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Introduction
Orbital integrals have played an important role in the work of Harish-Chandra
about harmonic analysis on reductive groups, and they appear in the geometric
terms of the Selberg trace formula. They are distributions on a reductive group
$C_{\tau}$ over a local field $F$ . We suppose that $C_{7}$ is connected in the Zariski topology
and denote the set of its $F$-rational points by the same letter. Given $g\in G$ and
a test function $f$ on $G$ , the orbital integral is defined as

$J_{G}(g, f)=|D(g)|^{1/2} \int_{G/G_{g}^{0}}f(xgx^{-1})d\dot{x}$ ,

where $G_{g}^{0}$ denotes the connected component of the unit element in the centralizer
of $g$ in $G$ and $d\dot{x}$ stands for a fixed invariant measure on $G/G_{g}^{0}$ . Moreover, we
have set

$D(g)=\det_{9/9\epsilon}(Id-Ad(s))$ ,

where $s$ is the semisimple component in the Jordan decomposition of $g$ and $\mathfrak{g}_{S}$

the centralizer of $s$ in the Lie algebra $\mathfrak{g}$ of $G$ .
In the Selberg trace formula for noncompact quotients, which was generalized

by Arthur to groups of arbitrary rank, not all geometric contributions can be
expressed in terms of orbital integrals. Here, one needs a generalization, the so-
called weighted orbital integrals. They depend on a Levi subgroup $M$ of $G$ and
an element $m$ of $M$ , and reduce to orbital integrals when $M=G$ . If $G_{m}^{0}\subset M$ ,
the weighted orbital integral is defined as

$J_{M}(m, f)=|D(g)|^{1/2} \int_{G/G_{m}^{O}}f(xmx^{-1})v_{M}(x)d\dot{x}$ . (1)

The weight factor $v_{M}$ , which depends implicitly on the choice of a special max-
imal compact subgroup of $G$ , is defined as follows. Let $H_{M}$ be the natural
map from $M$ to the vector space $a_{M}:=Hom(X(M)_{F},\mathbb{R})$ . Then $v_{M}(x)$ is
the volurne of the convex hull of the points $H_{P}(x)$ in $a_{M}/a_{G}$ , where $P$ runs
through the set of parabolic $F$-subgroups of $G$ with Levi component $M$ and
where $H_{P}(x)=H_{M}(m)$ if we write $x=nmk$ with $k\in K,$ $m\in M$ and $n$ in
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the unipotent radical of $P$ . If necessary, we indicate the ambient group as a
superscript, thus $J_{M}(m, f)=J_{M}^{G}(m, f)$ .

In this report we shall be concerned with the differential equations satisfied
by weighted orbital integrals in the case when $G$ is defined over the field of real
numbers. In order to state these differential equations, we have to fix a maximal
$R$-torus $T$ of $M$ , which is, of course, also a maximal torus of $G$ . Denote by $Z(\emptyset)$

be the centre of $U(\mathfrak{g})$ , the universal enveloping algebra of $\mathfrak{g}$ , and by $G_{reg}$ the set
of regular semisimple elements of $G$ . If $f\in C_{c}^{\infty}(G)$ and the invariant measure
on $G/G_{t}^{0}=G/T$ is chosen independently of $t\in T\cap G_{reg}$ , then $J_{M}(t, f)$ depends
smoothly on $t$ . Proposition 11.1 of [3] asserts the following. For each pair
$(L, M)$ , where $L\supset M$ are Levi $\mathbb{R}$-subgroups of $G$ containing $T$ , there is a linear
map $\partial_{M}^{L}$ from $Z(I)$ to the algebra of differential operators on $T\cap L_{reg}$ such that

$J_{M}^{L’}(t, zf)= \sum_{M\subset L\subset L’}\partial_{M}^{L}(t, z_{L})J_{L}^{L’}(t, f)$ (2)

for all pairs $(L’, M)$ as above, $t\in T\cap L_{reg}’,$ $z\in Z(1’)$ and $f\in C_{c}^{\infty}(L’)$ . Here the
summation runs over all Levi subgroups $L$ sandwiched between $M$ and $L’$ , and
$z\vdasharrow Z_{L}$ denotes the Harish-Chandra homomorphism $Z(1’)arrow Z(1)$ . Moreover,
the family of maps $\partial_{M}^{L}$ with the stated properties is unique. We have inserted $t$

as an argument in $\partial_{M}^{L}(t, z)$ because we usually regard the latter as an element
of $U(\{)$ depending on $t$ .

The motivation for our research is connected with the notion of invariant
Fourier transform. If $f$ belongs to Harish-Chandra’$s$ Schwarz space $C(G)$ and $\pi$

is an irreducible tempered representation of $G$ , we denote by $\hat{f}(\pi)$ the trace of
the operator $\pi(f)=\int_{G}f(x)\pi(x)dx$ . This defines a function $\hat{f}$ on the tempered
dual $\Pi_{temp}(G)$ , and the space $\mathcal{I}(G)$ of all such functions can be endowed with a
topology such that $frightarrow\hat{f}$ is a continuous open surjective map $C(G)arrow \mathcal{I}(G)$ . If
$I$ is a tempered invariant distribution on $C_{I}$ , i.e., a continuous linear functional
on $C(G)$ , then one can define its Fourier transform $\hat{I}$ as a continuous linear
functional on $\mathcal{I}(G)$ by requiring $\hat{I}(\hat{f})=I(f)$ for $f\in C(C_{7})$ .

