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On the Cowling-Price theorem for SU(1,1)

Mitsuhiko Ebata

Abstract

M. G. Cowling and J. F. Price showed a kind of uncertainty principle on
Fourier analysis: If v and w grow very rapidly then the finiteness of ||vf]|, and

l]wf||q implies that f = 0, where f denotes the Fourier transform of f. We give
an analogue of this theorem for SU(1,1).

1 Introduction

The Hardy theorem asserts that if a measurable function f on R satisfies [f(z)] <
Ce=* and |f(y)] < (’e‘”y2 and ab > } then f = 0 (a.e.). Here we use the Fourier
transform defined by f l/\/ﬁ f’o flz V=1zy o M. G. Cowling and J. F. Price
[3] generalized the Haxdy fheorem as follows Suppose that 1 < p,q < oo and one of
them is finite. If a measurable function f on R satisfies || exp{aa®} f(x)||rr(r) < 0o and
|| exp{by*} fly )|Ler) < 0o and ab > 1/4 then f = 0 (a.e.). The case where p = ¢ =
and ab > 1/4 is covered by the Hardy theorem. S. C. Bagchi and S. K. Ray [1] showed
that if ab > 1/4, then the Hardy theorem is equivalent to the Cowling-Price theorem.

A Sitaram and M.Sundari [10] obtained the Hardy theorem in the case of noncom-
pact semisimple Lie groups with one conjugacy class of Cartan subgroups, 5L(2, R) and
Riemannian symmetric spaces of the noncompact type. Recently J. Sengupta [8] and
M. Ebata et al. [5] obtained the Hardy theorem for all Lie groups of Harish-Chandra
class and all connected semisimple Lie groups with finite center respectively. Also,
M. Cowling, A. Sitaram and M. Sundari {4] gave another simple proof of the Hardy
theorem for connected real semisimple Lie groups with finite center. On the other
hand, S. C. Bagchi and S. K. Ray [1] obtained the Cowling-Price theorem for some Lie
groups and M. Eguchi, S. Koizumi and K. Kumahara [6] also obtained the Cowling-
Price theorem for motion groups. Further, J. Sengupta [9] obtained the Cowling-Price
theorem on Riemannian symmetric spaces of the noncompact type. In this note, we
prove the Cowling-Price theorem for SU(1, 1) under the assumption that 1 < p,q < o0
and ab > 1/4.

2 Notation and preliminaries

If H is a complex separable Hilbert space, B(H) denotes the Banach space com-
prised of all bounded operators on H with operator norm || - ||oo. For T € B(H) and
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1 < p < 0o, we indicate its Schatten norm by [[T]|,, that is, | T||, = (tr(T*T)?/*)!/e, T*
being the adjoint operator of 7'. For a complex separable Hilbert space H and a o-finite
measure space (X, u), we denote by LP(X,B(H)) the Banach space comprised of all
B(H)-valued L” functions on X. Here the LP-norm || F||r»(x.Bn)) of F' € LP(X,B(H))

is given by the following:

1/p
[FllrxBry = </XHF($)|ZW($)> , (1< p <o),

“FHLDO(_X,B(%)) = €SS. sug “F(l)]'vX
LE

Here (¢ denotes the matrix group SU(1,1), that is,

o={o= (5 0) tap-lsr=1. apcc)

For e = 0,1 and v € R, let

oy

He, = {p € L*(K); p(k(£])) = (£1)°p(k), k€ K}.
We define the action 7., on H., by
—1lv—-1/" gtk
(Ws,u(g)@(k) = 6(\/—1 L/ U@(ke(g—lk))-
Then 7., is a unitary representation on H, , and is called a principal series represen-
tation. Let I., be the standard intertwining operator defined by Knapp and Stein.
For each & = 0,1, it is satisfied that
Leyme(9) = Teo(9) e
for all v € R and g € G. We also need another representation. For A € Z\{0}, we put

the discrete series representation (my, Hy).
For f € L*(G), its Fourier transform on G is defined by

(2.1) Fofte) = [ flo)mta) do

(22) 50 = [ famlo)do

We write F = (F¢, FH. If f € C(G), then the following inversion formula holds

(2.3) flo) = 3 [ et e i

Y dO) {(F N mleT))

A€Z\{0}
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where u(0,v) = mvtanhar | p(l,v) = mvcothmr and d(A) = |A]/(47). For conve-
nience we write £P(a*) = L(a*, B(H..), p(e, v)dv) and L2(a*) = LE(a”, u(s, v)dv).

