon,\nu}\pi_{\varepsilon,\nu}(g) = \pi_{\varepsilon,-\nu}(g)I_{\varepsilon,\nu}$$

for all $\nu \in \mathbf{R}$ and $g \in G$. We also need another representation. For $\lambda \in \mathbf{Z} \setminus \{0\}$, we put the discrete series representation $(\pi_{\lambda}, \mathcal{H}_{\lambda})$.

For $f \in L^1(G)$, its Fourier transform on G is defined by

(2.1)
$$\mathcal{F}^{c} f(\varepsilon, \nu) = \int_{G} f(g) \pi_{\varepsilon, \nu}(g) \, dg,$$

(2.2)
$$\mathcal{F}^d f(\lambda) = \int_G f(g) \pi_{\lambda}(g) \, dg.$$

We write $\mathcal{F} = (\mathcal{F}^c, \mathcal{F}^d)$. If $f \in C_0^{\infty}(G)$, then the following inversion formula holds

(2.3)
$$f(g) = \sum_{\varepsilon=0}^{1} \int_{0}^{\infty} \operatorname{tr}(\mathcal{F}^{\varepsilon} f(\varepsilon, \nu) \pi_{\varepsilon, \nu}(g^{-1})) \mu(\varepsilon, \nu) d\nu + \sum_{\lambda \in \mathbf{Z} \setminus \{0\}} d(\lambda) \left\{ \operatorname{tr}(\mathcal{F}^{d} f(\lambda) \pi_{\lambda}(g^{-1})) \right\},$$

where $\mu(0,\nu) = \pi\nu \tanh \pi\nu$, $\mu(1,\nu) = \pi\nu \coth \pi\nu$ and $d(\lambda) = |\lambda|/(4\pi)$. For convenience we write $\mathcal{L}^p_{\varepsilon}(\mathfrak{a}^*) = L^p_{\varepsilon}(\mathfrak{a}^*, \mathbf{B}(\mathcal{H}_{\varepsilon,\nu}), \mu(\varepsilon,\nu)d\nu)$ and $L^p_{\varepsilon}(\mathfrak{a}^*) = L^p_{\varepsilon}(\mathfrak{a}^*, \mu(\varepsilon,\nu)d\nu)$.

If a function f satisfies $||e^{a\sigma(g)^2}f(g)||_{L^p(G)} \leq C$ for a>0 and $1\leq p\leq \infty$, we call that f is very rapidly decreasing. Such functions belong to $L^1(G)$. The Schwartz space on G is defined by

$$C(G) = \{ \phi \in C^{\infty}(G) ; \|\phi\|_{r,D,E} < \infty \text{ for all } r \in \mathbf{Z}_{\geq 0}, D, E \in U(\mathfrak{g}_c) \}$$
where $\|\phi\|_{r,D,E} = \sup_{g \in G} |(1 + \sigma(g))^r \Xi(g)^{-1} \phi(D;g;E)|.$

As is well known, the system of seminorms $\|\cdot\|_{r,D,E}$ makes $\mathcal{C}(G)$ into a Fréchet space. Let $C_c(\hat{G})$ be the set of operator valued functions $F: \{0,1\} \times \mathbf{R} \to \bigoplus_{\varepsilon=0}^1 \mathbf{B}(\mathcal{H}_{\varepsilon,\nu})$ such that

- $F(\varepsilon,\nu) \in \mathbf{B}(\mathcal{H}_{\varepsilon,\nu})$ for each $\varepsilon = 0,1$, $\nu \in \mathbf{R}$ (i)
- $\nu \mapsto F(\varepsilon, \nu)$ is smooth on **R**
- $I_{\varepsilon,\nu}F(\varepsilon,\nu) = F(\varepsilon,-\nu)I_{\varepsilon,\nu}$ for each $\varepsilon = 0,1$, $\nu \in \mathbf{R}$

(iv)
$$\sup_{\substack{\epsilon=0.1,\nu\in\mathbf{R}\\\ell_1,\ell_2\in\mathbf{Z}(\epsilon)}} \left| \left(\frac{d}{d\nu} \right)^r \left\langle F(\varepsilon,\nu)e_{\ell_2},e_{\ell_1} \right\rangle \right| (1+|\nu|)^{r_1} (1+|\ell_1|)^{r_2} (1+|\ell_2|)^{r_3} < \infty$$
for all $r_1, r_2, r_3, r \in \mathbf{Z}_{\geq 0}$.