The distributions $J_{M}(m, f)$ are tempered (at least for $m\in M\cap G_{reg}$), but
not invariant, so they would require the more complicated notion of operator-
valued Fourier transform. However, in the paper [2] Arthur has constructed
invariant distributions $I_{M}(m, f)$ out of the weighted orbital integrals and their
counterparts, the weighted characters. Their importance lies in the fact that
the trace formula can also be given in terms of these invariant distributions.
Arthur has als $0$ shown in [5] that their Fourier transforms $\hat{I}_{M}(m)$ are regular
distributions on $\Pi_{temp}(G)$ in the sense that there exist functions $\hat{I}_{M}(m, \pi)$ such
that

$\hat{I}_{M}(m, \psi)=\int_{\Pi_{tcmp}(G)}\hat{I}_{M}(m, \pi)\psi(\pi)d\pi$

for $\psi\in \mathcal{I}(G)$ , where $d\pi$ is a certain canonical measure.
It is desirable to calculate these Fourier transforms. At present, two methods

exist for this purpose. One is to use the local trace formula with test functions
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approximating a delta distribution. This yields the restriction of $\hat{I}_{M}(m, \pi)$ to
the discrete part of the tempered dual (cf. [4]). The other method is based on
the fact that (2) remains valid if one replaces $J_{M}$ by $I_{M}$ (cf. [5], \S 7), which
implies that

$\chi(_{Z})\hat{I}_{M}^{L’}(t, \pi)=\sum_{M\subset L\subset L’}\partial_{M(t,z_{L})\hat{I}_{L}^{L’}(t,\pi)}^{L}$
(3)

if $\chi$ is the infinitesimal character of $\pi$ . The idea is to find the general solution
of this system of equations and then to determine $\hat{I}_{M}(t, \pi)$ from its behaviour
when $t$ tends to infinity or to the singular set, respectively. However, one knows
a general formula for the operator $\partial_{M}^{L}(t, z)$ only under the assumption that
$M=L$ or that $z$ is the Casimir element. Accordingly, the second method has
been realized so far only for the cases where the only nonzero term on the right-
hand side of the differential equation is that with $M=L$ (see [8], [9]) or the
real rank of $G$ is one (see [10]).

In the following we describe the results of a manuscript in preparation where
we take the first step towards the solution of these equations in the general case.
We show that this system of differential equations has a simple singularity at
infinity. This implies that the solution has an expansion into an absolutely con-
vergent series on each component of the regular set. We find that the coefficients
in this series satisfy a certain recursion formula. Finally, we give the complete
solution for a number of groups of small rank.

1 The radial decomposition
As a prerequisite to our main result, we want to establish the vanishing at
infinity of certain coefficients in the radial decomposition of invariant differential
operators on reductive groups. The radial decomposition we consider comes
from the local product structure of $G_{reg}$ given by $G$-orbits and maximal tori,
and it has already been studied in [7].

Let $G$ be a linear algebraic $\mathbb{R}$-group. For each $y\in G$ , there is a unique
representation of $U(\mathfrak{g})$ on itself, written as $\Gamma_{y}$ : $U(\mathfrak{g})\otimes U(\mathfrak{g})arrow U(\mathfrak{g})$ , such that

$uF(x, y)=1\otimes\Gamma_{y}(u)F(x, y)$

for all $u\in U(\mathfrak{g})\otimes U(\mathfrak{g})\cong U(\mathfrak{g}\cross \mathfrak{g})$ whenever $F\in C_{/}^{\infty}(G\cross G)$ is given by

$F(x, y)=f(xyx^{-1})$ (4)

for some $f\in c,\infty(G)$ .
$i_{J}From$ now on, we suppose that $G$ is connected and reductive, and we fix

a maximal $\mathbb{R}$-torus $T$ of $G$ . Let $q$ be the $T$-stable complement of $t$ in $\mathfrak{g}$ , and
let $\mathfrak{Q}$ denote the image of the symmetric algebra $S(q)$ llnder the canonical $G-$

equivariant bijection $S(\mathfrak{g})arrow U(\mathfrak{g})$ . By the Poincare-Birkhoff-Witt theorem, the
product map $\mathfrak{Q}\otimes_{\sim}U(\{)arrow U(\mathfrak{g})$ is bijective. Harish-Chandra has shown in [7]
that for $t\in T\cap G_{reg}^{v}$ the rnap $\Gamma_{t}$ restricts to a $T$-equivariant bijection

$\mathfrak{Q}\otimes U(t)arrow U(\mathfrak{g})$
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compatible with filtrations. Moreover, if one denotes the preimage of an element
$v$ by $\gamma(t, v)$ , then $D_{T}(t)^{r}\gamma(t, v)$ extends analytically to $t\in T$ , where $r=\deg v$

and

$D_{T}(t)=\det_{\mathfrak{g}/t}(Id-Ad(t))$ .

