Matrix coefficients of the large discrete series of SU(2,2)

Takayuki ODA (the Univ. of Tokyo, Dep't of Math.-Sci.)

For Tateyama Worsshop, November 1999

1 Formulation of problem

Our concern is to have an explicit formula for the A-radial part of the matrix coefficients with minimal K-types of the large discrete series representations of the Lie group G = SU(2, 2).

1.0.1 Notation and definitions

Our Lie group G is the real special unitary group of signature (2+, 2-), i.e. its defining Hermitian matrix is $I_{2,2} = \text{diag}(1, 1, -1, -1)$. A Cartan involution is given by $\theta : g \mapsto (g^*)^{-1} =^t \bar{g}^{-1}$, and the fixed group $K = G^{\theta} = G \cap U(4)$ is a maximal compact subgroup.

We denote by X_{ij} the matrix unit in $M_4(\mathbf{C})$ with unique non-zero entry 1 at the (i, j)-th component $(1 \le i, j \le 4)$. The Lie algebra of a compact Cartan subgroup is generated by

$$\sqrt{-1}(X_{11} - X_{22}), \sqrt{-1}(X_{33} - X_{44}), \text{ and } \sqrt{-1}I_{2,2}.$$

The absolute roots or the weights β of the Cartan algebra is represented their values on this basis, i.e.

$$\beta = [r, s; u]$$
 if $\beta(X_{11} - X_{22}) = r, \beta(X_{33} - X_{44}) = s, \beta(I_{2,2}) = u.$

We fix a postive system of roots

$$\Delta^+ = \{ [2,0;0], [0,2;0], [\pm,\pm;2] \}.$$

with comapct positive roots $\Delta_c^+ = \{[2,0;0], [0,2;0]\}.$

1.1 Discrete series of SU(2,2)

Since the half sum of postive roots is integral weight of the compact Cartan subgroup for G, the discrete series representation of G are parametrized by the orbit space of the regular integral weights Ξ by the Weyl group W_K of K. Or we may take the fundametal set Ξ_c cocnsisting of regular integral weights positive with respect to $\Delta^+ c$. Let Ξ_I be the subset of Ξ_c consisting of weights postive with respect to Δ^+ . The the sets

$$\Xi_{II} = \sigma_2(\Xi_I), \Xi_V = \sigma_2 \sigma_3 \sigma_1(\Xi_I)$$

are parameter spaces of the large discrete series representations of G. Here σ_i (i = 1, 2, 3) are the elements of Weyl group W of G given by

$$\sigma_1([r, s, ; u]) = [-r, s; u], \ \sigma_3([r, s; u]) = [r, -s; u]$$

and

$$\sigma_2([r,s;u]) = [\frac{1}{2}(r-s+u), \frac{1}{2}(-r+s+u); r+s]$$

We consider the case when the Harish-Chandra paramter Λ of the discrete series representation π_{Λ} belongs to Ξ_{II} . The highest weight of the contragradient representation τ of the minimal K-type τ^* of π_{Λ} is denoted by $[r, s; u_1]$. Then we have r > s.

1.2 Matrix coefficients

The irreducible representation of the maximal compact subgroup $K = S(U(2) \times U(2))$ with highest weight [r, s; u] has dimension (r + 1)(s + 1). The irreducible representations of the group SU(2) or rather its complexified Lie algebra has the canonical basis determined upto \pm multiple. Then the representation $\tau_{[r,s,;u]}$ of K has the canonical basis obtained from the canonical basis of the representation of SU(2) by exterior tensor product. We denote this by $\{f_{k,l}^{[r,s;u]} \ (1 \le k \le r, 1 \le l \le s)\}$. The dual basis of this is denoted by $\{(f_{k,l}^{[r,s;u]})^*\}$.

Let tau be an element of \hat{K} such that τ^* is the minimal K-type of π_{λ} with $\Lambda \in \Xi_{II}$. The representation space V^* of tau^{*} is considered as a subspace of the representation space H_{Λ} of π_{Λ} . Similarly the representation space V of τ as a subspace of the representation space H_{Λ}^* of the contragradient representation π_{Λ}^* of π_{Λ} .

We are interested in the functions

$$c_{[k_1,l_1;k_2,l_2]}(g) = < \pi_{\Lambda}(g)((f_{[k_1,l_1]}^{[r,s,u]})^*), (f_{[k_2,l_2]}^{[r,s,-u]})^*).$$

Or rather the vector valued function

$$\Phi(g) = \sum_{k_1, l_1, k_2, l_2} c_{[k_1, l_1; k_2, l_2]} f_{[k_1, l_1]}^{[r, s; u]} \otimes f_{[k_2, l_2]}^{[r, s; -u]}.$$

Note here that the contragradient representation tau^* has the highest weight [r, s, ; -u].

