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1 Formulation of problem

Our concern is to have an explicit formula for the $A$-radial part of the
matrix coefficients with minimal $K$-types of the large discrete series repre-
sentations of the Lie group $G=SU(2,2)$ .

1.0.1 Notation and definitions

Our Lie group $G$ is the real special unitary group of signature $(2+, 2-)$ ,
i.e. its defining Hermitian matrix is $I_{2,2}=diag(1,1, -1, -1)$ . A Cartan
involution is given by $\theta$ : $gf\Rightarrow(g^{*})^{-1}=^{t}\overline{g}1$ , and the fixed group $K=$

$G^{\theta}=G\cap U(4)$ is a maximal compact subgroup.
We denote by $X_{ij}$ the matrix unit in $NI_{4}(C)$ with unique non-zero entry

1 at the $(i, j)$-th component $(1 \leq i,j\leq 4)$ . The Lie algebra of a compact
Cartan subgroup is generated by

$\sqrt{-1}(X_{11}-X_{22}),$ $\sqrt{-1}(X_{33}-X_{44})$ , and $\sqrt{-1}I_{2,2}$ .

The absolute roots or the weights $\beta$ of the Cartan algebra is represented
their values on this basis, i.e.

$\beta=[r, s;u]$ if $\beta(X_{11}-X_{22})=r,$ $\beta(X_{33}-X_{44})=s,\beta(I_{2,2})=u$ .

We fix a postive system of roots

$\Delta^{+}=\{[2,0;0], [0,2;0], [\pm, \pm;2]\}$ .

with comapct positive roots $\Delta_{c}^{+}=\{[2,0;0], [0,2;0]\}$ .

1.1 Discrete series of $SU(2,2)$

Since the half sum of postive roots is integral weight of the compact Car-
tan subgroup for $G$ , the discrete series representation of $G$ are parametrized
by the orbit space of the regular integral $weights^{-}--by$ the Weyl group $\nu V_{K}$

of $K$ . Or we may take the fundametal $set---c$ cocnsisting of regular integral
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weights positive with respect to $\Delta^{+}c$ . Let-$=_{I}$ be the subset of-$=_{c}$ consisiting
of weights postive with resprect to $\Delta^{+}$ . The the sets

$.--_{II}-=\sigma_{2}(_{-I}^{-}-),-_{V}--=\sigma_{2}\sigma_{3}\sigma_{1}(_{-I}^{-}-)$

are parameter spaces of the large discrete series representations of $G$ . Here
$\sigma_{i}(i=1,2,3)$ are the elements of Weyl group $W$ of $G$ given by

$\sigma_{1}$ $([r, s, ; u])=[-r, s;u],$ $\sigma_{3}([r, s;u])=[r, -s;u]$

and
$\sigma_{2}([r, s;u])=[\frac{1}{2}(r-s+u), \frac{1}{2}(-r+s+u);r+s]$.

We consider the case when the Harish-Chandra paramter A of the discrete
series representation $\pi_{\Lambda}$ belongs to-$=_{II}$ . The highest weight of the contra-
gradient representation $\tau$ of the minimal $K$-type $\tau^{*}$ of $\pi_{\Lambda}$ is denoted by
$[r, s;u_{1}]$ . Then we have $r>s$ .

1.2 Matrix coefficients

The irreducible representation of the maximal compact subgroup $K=$

$S(U(2)xU(2))$ with highest weight $[r, s;u]$ has dimension $(r+1)(s+1)$ .
The irreducible representaions of the group $SU(2)$ or rather its complexified
Lie algebra has the canonical basis determined upto $\pm multiple$ . Then
the representation $\eta_{r,\epsilon_{1}u},\cdot$] of $K$ has the cannonical basis obtained from the
canonical basis of the representation of $SU(2)$ by exterior tensor product.
We denote this by $\{f_{k,l}^{[t,\epsilon;u]}(1\leq k\leq r, 1\leq l\leq s)\}$ . The dual basis of this is
denoted by $\{(f_{k,l}^{[r,s\cdot u]}|)^{*}\}$ .

Let $tau$ be an element of $\hat{K}$ such that $\tau^{*}$ is the minimal $K$-type of $\pi_{\lambda}$ with
A $\in--II-$ . The representation space $V^{*}$ of $tau^{*}$ is considered as a subspace
of the representation space $H_{A}$ of $\pi_{\Lambda}$ . Simlilarly the representation space
$V$ of $\tau$ as a subspace of the representation space $H_{\Lambda}^{*}$ of the contragradient
representation $\pi_{\Lambda}^{*}$ of $\pi_{A}$ .

We are interested in the functions

$c_{[k_{1}.l_{1;}k_{-},l_{2}]},(g)=<\pi_{\Lambda}(g)((f_{[k_{1},l_{1}]}^{[r,s,;u]})^{*}),$ $(f_{[k_{2},l_{2}]}^{[r,s;-u]})^{*})$ .

Or rather the vector valued function

$\Phi(g)=.\sum_{k_{1},l_{1},k_{2},l_{2}}c_{[k_{1},l_{1;}k_{2},l_{2}]}f_{[k_{1},l_{1}]}^{[fS_{1}u]}.’.\otimes f_{[k_{2},l_{2}]}^{[r,s;-u]}$
.