The system of seminorms given by (iv) makes $C_c(\hat{G})$ into a Fréchet space. Let $\mathcal{C}_d(\hat{G})$ be the set of all $F: \mathbf{Z} \setminus \{0\} \to \bigoplus_{\lambda \in \mathbf{Z} \setminus \{0\}} \mathbf{B}(\mathcal{H}_{\lambda})$ such that

- $F(\lambda) \in \mathbf{B}(\mathcal{H}_{\lambda})$ for each $\lambda \in \mathbf{Z} \setminus \{0\}$
- $\sup_{\substack{\lambda \in \mathbf{Z} \setminus \{0\} \\ \ell_1, \ell_2 \in \mathbf{Z}_{\lambda}}} |(F(\lambda)\psi_{\ell_2}, \psi_{\ell_1})_{\lambda}| (1 + |\lambda|)^{r_1} (1 + |\ell_1|)^{r_2} (1 + |\ell_2|)^{r_3} < \infty$

for all $r_1, r_2, r_3 \in \mathbb{Z}_{>0}$.

The system of seminorms given by (i) makes $C_d(\hat{G})$ into a Fréchet space. Put $C(\hat{G})$ = $\mathcal{C}_{c}(\hat{G}) \oplus \mathcal{C}_{d}(\hat{G})$. Then $\mathcal{C}(\hat{G})$ is a Fréchet space in an obvious manner. We put $S^c = (\mathcal{F}^c)^{-1}$ and $S^d = (\mathcal{F}^d)^{-1}$. Then they are given by

$$S^{c}F(g) = \int_{0}^{\infty} \operatorname{tr}(F(\varepsilon,\nu)\pi_{\varepsilon,\nu}(g^{-1}))\mu(\varepsilon,\nu)d\nu, \text{ for } F \in \mathcal{C}_{c}(\hat{G}),$$

$$S^{d}F(g) = \sum_{\lambda \in \mathbf{Z} \setminus \{0\}} d(\lambda)\operatorname{tr}(F(\lambda)\pi_{\lambda}(g^{-1})), \text{ for } F \in \mathcal{C}_{d}(\hat{G}).$$

PROPOSITION 2.1 (cf. [7]) The Fourier transform \mathcal{F} is a topological isomorphism from C(G) onto C(G). And its inverse transform is given by (2.3).

Let

$$\mathcal{C}_{c}(G) = \{ \phi \in \mathcal{C}(G) ; \mathcal{F}^{d}\phi(\lambda) = 0, \lambda \in \mathbf{Z} \setminus \{0\} \},
\mathcal{C}_{d}(G) = \{ \phi \in \mathcal{C}(G) ; \mathcal{F}^{c}\phi(\varepsilon, \nu) = 0, \varepsilon = 0, 1, \nu \in \mathbf{R} \},$$

and $C_{c,mn}(G)$ (resp. $C_{d,mn}(G)$) denote the subset of $C_c(G)$ (resp. $C_d(G)$) consisting of the (m,n)-spherical functions.

Let $m, n \in \mathbf{Z}$. If $m - n \in 2\mathbf{Z} + 1$, we set $\mathcal{C}_{c,mn}(\hat{G}) = \emptyset$. If $m - n \in 2\mathbf{Z}$, we choose ε so that $m, n \in \mathbf{Z}(\varepsilon)$ and let $\mathcal{C}_{c,mn}(\hat{G})$ be the set of C^{∞} functions $F : \mathbf{R} \to \mathbf{C}$ such that

(i)
$$F(-\nu) = c_n(\nu)^{-1} c_m(\nu) F(\nu)$$
 for each $\nu \in \mathbf{R}$,

$$(\mathbf{i}) \quad \sup_{\nu \in \mathbf{R}} \left| (1 + |\nu|)^r \left(\frac{d}{d\nu} \right)^s F(\nu) \right| < \infty \quad \text{for all } r, s \in \mathbf{Z}_{\geq 0}.$$

The system of seminorms given by (i) makes $C_{c,mn}(\hat{G})$ into a Fréchet space.

