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1 Formulation of problem

Our concern is to have an explicit formula for the A-radial part of the
matrix coefficients with minimal K-types of the large discrete series repre-
sentations of the Lie group G = SU(2,2).

1.0.1 Notation and definitions

Our Lie group G is the real special unitary group of signature (2+,2-),
i.e. its defining Hermitian matrix is I = diag(1,1,~1,-1). A Cartan
involution is given by 8 : g = (g*)~! =! g~!, and the fixed group K =
G% = GNU(4) is a maximal compact subgroup.

We denote by X;; the matrix unit in M4(C) with unique non-zero entry
1 at the (4, j)-th component (1 < %, < 4). The Lie algebra of a compact
Cartan subgroup is generated by

V=1(X11 — X32), V—1(X33 — X44), and V=115 5.

The absolute roots or the weights 8 of the Cartan algebra is represented

their values on this basis, i.e.
B=I[rsu] if B(X11 — Xz2) =7,0(Xs3 — Xaa) = 5,0(L22) = u.
We fix a postive system of roots
AT = {[2,0;0],[0,2;0], [+, +;2]}.

with comapct positive roots A} = {[2,0;0], [0, 2; 0]}

1.1 Discrete series of SU(2,2)

Since the half sum of postive roots is integral weight of the compact Car-
tan subgroup for G, the discrete series representation of G are parametrized
by the orbit space of the regular integral weights = by the Weyl group Wx
of K. Or we may take the fundametal set =, cocnsisting of regular integral
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weights positive with respect to Atc. Let Z; be the subset of =, consisiting
of weights postive with resprect to At. The the sets

"Zrr = 02(Z1),Ev = 020301(Er)

are parameter spaces of the large discrete series representations of G. Here
o; (i =1,2,3) are the elements of Weyl group W of G given by

J1 ([’7‘, 855 u]) = [—1‘, 8; u]) 0'3([1‘, 85 u]) = [Tr _S;u]

and

oa([r,s;u]) = [%(r —s+u), %(—r +s+u);r+s).
We consider the case when the Harish-Chandra paramter A of the discrete
series representation w5 belongs to Zr;. The highest weight of the contra-
gradient representation 7 of the minimal K-type 7* of 7, is denoted by
[r, s;u1]. Then we have r > s.

1.2 Matrix coefficients

The irreducible representation of the maximal compact subgroup K =
S(U(2) x U(2)) with highest weight [r, s; u] has dimension (r + 1)(s + 1).
The irreducible representaions of the group SU(2) or rather its complexified
Lie algebra has the canonical basis determined upto + multiple. Then
the representation 7}, , .., of K has the cannonical basis obtained from the
canonical basis of the representation of SU(2) by exterior tensor product.
We denote this by {f,[:;""] (1 <k <r1<1<5s)}. The dual basis of this is
denoted by {( ,[:;’;“])*}.

Let tau be an element of K such that 7* is the minimal K-type of y with
A € Z;1. The representation space V* of tau* is considered as a subspace
of the representation space Hy of 7. Simlilarly the representation space
V of T as a subspace of the representation space Hj of the contragradient
representation 7} of my.

We are interested in the functions

Ol tikata)(9) =< T (@ (A5, (FesiH).
Or rather the vector valued function
B(9)= > cpnmufinid e i
ky,ly,k2,l2

Note here that the contragradient representation tau* has the highest weight
[r, 8,5 —u].

To determine ® it suffices to determine its A-radial part by the Cartan
decomposition G = KAK.
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1.3 The method to obtain the solution

It is the same as other papers of ours. We have explicit formulae of the
right and left Schmid operators. This give a holonomic system of rank 4
over A. We can reduced this holonomic system to the modified F; system
of Appell.

2 The solution

Firstly we show the power series solution. After that it is rewritten as
integral expression.

2.1 Macro symbols
Definition We denote by M(r, s) the set
{M = (ky,l1; k2, 12)[0< k; £7,0<; <8(i = 1,2),ky + 1y + ko + 1o =7+ 5}

Moreover for any M € M(r,s), we set

s(M) = (ki +ha =)= 1+l =)}, M
M) = L~k - (b~ L)}, @)
w(d) = [s()] 3

We call w(M) the weight of M.
Definition (Multiplicators) For each M € M(r, s), we set

mo0 =) () () ()

pay(a) = {sh(ay)sh(az)}**™ {ch(a1)ch(a2)}**/*{ch(a1)/ch(az) }* .

and

2.2 Change of functions and change of variables
Definition We write
enr(a) = m(M)uk (a)h ().
Definition We introduce new variables z;,z5 by

z; = —sh*(a;) (i=1,2).
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2.3 The power series solution
Theorem 1 Assumer > s and s(M) > 0. Then

(ml + kl)'(mz + ky)!
ml!mz!

h}}(l’) =c*(r, S)(—l)’(M)+c(M) Z

my,m220

la L
X H (my +s(M)+11) H (ma + s(M) +142)ET (my +my = I = L)z 2y,

iy =1 iz=1
Here c*(r, s) is a constant independent of M, and

(a0) k(o)
(co)k(r + s+ 2)

X (k) = (forkeZ, —s<k)
with
' : 1
a =s+1, b0=6+s+2=§(u1+r+s), co=2(s+1).

Remark (o), means the Gaussian symbol

k—1

(a)x = H(a +1).

i=0

2.4 Ingtegral expression if solution

Theorem 2 Set

ki (x) = ¢t (r, s)(=1) DD (k4 11)1(ky + 1y)!

» Z (ki +h + D=ty (k2 + 1o + 1)y

—l2 4 my . ma
my+mao—Iy—l)xT 1 22
my'lmsy! ¢ 2—h—h)2 2

my,m2>0

Then

0 7] =
i (z) = (m22) =M (30 () {(maen) Mea iy (),

62}1 T

and
1
hi(z) = const.x /0 2 F1(s(M)+1, B+s(M)+2; s+8(M)+2; tzy +(1—t)z2)tk (1-t)*2dt.

Remark We can determine the constant before the integral symbol. But
it is omitted here.
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