If we set $\mathfrak{Q}’=\mathfrak{Q}\cap U(\mathfrak{g})\mathfrak{g}$ , we can write

$\gamma(t, v)=1\otimes\beta(t, v)+\delta(t, v)$ ,

where $\beta(t, v)\in U(\{)$ (the so-called radial component of $v$ ) and $\delta(t, v)\in \mathfrak{Q}’\otimes U(\{)$

are uniquely determined. We are mainly interested in the case when $v=z\in$
$Z(\mathfrak{g})$ . Then $\gamma(t, z)$ is centralized by $T$ . Theorem 2 of [7] says that

$|D_{T}|^{1/2}\beta(z)\circ|D_{T}|^{-1/2}=z_{T}$ ,

where the factors on the left-hand side are considered as differential operators
on $T\cap G_{reg}$ and $z\tau$ is the image of $z$ under the Harish-Chandra isomorphism.

We want to study $\delta(t, \sim’)$ when $t$ tends to infinity in a sense which we are
now going to make precise. Let $A$ denote the greatest $\mathbb{R}$-split subtorus of $T$

and 1) the set of all parabolic $\mathbb{R}$-subgroups of $G$ which have the centralizer of
$A$ as Levi component. For each such $P$ , let $\Sigma_{P}$ denote the set of roots of $t_{\mathbb{C}}$ in
the unipotent radical of $\mathfrak{p}_{\mathbb{C}}$ . If $f$ is a map from a subset of $T$ to a topological
space $X$ , we write $\lim f(t)=x$ if for each neighbourhood $U$ of $x$ there exists

$tarrow_{P}\infty$

$s\in \mathbb{R}$ such that for all $t$ in the domain of $f$ satisfying $|t^{\alpha}|>s$ for all $\alpha\in\Sigma_{P}$

we have $f(t)\in U$ .

Proposition 1 If $z\in Z(\mathfrak{g})$ and $P\in P$ , then $\lim_{tarrow_{P}\infty}\delta_{T}(t, z)=0$ in the finite-
dimensional subspace of $\mathfrak{Q}’\otimes U(\{)$ of elements of degree not exceeding that of $z$ .

By an algebraic argument, we reduce the proof of this result to the case
when $T$ is split (and hence $P$ is Borel). In that case, we exploit the fact that,
roughly speaking, the fibering of $G_{reg}$ in a neighbourhood of $t$ by conjugacy
classes, when we transfer it to a neighbourhood of 1 by left multiplication with
$t^{-1}$ , will approach the fibering of the big Bruhat cell by double $(\overline{N}, N)$-cosets
as $tarrow_{P}\infty$ .

2 Arthur’s differential operators
We want to prove that the system of partial differential equations (3) has a
simple singularity as $tarrow P\infty$ . This comes down to four properties of the
differential operators $\partial_{M}^{G}(t, z)$ defined by equation (2), which we are now going
to formulate in four lemmas. In the situation of the previous section, let $M$ be
a Levi $lR$-subgroup of $G$ containing $T$ . The case $M=G$ presents no problems,
since

$\partial_{G}^{G}(t, z)=z_{T}$ (5)
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for all $z\in Z(\mathfrak{g})$ and $t\in T\cap(j_{reg}\wedge$ by Lemma 12.4 of [3]. For the other Levi sub-
groups, the following assertion is an easy consequence of Proposition 1, because
the operator $\partial_{M}^{G}(t, z)$ can be calculated from the radial decomposition of $z$ as
described in Lemma 12.1 of [3].

Lemma 1 If $M\neq G$ , then $\lim_{tarrow_{p}\infty}\partial_{M}^{G}(t, z)=0$ for all $z\in Z(\mathfrak{g})$ and $P\in P$ ,

Let $\Sigma$ be the root system of $(\mathfrak{g}_{\mathbb{C}}, t_{(c})$ and A the free abelian group generated
by $\Sigma$ . For each a $\in\Sigma$ , we have a character $t\vdash\Rightarrow t^{\alpha}$ of $T$ defined by $Ad(t)X=t^{\alpha}X$

for $X\in 9\mathbb{C},\alpha$
’ and this gives rise to characters $trightarrow t^{\mu}$ for $\mu\in$ A such that

$t^{\mu_{1}+\mu_{2}}=t^{\mu_{1}}t^{\mu_{2}}$ . Let us denote by $\Sigma_{M}$ the set of weights of $T$ in $\mathfrak{g}/m$ and by
$\Lambda_{M}$ the subgroup of A generated by $\Sigma_{M}$ . Moreover, let

$D_{M}(t)= \det_{\mathfrak{g}/\tau \mathfrak{n}}(Id-Ad(t))=\prod_{\alpha\in\Sigma_{M}}(1-t^{\alpha})$
.