Let $\mathcal{C}_{d,mn}(\hat{G})$ be the set of all functions $F: \mathbf{Z} \setminus \{0\} \to \mathbf{C}$ such that

$$F(\lambda) = 0$$
 for all $\lambda \notin L(m, n)$.

We equip $C_{d,mn}(\hat{G})$ with the topology induced by the system of seminorms $||F||_{\ell} = \sup_{\lambda \in L(m,n)} |F(\lambda)| (1+|\lambda|)^{\ell}$ for $\ell \in \mathbf{Z}_{\geq 0}$. Then $C_{d,mn}(\hat{G})$ becomes a Fréchet space. It is also known that $C(G) \subseteq L^2(G)$ and $C_{c,mn}(\hat{G}) \subseteq L_{\varepsilon}^p(\mathfrak{a}^*)$ for all $p \in [1,\infty]$.

For $f \in L^1(G)$, we define its (m,n)-spherical transforms $\mathcal{F}_{mn}^c f$ and $\mathcal{F}_{mn}^d f$ by

$$(\mathcal{F}_{mn}^{c}f)(\varepsilon,\nu) = \int_{G} f(g)\Phi_{mn}^{\varepsilon,\nu}(g)dg,$$
$$(\mathcal{F}_{mn}^{d}f)(\lambda) = \int_{G} f(g)\Psi_{mn}^{\lambda}(g)dg.$$

For $\phi \in L^1_{\varepsilon}(\mathfrak{a}^*)$ and $m, n \in \mathbf{Z}(\varepsilon)$, we set

$$(S_{mn}^{\varepsilon}\phi)(g) = \int_{0}^{\infty} \phi(\nu) \Phi_{nm}^{\varepsilon,\nu}(g^{-1}) \mu(\varepsilon,\nu) d\nu$$
.

For an arbitrary function $\phi : \mathbf{Z} \setminus \{0\} \to \mathbf{C}$, we put

$$(\mathcal{S}^d_{mn}\phi)(g) = \sum_{\lambda \in L(m,n)} d(\lambda)\phi(\lambda)\Psi^{\lambda}_{nm}(g^{-1}) .$$

PROPOSITION 2.2 (cf. [7]) The (m,n)-spherical transform \mathcal{F}_{mn}^c (resp. \mathcal{F}_{mn}^d) is a topological isomorphism of $\mathcal{C}_{c,mn}(G)$ (resp. $\mathcal{C}_{d,mn}(G)$) onto $\mathcal{C}_{c,mn}(\hat{G})$ (resp. $\mathcal{C}_{d,mn}(\hat{G})$). And inverse transform of \mathcal{F}_{mn}^c (resp. \mathcal{F}_{mn}^d) is given by \mathcal{S}_{mn}^c (resp. \mathcal{S}_{mn}^d).

For $\phi \in \mathcal{C}(G)$, we define the wave packets $\phi_{c,mn} \in \mathcal{C}_{c,mn}(G)$ and $\phi_{d,mn} \in \mathcal{C}_{d,mn}(G)$ by

$$\phi_{c,mn}(g) = \mathcal{S}_{mn}^{c}(\mathcal{F}_{mn}^{c}\phi)(g) = \int_{0}^{\infty} (\mathcal{F}_{mn}^{c}\phi)(\varepsilon,\nu) \Phi_{nm}^{\varepsilon,\nu}(g^{-1})\mu(\varepsilon,\nu)d\nu,$$

$$\phi_{d,mn}(g) = \mathcal{S}_{mn}^{d}(\mathcal{F}_{mn}^{d}\phi)(g) = \sum_{\lambda \in L(m,n)} d(\lambda)(\mathcal{F}_{mn}^{d}\phi)(\lambda)\Psi_{nm}^{\lambda}(g^{-1}).$$

PROPOSITION 2.3 (cf. [2]) For each $\phi \in C(G)$, there is a unique expansion

$$\phi = \sum_{m,n \in \mathbf{Z}} \phi_{c,mn} + \sum_{m,n \in \mathbf{Z}} \phi_{d,mn}.$$

The series converges absolutely to ϕ in C(G), and the mappings $\phi \to \phi_{c,mn}$ and $\phi \to \phi_{d,mn}$ are continuous.