Note here that the contragradient representation $tau^{*}$ has the highest weight
$[r, s, ; -u]$ .

To determine $\Phi$ it suffices to determine its $A$-radial part by the Cartan
decomposition $G=K.4K$ .

136



1.3 The method to obtain the solution

It is the same as other papers of ours. We have explicit formulae of the
right and left Schmid operators. This give a holonomic system of rank 4
over $A$ . We can reduced this holonomic system to the modified $F_{2}$ system
of Appell.

2 The solution
Firstly we show the power series solution. After that it is rewritten as

integral expression.

2.1 Macro symbols

Definition We denote by $\mathcal{M}(r, s)$ the set

$\{M=(k_{1}, l_{1} ; k_{2}, l_{2})|0\leq k_{i}\leq r, 0\leq l_{i}\leq s(i=1,2), k_{1}+l_{1}+k\underline{.)}+l_{2}=r+s\}$ .

Moreover for any $M\in \mathcal{M}(r, s)$ , we set

$s(M)$ $=$ $\frac{1}{2}\{(k_{1}+k_{2}-r)-(l_{1}+l_{2}-s)\}$ , (1)

$c(M)$ $=$ $\frac{1}{2}\{(k_{1}-k_{2})-(l_{1}-l_{2})\}$ , (2)

$w(M)$ $=$ $|s(M)|$ . (3)

We call $w(M)$ the weight of $M$ .

Definition (Multiplicat$ors$ ) For each $M\in \mathcal{M}(r, s)$ , we set

$m(Af)=$
and

$\mu_{M}^{\pm}(a)=\{sh(a_{1})sh(a_{2})\}^{\pm s(M)}\{ch(a_{1})ch(a_{2})\}^{\pm u_{1}/2}\{ch(a_{1})/ch(a_{2})\}^{c(M)}$ .

2.2 Change of functions and change of variables

Definition We write

$c_{M}(a)=m(M)\mu_{M}^{\pm}(a)h_{M}^{\pm}(a)$ .

Definition We introduce new variables $x_{1},$ $x_{2}$ by

$x_{i}=-sh^{2}(a_{i})$ $(i=1,2)$ .
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2.3 The power series solution

Theorem 1 Assume $r>s$ and $s(M)\geq 0$ . Then

$h_{M}^{+}(x)=c^{+}(r, s)(-1)^{\epsilon(M)+c(M)} \sum_{m_{1},m_{2}\geq 0}\frac{(m_{1}+k_{1}).(m_{2}+k_{2})!}{m_{1}m_{2}!}!$

$x\prod_{i_{1}=1}^{l_{2}}(m_{1}+s(M)+i_{1})\prod_{i_{2}=1}^{\iota_{1}}(m_{2}+s(M)+i_{2})\xi^{+}(m_{1}+m_{2}-l_{1}-l_{2})x_{1}^{m_{1}}x_{2}^{m_{2}}$.

Here $c^{+}(r, s)$ is a constant independent of $M$ , and

$\xi^{+}(k)=\frac{(a_{0})_{k}(b_{0})_{k}}{(c_{0})_{k}(r+s+2)_{k}}$ (for $k\in Z,$ $-s<k$ )

with

$a_{0}=s+1$ , $b_{0}= \beta+s+2=\frac{1}{2}(u_{1}+r+s)$ , $c_{0}=2(s+1)$ .

Remark $(\alpha)_{k}$ means the Gaussian symbol

$( \alpha)_{k}=\prod_{i=0}^{k-1}(\alpha+i)$.

2.4 Ingtegral expression if solution

Theorem 2 Set

$\overline{h}_{M}^{+}(x)=c^{+}(r, s)(-1)^{s(M)+c(M)}(k_{1}+l_{1})!(k_{2}+l_{2})!$

$x\sum_{m_{1}.m_{2}\geq 0}\frac{(k_{1}+l_{1}+1)_{m_{1}-l_{1}}(k_{2}+l_{2}+1)_{m_{2}-l_{2}}}{m_{1}!m_{2}!}\xi^{+}(m_{1}+m_{2}-l_{1}-l_{2})x_{1}^{m_{1}}x_{2}^{m_{2}}$ .

Then

$h_{M}^{+}(x)=(x_{1}x_{2})^{-s(kI)}( \frac{\partial}{\partial x_{1}})^{l_{1}}(\frac{\partial}{\partial x_{2}})^{l_{2}}\{(x_{1}x_{2}.)^{s(hI)}x_{1}^{l_{2}}x_{2}^{l_{1}}\overline{h}_{M}^{+}(x)\}$,

and

$\overline{h}_{M}^{+}(x)=const.x\int_{0}^{1}2F_{1}(s(M)+1, \beta+s(M)+2;s+s(M)+2;tx_{1}+(1-t)x_{2})t^{k_{1}}(1-t)^{k_{2}}dt$.

Remark We can determine the constant before the integral symbol. But
it is omitted here.
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