Lemma 2 If $z\in Z(\mathfrak{g})$ with $\deg z\leq r$ , then there exist $u_{\mu}\in U(t_{\mathbb{C}})$ for all
$\mu\in\Lambda_{M)}$ only finitely many of them nonzero, such that

$\partial_{M}^{G}(t, z)=D_{M}(t)^{-r}\sum_{\mu\in\Lambda_{hf}}t^{\mu}u_{\mu}$
.

A similar assertion about $\gamma(t, z)$ has been proved in Lemma 23 of [7], and
just as in the proof of Lemma 1 this implies our result in the case $M=T$ ,
provided the latter is a Levi subgroup. For the proof in the general case, we
have to define a relative variant $\gamma_{M}(t, z)$ and use its transitivity. The next
result, however, is almost obvious.

Lemma 3 If $M\neq G$ , then $\deg\partial_{M}^{G}(t, z)<\deg z$ .

Given a Levi $\mathbb{R}$-subgroup $L$ of $G$ containing $M$ , let $\mathcal{L}_{M}^{L}$ d $e$note the set of all
Levi $IR$-subgroups of $L$ containing $M$ . This set is contained in $\mathcal{L}_{M}:=\mathcal{L}_{M}^{G}$ . The
last result in this section follows easily from the uniqueness of the operators $\partial_{M}^{L}$ .

Lemxna 4 For all $z_{1},$ $z_{2}\in Z(\mathfrak{g})$ we have

$\partial_{M}^{G}(t, z_{1}z_{2})=\sum_{L\in L_{M}}\partial_{M}^{L}(t, z_{1,L})\partial_{L}^{G}(t, z_{2})$
.

3 A system with simple singularity
It is customary in the theory of differential equations with regular singular
points to transfer the singularity to the origin by a substitution of variables and
to allow complex arguments. In our case this leads to a toric variety, which we
are now going to introduce. Given a parabolic $1R$-subgroup $P$ of $G$ containing
$T$ , we consider the variety

$V_{P}=Hom_{rings}(\mathbb{Z}[\Lambda_{P}], \mathbb{C})$ ,
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where $\Lambda_{P}$ denotes the submonoid of A generated by $\Sigma_{P}$ , the set of roots of {$\mathbb{C}$ in
the unipotent radical $\mathfrak{n}_{\mathbb{C}}$ of $\mathfrak{p}_{\mathbb{C}}$ . The value of an element $v\in V_{P}$ at $\mu\in\Lambda_{P}$ will
be denoted by $v_{\mu}$ . There is a $n_{J},atura1$ map $m_{P}$ : $Tcarrow V_{P}$ given by $m_{P}(t)=t^{-\mu}$ .
The operation $(v’v’’)_{\mu}:=v_{\mu}’v_{\mu}$ gives $V_{P}$ the structure of a monoid, and thereby
$m_{P}$ defines an action of $T_{\mathbb{C}}$ on $V_{P}$ . This action factors through $Ad(Tc)$ and turns
$V_{P}$ into an affine toric variety. The corresponding fan consists of the single cone
spanned by $\Sigma_{P}$ .

In $V_{P}$ , we consider the subset

$B_{P}=\{v\in V_{P}||v_{\alpha}|<1 \forall\alpha\in\Sigma_{P}\}$ .

Let $\mathcal{O}_{P}$ be the algebra of regular functions on this analytic space, i.e., the
subalgebra of $\mathbb{C}[[\Lambda_{P}]]$ consisting of those formal series which become convergent
if we choose any $v\in B_{P}$ and replace each symbol $\mu$ in the series by the complex
number $v_{\mu}$ . Although the action of $Tc$ via $m_{P}$ does not leave $B_{P}$ invariant, the
associated action of $t_{\mathbb{C}}$ does leave $\mathcal{O}_{P}$ invariant. Explicitly, if $\eta_{\mu}$ denotes the
coordinate function $\eta_{\mu}(v)=v_{\mu}$ , then $X\eta_{\mu}=-\mu(X)\eta_{\mu}$ for $X\in\{\mathbb{C}$ . Thereby
$U(\{c)$ may be identified with an algebra of differential operators on $B_{P}$ . In $\mathcal{O}_{P}$ ,
we have the $t_{\mathbb{C}}$-invariant ideal

$\mathcal{I}_{P}=\sum_{\alpha\in\Sigma_{P}}\eta_{\alpha}\mathcal{O}_{P}$

of functions vanishing on the complement of $m_{P}(T_{\mathbb{C}})$ .
Our main object of study is the system of differential equations

$\chi(z)\phi_{M}(t)=\sum_{L\in \mathcal{L}_{M}}\partial_{M}^{L}(t, z_{L})\phi_{L}(t)$
$\forall M\in \mathcal{L}_{M_{O}},$ $z\in Z(9c)$ . (6)