For a tempered distribution $T \in \mathcal{C}'(G)$, we define $T_{c,mn}, T_{d,mn} \in \mathcal{C}'(G)$ by

$$T_{c,mn}[\phi] = T[\phi_{c,mn}], T_{d,mn}[\phi] = T[\phi_{d,mn}] \quad (\phi \in \mathcal{C}(G)).$$

Similarly, we also define $T_{mn} \in \mathcal{C}'(G)$ by

$$T_{mn}[\phi] = T[\phi_{mn}],$$

where ϕ_{mn} is (m, n)-spherical function in C(G).

PROPOSITION 2.4 (cf. [2]) Retain the above notation.

$$T = \sum_{m,n \in \mathbf{Z}} T_{c,mn} + \sum_{m,n \in \mathbf{Z}} T_{d,mn},$$

where the series converges absolutely to T in the weak topology of C'(G).

Here we give some lemmas.

LEMMA 2.5 (cf. [2]) Let $T \in \mathcal{C}'(G)$. Then

$$\mathcal{F}^cT_{c,mn}=\mathcal{F}^c_{mn}T,\ \mathcal{F}^dT_{c,mn}=0,\ \mathcal{F}^cT_{d,mn}=0,\ \mathcal{F}^dT_{d,mn}=\mathcal{F}^d_{mn}T.$$

LEMMA 2.6 Let f be very rapidly decreasing and (m, n)-spherical. Then

$$(T_f)_{c,rs} = \delta_{r,-m}\delta_{s,-n}(T_f)_{c,(-m)(-n)},$$

 $(T_f)_{d,rs} = \delta_{r,-m}\delta_{s,-n}(T_f)_{d,(-m)(-n)},$

for $r, s \in \mathbf{Z}$.

Let $F \in L^p_{\varepsilon}(\mathfrak{a}^*)$ and fix $m, n \in \mathbf{Z}(\varepsilon)$. If we set

$$T_F[\Phi] = \int_0^\infty F(\nu)\Phi(\nu)\mu(\varepsilon,\nu)d\nu, \text{ for } \Phi \in \mathcal{C}_{c,mn}(\hat{G}),$$

then $T_F \in \mathcal{C}'_{c,mn}(\hat{G})$.

For an arbitrary function $F: \mathbf{Z} \setminus \{0\} \to \mathbf{C}$, we put

$$T_F[\Phi] = \sum_{\lambda \in L(m,n)} d(\lambda) F(\lambda) \Phi(\lambda), \text{ for } \Phi \in \mathcal{C}_{d,mn}(\hat{G}).$$

Then $T_F \in \mathcal{C}'_{d,mn}(\hat{G})$.

LEMMA 2.7 Let f be very rapidly decreasing and (m, n)-spherical, and $\mathcal{F}_{mn}^{c} f \in L_{\varepsilon}^{1}(\mathfrak{a}^{*})$. Then

$$\mathcal{F}^{-1}\mathcal{F}^{c}_{(-m)(-n)}T_{f} = T_{(\mathcal{S}^{c}_{(-n)(-m)}\mathcal{F}^{c}_{(-n)(-m)}\check{f})^{\perp}},$$

$$\mathcal{F}^{-1}\mathcal{F}^{d}_{(-m)(-n)}T_{f} = T_{(\mathcal{F}^{d}_{(-n)(-m)}\mathcal{F}^{d}_{(-n)(-m)}\check{f})^{\perp}},$$

where $\check{f}(g) = f(g^{-1})$.

