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Abstract

Analogues of Heisenberg’s inequality and Hardy’s theorem for the
classical Fourier transform are obtained for the Dunkl transform as-
sociated with a root system.
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1 Uncertainty principle for the Fourier transform

The Fourier transform of a function f € L}(R) is the function defined by

fo) == [ f@ePea,
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Heisenberg’s inequality

Heisenberg’s inequality states that for f € L%(R),
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with equality only if f(z) is almost everywhere equal to a constant multiple
of e=7=" for some p>0.

A proof is given in Weyl [10, Appendix 1]. de Bruijn [1] proved Heisen-
berg’s inequality by using expansions with respect to Hermite polynomials.

Hardy’s theorem

Hardy [4] proved a theorem concerning the decay of f and f at infinity;
let p and ¢ be positive constants and assume that f is a function on the
real line satisfying |f(z)| < Ce™P* and |f(A)| < Ce~9" for some positive
constant C. Then (i) f = 0 if pg > 1/4; (ii) f = Ae™?*" for some constant A
if pg = 1/4; (iii) there are infinitely many f if pg < 1/4.

There is a proof based on the Phragmén-Lindel6f theorem.

2 Review on the Dunkl transform

In this section, we review on results of Dunkl [3] and de Jeu [2].

Let a = RM be a N-dimensional real vector space with inner product
(-,+). The norm is denoted by |z| = (z,z)/2. For a € a\ {0} let 7, denote
the orthogonal reflection with respect to the hyperplane orthogonal to a.
Let G C O(a) be a finite reflection group. Let R be the corresponding root
system. We will assume that R is a normalized root system, i.e. (a,a) = 2
for all @ € R. Choose and fix a positive system R, C R.

A complex valued function ¥ : a — k, on R which is G-invariant is called
a multiplicity function. In this article we always assume that Rek, > 0 for
all o € R.

Let h = a ®r C be the complexification. For { € h let J; denote the
corresponding directional derivative. Define the Dunkl operator T; by

(Tef)(@) = @) () + 3 kala, )/ & =1 rad)

a€R+ (a’ x)

We have [T¢, T,] = 0 for any &, 7 € h. Given ) € h* consider the following
system of differential-difference equations on a:

T(k)f = \©)f, fea. (21)
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Theorem 2.1 (de Jeu, [2] Theorem 2.6) Assume Reky, > 0 for all o €
R. Then there is a unique solution Expg(\ k,-) of (2.1) such that

(1) EXPG(/\’ k,O) = 1;

(ii) Expg(A, k, ) is holomorphic in A € Y and analytic in z € a.

Let
h(z)= ] l(e,z)["
aERy

and

Y= Zka.

a€R+

Then h is a homogeneous G-invariant function of degree v. Define the nor-
malization constant

ch = ((27r)‘N/2 /R i h(x)%-'wl"’/?dm) _1.

de Jeu [2, Corollary 4.17] proved that the constant ¢y, is strictly positive (see
also [2, Remark 4.12]).
For f € L}*(RN, h%dx), let

FO) = (2m) N2, /R . f(@)Expg(—vV—=1\, k, z)h(z) dz,

the Dunkl transform of f. If k, = 0 for all € R, then it is nothing but the
Fourier transform on RY.

We recall main results of de Jeu [2], the inversion formula and the Plancherel
theorem for the Dunkl transform.

Theorem 2.2 (de Jeu [2], Theorem 4.20, 4.26) (1) Assume Rekq >
0 foralla € R. Let f € L'(RY, h?dz) and suppose that f € L*(RY, h?dz).
Then

f(@) = (2m) N2, /R OV Expa(v I, k,2)h(3)?dA

(2) Assume ko > 0 for all « € R. If f € L'(R¥,h%dz) N L2(RY, h¥dz),
then f € L*(RY, h%dzx) and

/RN 'f(w)lzh($)2dx = /RN If(/\)l2h()\)2d/\.
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3 Uncertainty principle for the Dunkl transform

Heisenberg’s inequality
Theorem 3.1 Assume that ko > 0 for all « € R. For f € L*(RY, h2dz),

L Pl @ERE2ds [ AT PROYar
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with equality only if f(z) is almost everywhere equal to a constant multiple
of e P** for some p > 0.

After we proved Theorem 3.1, we noticed that Theorem 3.1 was already
proved by Rosler [6].

Our proof of Theorem 3.1 is similar to but simpler than that of Résler
[6]. Rosler used expansions in terms of generalized Hermite polynomials
and recurrence relations among them, which were given in [5]. We used
expansions in terms of the basis given by Dunkl [3] and recurrence relations
for the classical Laguerre polynomial.

Hardy’s theorem

Theorem 3.2 Assume Rek, > 0 for all € R. Let p and q be positive
constants. Suppose f is a measurable function on RN satisfying

|f(2)] < Cexp(~plzf’) zeR" (3-1)
and
If(NI < Cexp(—g|AP) A eRP, (3.2)
where C' is a positive constant. Then we have following results:
(1) If pg > 1/4, then f = 0 almost everywhere.

(2) If pg = 1/4, then f(/\) = Aexp(—gq|A|]?), where A is an arbitrary con-
stant.

(3) If pg < 1/4, then there are infinitely many such functions f.

The proof follows closely that of Sitaram and Sundari [9], where analogues
of Hardy’s theorem were proved for certain function spaces on semisimple Lie

groups.
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4 Concluding remarks

(1) Heisenberg’s inequality and Hardy’s theorem for the following special
cases follow from our results.

(i) f N =1 and G = Z,, then the restriction of the Dunkl trans-
form to symmetric functions coincides with the classical Hankel
transform.

(ii) The Dunkl transform sometimes appears “in nature” as the spher-
ical Fourier transform on Riemannian symmetric spaces X of the
Euclidean type.

(2) Animportant property of the Dunkl transform is that it maps e’ (»>
0) to itself. The property no longer holds for the Heckman-Opdam
transform, which is the trigonometric counterpart of the Dunkl trans-
form.

(3) In [8] the author gives an analogue of Theorem 3.2 (1) for the Heckman-
Opdam transform.
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