Here, a character $\chi$ of $Z(9c)$ and a Levi $\mathbb{R}$-subgroup $M_{0}$ containing $T$ are given,
and we are looking for smooth functions $\phi_{M}$ on the subset of $T$ where the
coefficients of all occurring differential operators are regular. This set is the
union of the open sets

$T_{P}:=\{t\in T||t^{\alpha}|>1 \forall\alpha\in\Sigma_{P}\}$

parametrized by the groups $P\in \mathcal{P}_{M_{O}}$ . Let $\prime D(T_{P})$ denote the algebra of differ-
ential operators on $T_{P}$ . Given $z\in Z(\mathfrak{g}_{C})$ , we define $\partial_{P}(z)\in D(T_{P})\otimes End\mathbb{C}^{\mathcal{L}_{M_{O}}}$

by

$( \partial_{P}(z)\phi)_{M}=\sum_{L\in \mathcal{L}_{M}}\partial_{M}^{L}(z_{L})\phi_{L}$

for all $M\in \mathcal{L}_{M_{O}}$ and all tuples $\phi\in C^{\infty}(T_{P})^{\mathcal{L}_{M_{O}}}$ of functions indexed by $\mathcal{L}_{M_{O}}$ .
We want to extend both differential operators and solutions to the complex
domain

$T_{\mathbb{C},P}:=\{t\in T_{\mathbb{C}}||t^{\alpha}|>1 \forall\alpha\in\Sigma_{P}\}=\{t\in T_{\mathbb{C}}|m_{P}(t)\in B_{P}\}$ .
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Let $O(T_{\mathbb{C},P})$ denote the algebra of holomorphic functions and $D(T_{\mathbb{C},P})$ the alge-
bra of holomorphic differential operators on $T_{\mathbb{C},P}$ . On the space $\mathcal{O}(T_{(\Gamma P},))^{\mathcal{L}_{M_{\circ}}}$ , we
have a natural action of $U(t_{\mathbb{C}})$ , and we have an action of $D_{P}^{0}:=\mathcal{O}_{P}\otimes EndC^{\mathcal{L}_{M_{O}}}$

by multiplication with the function pulled back via $m_{P}$ . Let $D_{P}$ be the $D_{P^{-}}^{0}$

submodule generated by $U(f_{\mathbb{C}})$ in the left $D_{P}^{0}$ -module $D(T\mathbb{C},P)\otimes EndC^{\mathcal{L}_{M_{O}}}$ . The
latter module is, of course, an algebra, and $D_{P}$ is a subalgebra.

Proposition 2 Let $P$ be a parabolic $\mathbb{R}$ -subgroup of $G$ containing $T$ ,

(i) For each $z\in Z(\mathfrak{g}_{\mathbb{C}})$ , the operator $\partial_{P}(z)$ extends to a holomorphic differ-
ential operator belonging to $D_{P}$ , and $\partial_{P}(z)-z\tau\in \mathcal{I}_{P}D_{P}$ ,

(ii) The map $\partial_{P}$ : $Z(\mathfrak{g}_{\mathbb{C}})arrow D_{P}$ is a homomorphism of C-algebras.

(iii) If I is an ideal of finite codimension in $Z(9\mathbb{C})$ , then $D_{P}/D_{P}\partial_{P}(I)$ is a
finitely generated $D_{P}^{0}$ -module.

The series expansions of the coefficients of $\partial_{P}(z)$ can be obtained from
Lemma 2, and Lemma 1 implies the other assertions of (i). Item (ii) follows
from Lemma 4, and (iii) can be deduced from Lemma 3.

The system of differential equations (6) is a special case of the system

$\partial_{P}(z)\emptyset=0$ $\forall z\in I$ , (7)

where $I$ is an ideal of finite codimension in $Z(\mathfrak{g}_{\mathbb{C}})$ . This system also makes sense
if applied to $\phi\in \mathcal{O}(T_{\mathbb{C},P})^{\mathcal{L}_{\lambda i_{O}}}$ . If $P$ is a Borel subgroup and $T$ is split, then
$m_{P}$ embeds $T_{\mathbb{C}}$ into the vector space $V_{P}$ . In this case, Proposition 2 says that
the system (7), extended to the polycylinder $B_{P}$ , has a simple singularity. Now
Theorem B.16 of [11] is applicable and provides immediately the assertions of
Proposition 3 below. In general, however, $V_{P}$ is only a toric variety. Although
singular analytic spaces are allowed in the more general theory of [6], the latter
cannot be applied here because we are not able to check that the connection
obtained from (7) is integrable. Therefore, we adapt the simple theory exposed
in Appendix $B$ of [11] to our situation. This allows us to prove the main result,
which is as follows.

Proposition 3 Let $\phi\in C^{\infty}(T_{P})^{\mathcal{L}_{M_{O}}}$ be a solution of (7). Then there exist a
finite set $E\subset t_{\mathbb{C}}^{*}$ and functions $a_{M}$ on $(E-\Lambda_{P})\cross(T\cap T_{0})\cross t_{P}$ such that

$\phi_{M}(t\exp X)=\sum_{\mu\in E-\Lambda_{P}}a_{M}(\mu,t, X)e^{\mu(X)}$

(absolutely convergent series). Moreover, there is a natural number $r$ such that
$a_{M}(\mu, t, X)\iota s$ a polynomial $mX$ of degree at most $r$ for each $\mu$ and $t$ .

