
Uncertainty principle for
the Dunkl transform

Okayama University of Science
Nobukazu Shimeno *

Abstract

Analogues of Heisenberg’ $s$ inequality and Hardy’s theorem for the
classical Fourier transform are obtained for the Dunkl transform as-
sociated with a root system.
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1 Uncertainty principle for the Fourier transform

The Fourier transform of a function $f\in L^{1}(\mathbb{R})$ is the function defined by

$\hat{f}(\lambda)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)e^{-\sqrt{-1}\lambda x}dx$ .
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Heisenberg’s inequality

Heisenberg’s inequality states that for $f\in L^{2}(\mathbb{R})$ ,

$\int_{-\infty}^{\infty}x^{2}|f(x)|^{2}dx\int_{-\infty}^{\infty}\lambda^{2}|\hat{f}(\lambda)|^{2}d\lambda\geq\frac{1}{4}[\int_{-\infty}^{\infty}|f(x)|^{2}dx]^{2}$

with equality only if $f(x)$ is almost everywhere equal to a constant multiple
of $e^{-px^{2}}$ for some $p>0$ .

A proof is given in Weyl [10, Appendix 1]. de Bruijn [1] proved Heisen-
berg’s inequality by using expansions with respect to Hermite polynomials.

Hardy’s theorem

Hardy [4] proved a theorem concerning the decay of $f$ and $\hat{f}$ at infinity;
let $p$ and $q$ be positive constants and assume that $f$ is a function on the
real line satisfying $|f(x)|\leq Ce^{-p|x|^{2}}$ and $|\hat{f}(\lambda)|\leq Ce^{-q|x|^{2}}$ for some positive
constant C. Then (i) $f=0$ if $pq>1/4;(ii)f=Ae^{-px^{2}}$ for some constant $A$

if $pq=1/4;(iii)$ there are infinitely many $f$ if $pq<1/4$ .
There is a proof based on the Phragm\’en-Lindel\"of theorem.

2 Review on the Dunkl transform

In this section, we review on results of Dunkl [3] and de Jeu [2].
Let a $=\mathbb{R}^{N}$ be a $N$-dimensional real vector space with inner product

$(\cdot, \cdot)$ . The norm is denoted by $|x|=(x, x)^{1/2}$ . For $\alpha\in a\backslash \{0\}$ let $r_{\alpha}$ denote
the orthogonal reflection with respect to the hyperplane orthogonal to $\alpha$ .
Let $G\subset O(\alpha)$ be a finite reflection group. Let $R$ be the corresponding root
system. We will assume that $R$ is a normalized root system, i.e. $(\alpha, \alpha)=2$

for all $\alpha\in R$ . Choose and fix a positive system $R_{+}\subset R$ .
A complex valued function $k$ : $\alpharightarrow k_{\alpha}$ on $R$ which is $G$-invariant is called

a multiplicity function. In this article we always assume that ${\rm Re} k_{\alpha}\geq 0$ for
all $\alpha\in R$ .

Let $\mathfrak{h}=a\otimes_{R}\mathbb{C}$ be the complexification. For $\xi\in \mathfrak{h}$ let $\partial_{\xi}$ denote the
corresponding directional derivative. Define the Dunkl operator $T_{\xi}$ by

$(T_{\xi}f)(x)=( \partial_{\xi}f)(x)+\sum_{+\alpha\in}k_{\alpha}(\alpha, \xi)\frac{f(x)-f(r_{\alpha}x)}{(\alpha,x)}$.

We have $[T_{\xi}, T_{\eta}]=0$ for any $\xi,$ $\eta\in \mathfrak{h}$ . Given $\lambda\in \mathfrak{h}^{*}$ consider the following
system of differential-difference equations on $a$ :

$T_{\xi}(k)f=\lambda(\xi)f$ , $\xi\in a$ . (2.1)
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Theorem 2.1 (de Jeu, [2] Theorem 2.6) Assume ${\rm Re} k_{\alpha}\geq 0$ for all $\alpha\in$

R. Then there is a unique solution $Exp_{G}(\lambda, k, \cdot)$ of (2.1) such that
(i) $Exp_{G}(\lambda, k, 0)=1$ ,
(ii) $Exp_{G}(\lambda, k, x)$ is holomorphic in $\lambda\in \mathfrak{h}$ and analytic in $x\in a$ .

Let

$h(x)= \prod_{+\alpha\in R}|(\alpha, x)|^{k_{\alpha}}$

and

$\gamma=\sum_{+\alpha\in R}k_{\alpha}$
.

Then $h$ is a homogeneous $G$-invariant function of degree $\gamma$ . Define the nor-
malization constant

$c_{h}=((2 \pi)^{-N/2}\int_{\mathbb{R}^{N}}h(x)^{2}e^{-|x|^{2}/2}dx)^{-1}$

de Jeu [2, Corollary 4.17] proved that the constant $c_{h}$ is strictly positive (see
also [2, Remark 4.12] $)$ .