If a function f satisfies ]le’“’ 0 f(g Wire < C fora>0and 1 < p< oo, we call
that f is very rapidly decreasing. Such functlonb belong to L'(G). The Schwartz space
on G 1s defined by

G—{a)e(“(r |oll.pe <oo foralreZsy, D,EcU(g.)}

where [|9||-p.5 = SuP|(l +0(9))"=(g) " o Dsg; ).
g€eG
As is well known, the system of seminorms || - ||..p.g makes C(() into a Fréchet space.
Let C.(G') be the set of operator valued functions F : {0,1} x R = 4l_ B(H..,)
such that

(i) F(e,v) €B(H.,) foreachc=0,1,vreR

(1) v F(e,v)1s smooth on R

(m) [, F(e,v)=F(e,—v)l., foreache=0,1,recR
d\"

(——) (F(z,v)ee,,€0,)

dv

(L4 ) (1 4+ 14

(v)  sup )2 (L4 0" <o
e=0.1.vER
(1.l €% (<)

for all ry,7y.13,7 € Zisp.

The system of seminorms given by (iv) makes CL((A}) into a Fréchet space.
Let Cy4((7) be the set of all F': Z\{0} = tirez\oyB(HA) such that
(i)  F(X\) € B(H,) foreach A € Z\{0}
(1) sup [(F (Ao e Al (L4 AN L+ A7 (1 ]6)7 < oo
AE€Z\{0}
(1 .(E€Z)

for all ry, 73,73 € Zxo.

The system of seminorms given by (i) makes C,{((;') into a Fréchet space. Put C(G) =
C.(G)  Cy(G). Then C(G) is a Fréchet space in an obvious manner.
We put 8¢ = (F¢)~! and 8¢ = (F¢)~!. Then they are given by

SFlg) = / tr(F(e, v)me, (g~ Np(e,v)dy, for F € C(G)
Jo

S'F(g) = Y dNu(F(M)m(g™), for F e Cy(G).
AEZ\{0}

PROPOSITION 2.1 (cf. [7])  The Fourier transform F is a topological isomorphism
from C((7) onto C((7). And its inverse transform is given by (2.3).
Let

CAG) = {p€C(G); F'o(A) =0, X e Z\{0}},
CyG) = {9peC(G); Fdle,v) =0, c=0,1, v € R},
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and Cemn(G) (resp. Cy,nn(G)) denote the subset of C.(G) (resp. Co((7)) consisting of
the (m,n)-spherical functions.

Let mneZ. fm—ne2Z+1, weset C.. ,,M(G) =0. If m— n € 27, we choose ¢
so that m,n € Z(¢) and let C'C,,m((") be the set of C* functions £ : R — C such that

(i) F(—v)= c.,z,(z/)_]c,,L(l{)F(l/) for each v € R,
(1)  sup 1(1 + )" <%> F(v)

< oo forall s € Zsy.
veER -

The system of seminorms given by (i) makes C, ,,L,)((T) imto a Fréchet space.

Let Ccl,,,L,,l((z) be the set of all functions F': Z\{0} — C such that
F(A)=0 forall A & L(m,n).

We equip Cy ,,L,L(G) with the topology induced by the system of seminorms ||Fl|j;, =
SUP e L) [F (M) (1 +[A]) for £ € Zsy. Then Cimn(G) becomes a Fréchet space. It is
also known that C(G) C L*(G) and CC,,,.,L,L((;‘) C LP(a*) for all p € [1,00].