Here $T_{0}$ denotes the maximal compact subgroup of $T_{\mathbb{C}}$ . This is a connected
group intersecting every connected component of $T$ . In the proof, we reduce the
system (7) to a system of first-order differential equations using Proposition $2(ii)$
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and (iii). We lift the solution to the universal cover of $T_{P}$ and extend it holo-
morphically. This projects down to a multivalued function on $T_{\mathbb{C},P}$ , which has
the same monodromy as a suitable complex power of characters of $T_{\mathbb{C}}$ . Then
we prove and apply a lemma about removable singularities of functions on $B_{P}$

as a substitute for the usual results about functions on smooth manifolds. The
Proposition then follows by mimicking the classical argument.

The second assertion of Proposition $2(i)$ implies that replacing $\partial_{P}(z)$ by $Z_{T}$

yields the corresponding Euler system in the sense of [11], p. 706. This has
the usual consequence, which we now formulate. In the notation of the last
proposition, let $a(\mu)$ denote the tuple of the functions $a_{M}(\mu)$ on $(T\cap T_{0})\cross tp$

parametrized by $\mathcal{L}_{M_{0}}$ . One calls $\mu 0\in\{\mathbb{C}$ a leading exponent of $\phi$ if $a(\mu_{0})\neq 0$

and $a( \mu_{0}+\int l)=0$ for all nonzero $\mu\in\Lambda_{P}$ . The set of leading exponents is, of
course, the smallest set $E$ making the statement of Proposition 3 true. Let $I_{T}$

denote the image of the ideal $I$ under the Harish-Chandra isomorphism.

Proposition 4 Let $E$ be the set of leading exponents of a solution $\phi$ of the
system (7). Then $E$ is contained in the zero set of the ideal $U(t_{\mathbb{C}})I_{T}$ of $U(t_{\mathbb{C}})$

considered as the algebra of polynomial functions on $t_{\mathbb{C}}^{*}$ .

Given $\lambda\in t_{\mathbb{C}}^{*}$ , we have the character $\chi_{\lambda}$ of $Z(9\mathbb{C})$ given by $\chi_{\lambda}(z)=z_{T}(\lambda)$ .
This character depends only on the orbit of $\lambda$ under the Weyl group $W$ of
$(\mathfrak{g}_{\mathbb{C}}, \{c)$ . If $I$ is the kernel of $\chi_{\lambda}$ , then $I_{T}$ is the set of all $W$-invariant elements
of $U(t_{\mathbb{C}},)$ vanishing at $\lambda$ . Thus we get:

Corollary 1 Let $E$ be the set of leading exponents of a solution $\phi$ of the sys-
$tem(6)$ for $\chi=\chi_{\lambda}$ . Then $E$ is contained in the $W$-orbit of $\lambda$ .

4 The recursion formula
Fix, as above, $G\supset M_{0}\supset T$ and $P$ with Levi component $M_{0}$ , and let $\lambda\in t_{\mathbb{C}}^{*}$ be
$T$-integral. We look for solutions of the system

$\chi_{\lambda}(z)\phi_{M}(t)=\sum_{L\in C_{M}}\partial_{M}^{L}(t, z_{L})\phi_{L}(t)$
$\forall z\in Z(\mathfrak{g}_{\mathbb{C}}),$ $M\in \mathcal{L}_{M_{O}}$

in the form

$\phi_{M}(t)=\sum_{\mu\in A_{MP}}a_{M}(\mu)t^{\lambda-\mu}$

such that $a_{M}(0)=0$ for $M\neq G$ . Note that $\Lambda_{G}=\{0\}$ , and we can w.l.o.g.
assume that $a_{G}(0)=1$ . We shall see that the equation for $z$ equal to the
Casimir element $\omega$ alone then determines all other coefficients. Therefore we
shall write $\phi_{M}(t, \lambda)$ and $a_{M}(\mu, \lambda)$ .

Before we recall the formula for $\partial_{M}^{G}(t,\omega)$ , let us fix the normalization of the
differential operators. If one uses the same invariant measure on $G/T$ in the
definition of the weighted orbital integrals $J_{M}(t, f)$ for $t\in T\cap G_{reg}$ and all Levi
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$\mathbb{R}_{\backslash }$-subgroups $M$ of $G$ containing $T$ , then $\partial_{M}^{G}(t, z)$ does not depend on the choice
of this measure. However, $v_{M}(x)$ still depends on the choice of an invariant
measure on $A_{M}/A_{G}$ (or rather its Lie algebra). Let $\eta_{M}^{G}$ b $e$ a top degree real
alternating form on $a_{M}/a_{G}=:a_{M}^{G}$ whose absolute value defines this volume
element. We denote the pull-back of $\eta_{M}^{G}$ to $a_{M}$ and its $C$-linear extension to
$a_{M\mathbb{C})}^{*}$ by the same letter. Replacing $G$ by $L\in \mathcal{L}_{M}$ , we can choose $\eta_{M}^{L}$ on $a_{M}$ so
that

$\eta_{M}^{G}=\eta_{M}^{L}$ A $\eta_{L}^{G}$ .