For $f\in L^{1}(\mathbb{R}^{N}, h^{2}dx)$ , let

$\hat{f}(\lambda)=(2\pi)^{-N/2_{C}}h\int_{\mathbb{R}^{N}}f(x)Exp_{G}(-\sqrt{-1}\lambda, k, x)h(x)^{2}dx$ ,

the Dunkl transform of $f$ . If $k_{\alpha}=0$ for all $\alpha\in R$ , then it is nothing but the
Fourier transform on $\mathbb{R}^{N}$ .

We recall main results of de Jeu [2], the inversion formula and the Plancherel
theorem for the Dunkl transform.

Theorem 2.2 (de Jeu [2], Theorem 4.20, 4.26) (1) Assume ${\rm Re} k_{\alpha}\geq$

$0$ for all $\alpha\in R.$ Let $f\in L^{1}(\mathbb{R}^{N}, h^{2}dx)$ and suppose that $\hat{f}\in L^{1}(\mathbb{R}^{N}, h^{2}dx)$ .
Then

$f(x)=(2 \pi)^{-N/2}c_{h}\int_{\mathbb{R}^{N}}\hat{f}(\lambda)Exp_{G}(\sqrt{-1}\lambda, k, x)h(\lambda)^{2}d\lambda$.

(2) Assume $k_{\alpha}\geq 0$ for all $\alpha\in R.$ If $f\in L^{1}(\mathbb{R}^{N}, h^{2}dx)\cap L^{2}(\mathbb{R}^{N}, h^{2}dx)_{f}$

then $\hat{f}\in L^{2}(\mathbb{R}^{N}, h^{2}dx)$ and

$\int_{\mathbb{R}^{N}}|f(x)|^{2}h(x)^{2}dx=\int_{\mathbb{R}^{N}}|\hat{f}(\lambda)|^{2}h(\lambda)^{2}d\lambda$ .
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3Uncertainty principle for the Dunkl transform
Heisenberg’s inequality

Theorem 3.1 Assume that $k_{\alpha}\geq 0$ for all $\alpha\in R$ . For $f\in L^{2}(\mathbb{R}^{N}, h^{2}dx)$ ,

$\int_{R^{N}}|x|^{2}|f(x)|^{2}h(x)^{2}dx\int_{R^{N}}|\lambda|^{2}|\hat{f}(\lambda)|^{2}h(\lambda)^{2}d\lambda$

$\geq(\gamma+\frac{N}{2})^{2}[\int_{R^{N}}|f(x)|^{2}h(x)^{2}dx]^{2}$

with equality only if $f(x)$ is almost everywhere equal to a constant multiple
of $e^{-p|x|^{2}}$ for some $p>0$ .

After we proved Theorem 3.1, we noticed that Theorem 3.1 was already
proved by R\"osler [6].

Our proof of Theorem 3.1 is similar to but simpler than that of R\"osler
[6]. R\"osler used expansions in terms of generalized Hermite polynomials
and recurrence relations among them, which were given in [5]. We used
expansions in terms of the basis given by Dunkl [3] and recurrence relations
for the classical Laguerre polynomial.

Hardy’s theorem

Theorem 3.2 Assume ${\rm Re} k_{\alpha}\geq 0$ for all $\alpha\in R.$ Let $p$ and $q$ be positive
constants. Suppose $f$ is a measurable function on $\mathbb{R}^{N}$ satisfying

$|f(x)|\leq C\exp(-p|x|^{2})$ $x\in \mathbb{R}^{N}$ (3.1)

and

$|\hat{f}(\lambda)|\leq C\exp(-q|\lambda|^{2})$ $\lambda\in \mathbb{R}^{N}$ , (3.2)

where $C$ is a positive constant. Then we have following results:

(1) If $pq>1/4_{f}$ then $f=0$ almost everywhere.

(2) If $pq=1/4$ , then $\hat{f}(\lambda)=A\exp(-q|\lambda|^{2})_{f}$ where $A$ is an arbitrary con-
stant.

(3) If $pq<1/4$ , then there are infinitely many such functions $f$ .

The proof follows closely that of Sitaram and Sundari [9], where analogues
of Hardy’s theorem were proved for certain function spaces on semisimple Lie
groups.
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4 Concluding remarks

(1) Heisenberg’s inequality and Hardy’s theorem for the following special
cases follow from our results.

(i) If $N=1$ and $G=\mathbb{Z}_{2}$ , then the restriction of the Dunkl trans-
form to symmetric functions coincides with the classical Hankel
transform.

(ii) The Dunkl transform sometimes appears “in nature” as the spher-
ical Fourier transform on Riemannian symmetric spaces $X$ of the
Euclidean type.

(2) An important property of the Dunkl transform is that it maps $e^{-p|x|^{2}}(p>$

$0)$ to itself. The property no longer holds for the Heckman-Opdam
transform, which is the trigonometric counterpart of the Dunkl trans-
form.

(3) In [8] the author gives an analogue of Theorem 3.2 (1) for the Heckman-
Opdam transform.
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