To determine Φ it suffices to determine its A-radial part by the Cartan decomposition G = KAK.

1.3 The method to obtain the solution

It is the same as other papers of ours. We have explicit formulae of the right and left Schmid operators. This give a holonomic system of rank 4 over A. We can reduced this holonomic system to the modified F_2 system of Appell.

2 The solution

Firstly we show the power series solution. After that it is rewritten as integral expression.

2.1 Macro symbols

Definition We denote by $\mathcal{M}(r,s)$ the set

 $\{M = (k_1, l_1; k_2, l_2) | 0 \le k_i \le r, 0 \le l_i \le s(i = 1, 2), k_1 + l_1 + k_2 + l_2 = r + s\}.$

Moreover for any $M \in \mathcal{M}(r, s)$, we set

$$s(M) = \frac{1}{2} \{ (k_1 + k_2 - r) - (l_1 + l_2 - s) \},$$
(1)

$$c(M) = \frac{1}{2} \{ (k_1 - k_2) - (l_1 - l_2) \}, \qquad (2)$$

$$w(M) = |s(M)|. \tag{3}$$

We call w(M) the weight of M.

Definition (Multiplicators) For each $M \in \mathcal{M}(r, s)$, we set

$$m(M) = \binom{r}{k_1} \binom{r}{k_2} \binom{s}{l_1} \binom{s}{l_2}$$

and

$$\mu_M^{\pm}(a) = \{sh(a_1)sh(a_2)\}^{\pm s(M)} \{ch(a_1)ch(a_2)\}^{\pm u_1/2} \{ch(a_1)/ch(a_2)\}^{c(M)}.$$

2.2 Change of functions and change of variables

Definition We write

$$c_M(a) = m(M)\mu_M^{\pm}(a)h_M^{\pm}(a).$$

Definition We introduce new variables x_1, x_2 by

$$x_i = -sh^2(a_i)$$
 $(i = 1, 2).$

2.3 The power series solution

Theorem 1 Assume r > s and $s(M) \ge 0$. Then

$$h_M^+(x) = c^+(r,s)(-1)^{s(M)+c(M)} \sum_{m_1,m_2 \ge 0} \frac{(m_1+k_1)!(m_2+k_2)!}{m_1!m_2!}$$

$$\times \prod_{i_1=1}^{l_2} (m_1 + s(M) + i_1) \prod_{i_2=1}^{l_1} (m_2 + s(M) + i_2) \xi^+ (m_1 + m_2 - l_1 - l_2) x_1^{m_1} x_2^{m_2}.$$

Here $c^+(r,s)$ is a constant independent of M, and

$$\xi^+(k) = \frac{(a_0)_k (b_0)_k}{(c_0)_k (r+s+2)_k} \quad (\text{ for } k \in \mathbb{Z}, \ -s < k)$$

with

$$a_0 = s + 1$$
, $b_0 = \beta + s + 2 = \frac{1}{2}(u_1 + r + s)$, $c_0 = 2(s + 1)$.

Remark $(\alpha)_k$ means the Gaussian symbol

$$(\alpha)_k = \prod_{i=0}^{k-1} (\alpha+i).$$

2.4 Ingtegral expression if solution

Theorem 2 Set

$$\tilde{h}_{M}^{+}(x) = c^{+}(r,s)(-1)^{s(M)+c(M)}(k_{1}+l_{1})!(k_{2}+l_{2})!$$

$$\times \sum_{m_{1},m_{2}\geq 0} \frac{(k_{1}+l_{1}+1)_{m_{1}-l_{1}}(k_{2}+l_{2}+1)_{m_{2}-l_{2}}}{m_{1}!m_{2}!}\xi^{+}(m_{1}+m_{2}-l_{1}-l_{2})x_{1}^{m_{1}}x_{2}^{m_{2}}$$

Then

$$h_{M}^{+}(x) = (x_{1}x_{2})^{-s(M)} (\frac{\partial}{\partial x_{1}})^{l_{1}} (\frac{\partial}{\partial x_{2}})^{l_{2}} \{ (x_{1}x_{2})^{s(M)} x_{1}^{l_{2}} x_{2}^{l_{1}} \tilde{h}_{M}^{+}(x) \},$$

and

$$\tilde{h}_{M}^{+}(x) = const. \times \int_{0}^{1} {}_{2}F_{1}(s(M)+1, \beta+s(M)+2; s+s(M)+2; tx_{1}+(1-t)x_{2})t^{k_{1}}(1-t)^{k_{2}}dt.$$

Remark We can determine the constant before the integral symbol. But it is omitted here.

Hayata, T., Koseki, H., Oda, T., Matrix coefficients of the middle discrete series of SU(2,2), Oct. 1999