Now let $\langle. , .\rangle$ be a nondegenerate symmetric Ad-invariant bilinear form
on $\mathfrak{g}$ . By restriction and $\mathbb{C}$-linear extension, we get a nondegenerate symmetric
$W$-invariant form on $t_{\mathbb{C}}$ and thus, on $t_{\mathbb{C}}^{*}$ . The latter bilinear form can be regarded
as an element of $S(\phi)=U(k)$ , which is of the form $\omega_{T}$ for a unique element
$\omega\in Z(\mathfrak{g}_{\mathbb{C}})$ called the Casimir element. We suppose that $\langle\alpha, \alpha\rangle>0$ for $\alpha\in\Sigma$ .
We recall from (5) that

$\partial_{G}^{G}(\omega)=\omega_{T}$ .

By calculations similar to [1], p. 571, it can easily be deduced from [3], Lemma 12.1
that we have

$(9_{M}^{G}( \omega)=2\sum_{\alpha\in\Sigma_{M}/\pm 1}\frac{|\langle\eta_{M}^{G},\alpha\rangle|}{(t^{\alpha}-1)(t^{-\alpha}-1)}$

if $M$ is maximal and $\partial_{M}^{G}(\omega)=0$ otherwise. For $t\in T_{P}$ , our differential equation
takes the form

$(\langle\lambda, \lambda\rangle-\omega_{T})\phi_{M}(t, \lambda)=2$

$\sum_{L\supset M}$ $\phi_{L}(t, \lambda)\sum_{\alpha\in\Sigma_{MP}^{LP}}|\langle\eta_{M}^{G}, \alpha\rangle|\sum_{n=1}^{\infty}nt^{-n\alpha}$ .

$\dim a_{M}^{L}=1$

Inserting the series expansion for $\phi_{M}$ and $\phi_{L}$ , we obtain the recursion formula

$\langle\mu-2\lambda,\mu\rangle a_{M}(\mu, \lambda)=2$

$\sum_{L\supset M,\dim\alpha_{M}^{L}=1}\sum_{\alpha\in\Sigma_{MP}^{LP}}|\langle\eta_{M}^{G}, \alpha\rangle|\sum_{n=1}^{\propto 3}na_{L}(\mu-n\alpha, \lambda)$
. (8)

It is clear that thereby $a_{M}(\mu, \lambda)$ is determined for generic $\lambda$ . An attempt to
solve these equations explicitly runs soon into combinatorial difficulties.

Although we cannot state a general formula, there is some evidence that the
following constructions exhibit some features of the general picture. Here, for a
subset $A$ of $\Sigma$ , we set $\check{A}:=\{\check{\alpha}|\alpha\in A\}$ .

Definition 1 A root cone in $\Sigma$ is a triple $(A, B, c)$ , where $A,$ $B$ are subsets
of $\Sigma$ spanning the same real vector space $V$ (hence $\check{A},\check{B}$ span the same vector
space $\check{V}$) and $c:V\cross\check{V}arrow \mathbb{R}$ is a bilinear pairing such that
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(i) the rays $\mathbb{R}_{+}\alpha$ for $\alpha\in A$ (resp. $\mathbb{R}_{+}\check{\beta}$ for $\beta\in B$) are the edges of a polyhedral
cone $C_{A}$ (resp. $C$ -),

(ii)

$C_{A}=\{\lambda\in V|c(\lambda,\check{\beta})>0 \forall\beta\in B\}$ ,
$C_{\overline{B}}=\{v\in\check{V}|c(\alpha, v)>0 \forall\alpha\in A\}$ ,

(iii) there enists a natural number $ssurh$ that; for all $\alpha\in A$ and $\beta\in B$ ,

$c(\alpha,\check{\beta})\in\{0, s\}$ ,

(iv) for all $\beta,$ $\beta’\in B$ we have

$2\langle\beta, \beta’\rangle=c(\beta,\check{\beta}’)\langle\beta’, \beta’\rangle+c(\beta’,\check{\beta})\langle\beta,\beta\rangle$ .

The special case $\beta=\beta’$ of the last condition just means that $c(\beta,\check{\beta})=1$ for
all $\beta\in B$ . It is easy to see that if $B,$ $c$ satisfy condition (iv) alone, then $c$ is
nondegenerate.

Notice that by condition (ii) the pairing $c$ puts the cones $C_{A}$ and $C_{\overline{B}}$ in
duality. In view of conditions (i) and (iii), each element of $A$ corresponds to
a maximal face of $C_{\check{B}}$ , and $c(\alpha,\check{\beta})$ is basically the incidence matrix between
maximal faces and edges of that cone. Since each edge contains at most one
(co)root, one can recover $B$ (or, dually, $A$ ) from the other data.