For f € L'(G), we define its (m,n)-spherical transforms F¢,_f and F¢_f by

( /IZ.7L ' / f @/EHII/L dg7

d
(FL 1) / Fg)W2(

For ¢ € Li(a*) and m,n € Z(z), we set

Soll) = [ ool e
Jo
For an arbitrary function ¢ : Z\{0} — C, we put

(Spa)g) = D dN)eN)T, (g7

AEL(m,n)

PROPOSITION 2.2 (cf. [7]) The (m,n)-spherical transform F o (reEsp. Fi )is a

topological isomorphism of C. ,,,,(G) (resp. Cy,,(G)) onto C.. ,,m((!) (resp. Cy. ,N,L(G))
And inverse transform of F:,, (resp. F° ) is given by 8¢, (resp. S* ).

nn mn LI

For ¢ € C(G), we define the wave packets ¢, ., € Copn(G) and ¢y € Cymn(G)
by

¢c,mn(9) = S/Cnn(‘,/tnn(PK / ( nm ( )(Dful:7.< —1)/1'(571/)6[”7

¢'1,77‘L71(g> = S;’L”( mn. Z f;(){ul (/\)\‘D/\;nz( ‘“1)‘

AeL(m,n)
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PROPOSITION 2.3 (cf. [2]) For each ¢ € C((), there is a unique expansion

(b: Z ¢C,mn+ Z ¢(l,n‘nv

m,n€z m,n€Z

The series converges absolutely to ¢ in C(G), and the mappings ¢ — ¢emn and ¢ —
Dd.mn are continuous.

For a tempered distribution T € C(G), we define T, Ty € C/(G) by
Teunld] = Tlemnl » Tamnld] = Tlama] (¢ € C(G)).
Similarly, we also define T,,, € C'(G) by
Tounl9] = Tl

where ¢,,, is (m,n)-spherical function in C(G).

PROPOSITION 2.4 (cf. [2]) Retain the above notation.

T: Z Tc,mn+ Z Td.,mna

m.nez m,ne€x

where the series converges absolutely to T in the weak topology of C'(G).

Here we give some lemmas.

LEMMA 2.5 (cf. [2]) Let T € C'(G). Then
j__CTc,mn =F

min

Tv quwc,m'n =0, ]:'CTd,mn =0, ded,mn = fd T

mn—

LEMMA 2.6 Let f be very rapidly decreasing and (m,n)-spherical. Then

(Tf)c.rs = 57‘,—7)155,—7),(Tf)c.(—m)(——n)v
(Tf)rl,rs = 51',—'/”5.5',—72.(']1 )d,(—m)(——n)a

forr,s € 4.
Let F' € LP(a*) and fix m,n € Z(e). If we set
Tp[0] = / F) () (e, v)dv, for € Conn(C),
0

L,mn(é)'
For an arbitrary function £ : Z\{0} — C, we put

then Tr € C’

Tr[®]= Y dNFA)®(N), for & € Cyun(G).
AeL(m,n)
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Then Tr € C), ,,1,L(G)-
LEMMA 2.7 Let f be very rapidly decreasing and (m,n)-spherical, and F,,f €
Ll(a*). Then
1 o .
F- ‘7: —m){—n) Jf - ](S(C n) Fe m,)f)v’

- (—m)J:(—n.)(—

d al
FUFL I = Tz Fd
m f (}— —nj{— n'r)j:((—'n)(—m)f) '

where f(g) = flg™').

PROPOSITION 2.8 Let f be very rapidly decreasing and (m,n)-spherical, and
Fe . f € Li(a*). Then

F(9) = (SrnFin )(9) + (S FannF)g)  (ace).

3 The main theorem

We need the following lemma of Cowling-Price [3].

LEMMA 3.1 Let1 <p<ooand A> 0. Let g be an entire function such that
(. +V-1y)| < Ae™
1/p
</ lg( l”d@) < A
Then g 1s a constant function on C. Moreover, if p < oc then g = 0.

By using Proposition 2.8, Lemma 3.1 and a similar argument of [6], we obtain the
following proposition.

PROPOSITION 3.2 Let 1 < p,g < oo. Let f be a (m,n)-spherical measurable
function on G such that

2 .
7 flg)|

< 0,

Lr(G)

A Fon e v)

mi

|

for C'>0,a>0and b>0. If ab> 1/4 then f =0 (a.e.).

<
Lia*y

The following main theorem is an easy consequence of Proposition 3.2.
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THEOREM 3.3 (the Cowling-Price theorem for SU(1,1)) Letl <p,q < co.

Let

f be a measurable function on GG such that

c“‘“(”’z.f'(g)‘

& Ffle,v)

< G

Lr(G)

|

|

< (.

cia)

for C>0,a>0andb>0. Ifab> /4 then [ =0 (a.c.).
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