PROPOSITION 2.8 Let f be very rapidly decreasing and (m, n)-spherical, and $\mathcal{F}_{mn}^c f \in L^1_{\varepsilon}(\mathfrak{a}^*)$. Then

$$f(g) = (\mathcal{S}_{mn}^c \mathcal{F}_{mn}^c f)(g) + (\mathcal{S}_{mn}^d \mathcal{F}_{mn}^d f)(g) \quad \text{(a.e.)}.$$

3 The main theorem

We need the following lemma of Cowling-Price [3].

LEMMA 3.1 Let $1 \le p \le \infty$ and A > 0. Let g be an entire function such that

$$|g(x+\sqrt{-1}y)| \leq Ae^{\pi x^2},$$

$$\left(\int_{\mathbf{R}} |g(x)|^p dx\right)^{1/p} \leq A.$$

Then g is a constant function on C. Moreover, if $p < \infty$ then g = 0.

By using Proposition 2.8, Lemma 3.1 and a similar argument of [6], we obtain the following proposition.

PROPOSITION 3.2 Let $1 \le p, q \le \infty$. Let f be a (m, n)-spherical measurable function on G such that

$$\left\| e^{a\sigma(g)^2} f(g) \right\|_{L^p(G)} \leq C,$$

$$\left\| e^{b\nu^2} (\mathcal{F}_{mn}^c f)(\varepsilon, \nu) \right\|_{L^q_{\varepsilon}(\mathfrak{A}^*)} \leq C,$$

for C > 0, a > 0 and b > 0. If ab > 1/4 then f = 0 (a.e.).

The following main theorem is an easy consequence of Proposition 3.2.

THEOREM 3.3 (the Cowling-Price theorem for SU(1,1)) Let $1 \le p, q \le \infty$. Let f be a measurable function on G such that

$$\left\| e^{a\sigma(g)^2} f(g) \right\|_{L^p(G)} \leq C,$$

$$\left\| e^{b\nu^2} \mathcal{F}^c f(\varepsilon, \nu) \right\|_{\mathcal{L}^q_{\varepsilon}(\mathbf{a}^*)} \leq C_{\varepsilon},$$

for C > 0, a > 0 and b > 0. If ab > 1/4 then f = 0 (a.e.).

References

- [1] S. C. Bagchi and Swagato K. Ray, Uncertainty Principle like Hardy's theorem on some Lie groups, J. Austral. Math. Soc., 65 Ser. A (1998), pp. 289-302.
- [2] W. H. Barker Tempered, Invarint, Positive-Definite Distributions on $SU(1,1)/\{\pm 1\}$, Illinois J Math. **28** (1984), pp. 83-102.
- [3] M. G. Cowling and J. F. Price, Generalizations of Heisenberg's inequality, Lecture Notes in Math. 992, Springer-Verlag, Berlin, 1983, pp. 443-449.
- [4] M. Cowling, A. Sitaram and M. Sundari, *Hardy's Uncertainty Principle on semisimple groups*, Pacific J. Math. **192**, (2000), pp. 293-296.
- [5] M. Ebata, M. Eguchi, S. Koizumi and K. Kumahara, A generalization of the Hardy theorem to semisimple Lie groups, Proc. Japan Acad., 75, Ser. A (1999), pp. 113-114.
- [6] M. Eguchi, S. Koizumi and K. Kumahara, An L^p version of the Hardy theorem for motion groups, J. Austral. Math. Soc. (accepted).
- [7] L. Ehrenpreis and F. Mautner Some properties of the Fourier transform on semisimple Lie groups III, Trans. Amer. Math. Soc., 90 (1959), pp. 431-484.
- [8] J. Sengupta, An analogue of Hardy's theorem for semi-simple Lie groups, (preprint).
- [9] J. Sengupta, The uncertainty principle on Riemannian symmetric spaces of the noncompact type, (preprint).
- [10] A. Sitaram and M. Sundari, An analogue of Hardy's theorem for very rapidly decreasing functions on semi-simple Lie groups, Pacific J. Math. 177 (1997), pp. 187-200.