Let $M^{1}$ be the kernel of $H_{M}$ . We denote by $\pi_{M}$ : { $arrow a_{M}$ the projection
along $t\cap m^{1}$ as well as its $C$-linear extension. Let $(A, B, c)$ be a root cone in $\Sigma$ .
We call it a root cone for the parabolic subgroup $MP$ if $A$ and $B$ are subsets
of $\Sigma_{MP}$ and $\pi_{M}$ maps $\check{V}$ bijectively on $a_{M}^{G}$ . If, moreover, there is no other root
cone $(A’, B’, c)$ for $MP$ such that $B$ is a proper subset of $B’$ , then we call it a
maximal root cone for $MP$ .

If $(A, B, c)$ is a root cone for $MP$ , then the pullback of $\eta_{M}^{G}$ under $\pi_{M}$ is a
volume form $\eta_{\check{V}}$ on $\check{V}$ . Given $\mu\in\Lambda\cap\overline{C_{A}/}$ , we define a function on $C_{\check{B}}^{*}:=\{\lambda\in$

$t_{\mathbb{C}}^{*}|{\rm Re}\lambda(X)<0$ $\forall X\in C_{\check{B}}\}$ by the absolutely convergent integral

$a_{B,c}(\mu, \lambda)=.$

If $C_{\overline{B}}$ (and therefore $C_{A}/$ ) is a simplicial cone, then we can choose a numbering
$B=\{\beta_{1}, \ldots, \beta_{l}\}$ , and an easy calculation shows that

$a_{B,c}( \mu, \lambda)=\frac{|\eta_{\overline{V}}(\check{\beta}_{1},\ldots,\check{\beta}_{l})|}{\prod_{\beta\in B}(c(\mu,\check{\beta})-\lambda(\check{\beta}))}$.

A general cone $C_{\check{B}}$ can be triangulated by simplicial cones, and $a_{B,c}$ is then
a linear combination of functions of the aforementioned type, hence a rational
function in $\lambda$ with at most simple poles along the hyperplanes $\lambda(\check{\beta})\in N_{0}$ for
$\beta\in B$ .
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Given $\Psi\subset\Lambda\cap\overline{C}_{A}$ , we define a function on $T_{\mathbb{C},MP}\cross C_{\check{B}}^{*}$ by

$\phi_{B,c,\Psi}(t, \lambda)=\sum_{\mu\in\Psi}a_{B,c}(\mu, \lambda)t^{-\mu}$
.

If $\Pi$ is a linearly independent subset of $\Lambda\cap\overline{C_{A},}$ and $\Lambda_{\Pi}$ the submonoid of A
generated by $\Pi$ , then

$\phi_{B,c,\Lambda_{\Pi}}(t, \lambda)=\int_{C_{\overline{B}}}\frac{e^{\lambda(X)}}{\prod_{\gamma\in\Pi}(1-t-\gamma e-c(\gamma,X))}|d\eta_{\check{V}}(X)|$ ,

and both integral and series are absolutely convergent. The latter is true in
general, because $\Psi$ is contained in a finite union of sets of the form $\Lambda_{\Pi}$ . Thus
$\phi_{B,c,\Psi}(t, \lambda)$ is holomorphic for $\lambda\in(^{v*},\check{B}$ . If $\lambda$ varies in a bounded subset of $t_{C}$ ,
then for sufficiently large $n_{0}$ the functions

$a_{B,c}( \mu, \lambda)\prod_{\beta\in B}\prod_{n=0}^{n_{0}}(n-\lambda(\check{\beta}))$

are holomorphic and uniformly bounded by a polynomial in $||\mu||$ , hence $\phi_{B_{C_{\}}}\Psi},(t, \lambda)$

extends meromorphically to $t_{C}$ with at most simple poles along the hyperplanes
$\lambda(\check{\beta})\in N_{0}$ for $\beta\in B$ .

Proposition 5 Suppose that $C_{I}$ is one of the following:

(i) a group of real rank one,

(ii) a split group of real rank two, $or$

(iii) the group $GL(4)$ .

Then we have

$\phi_{M}(t, \lambda)=t^{\lambda}\sum_{(A,B,c)}\phi_{B,c,\Psi}(t, \lambda)$
,

as meromorphic functions in $\lambda_{f}$ where the sum is over all maximal root cones
$(A, B, c)$ for $MP$ , For each such root cone, $\Psi$ is a subset of $\Lambda_{A}\cap C_{A}\cap\overline{C}_{B}$ . It
can be a proper subset only in case (iii).

Except for a few root cones in case (iii), all other ones occurring here are
simplicial. We can prove an identity for simplicial root cones in any root system,
which reduces the proof of the Proposition to a combinatorial problem. In
case (iii), one has to triangulate the nonsimplicial root cones and observe a
number of cancellations, which might be the precursors of more complicated
structures in the general case.
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