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1 Introduction
Let $k\subset C$ be an algebraically closed field of characteristic $0$ . Let $X$ be a smooth proper
algebraic curve over $k$ . Let $S\subset X$ be a finite subset of $X$ consists of closed points. Let
$C=X\backslash S$ . Let $G$ be a split connected reductive algebraic group over $k$ . Let be an
irreducible $G$-local system on $C$ .
Let $G^{\vee}$ be a dual group of $G$ , i.e. a connected algebraic group over $k$ which corresponds to
the dual root datum to that of $G$ . There is a well-known identification due to Weil,

$Bun_{G}\cong G(k(X))\backslash G(A_{X})/G(0)$ .

Here $Bun_{G}$ is the moduli of principal $G$-bundle, $A_{X}$ is the adele ring of $k(X)$ , and $O$ is its
rin $g$ of integer. An elementary deformation theory says that $T_{P}^{*}Bun_{G}\cong H^{1}(X, ad(P))^{*}\cong$

$H^{0}(ad(P)\otimes\omega)$ . Here $ad(P):=\mathfrak{g}\cross_{adjointacti\circ n}P$ . Let Nilp be the set of its nilpotent vectors.
Another well-known fact is the Satake isomorphism

$k[G(\mathcal{O}_{x})\backslash G(k(X)_{x})/C_{T}(\mathcal{O}_{x})]\cong k[X^{*}(T^{\vee})]^{W}$.

Here LHS is a convolution algebra of double coset space, RHS is a algebra which is semi-
groupring of the set of dominant weight of $G^{\vee}$ .
A sheaf-theoretic version of the above result is due to $Ginzburg[5]$ and can be realized as
follows. First, consider the category $P_{G(O_{x})}(Gr)$ consists of $G(\mathcal{O}_{x})$ -equivariant irreducible
perverse sheaves with finite dimensional support and its direct summands. Here $\mathcal{O}_{x}$ $:=$

$\mathcal{O}_{X,x},$ $Gr$ is infinite grassmanian. Second consider a functor $H^{*}$ : $P_{G(O_{x})}(Gr)arrow Vect$ .
This functor is known to be compatible with forgetful functor $RepG^{\vee}arrow Veci$ if we use the
identification of $G(\mathcal{O}_{x})\backslash G(k(X))/G(\mathcal{O}_{x})$ with the set of dominant weights of $G^{\vee}$ .
We can define a convolution $*:P_{G(O_{x})}(Gr)\cross D_{c}^{b}(Bun_{G})arrow D_{c}^{b}(Bun_{G})$ . Then, the geo-
metric Langlands correspondence asserts that there exists an irreducible local system $A$
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on $Bun_{G^{\vee}}X$ which satisfies the so-called Hecke eigenvalue property.
Hecke Eigenvalue Property (Local version)

$IC_{\lambda}*A$ $\cong V_{\lambda}\otimes cA$

Hecke Eigenvalue Property (Global version)
$V_{\lambda}$ constructed above makes a local system as $x$ moves along $X$ . Moreover, it is restriction
of a Whittaker sheaf associated to to the diagonal embedding of $X$ of type $\lambda$ . ($GL,$ case.)

We knows that if $A$ satisfies the local Hecke eigenvalue property and $ChA$ $\subset Nilp$ ,
then $A$ satisfies the global Hecke eigenvalue property.[5] So, we want to study Nilp and
the local Hecke eigenvalue property.
There is a conjectural construction of $A$ due to Beilinson and Drinfeld. It is constructed,

using a $D$-module which comes from a quantization of the Hitchin morphism

$h:T^{*}Bun_{G}arrow Hitch=\oplus_{m_{k}:exponentsofG}H^{0}(X,\omega^{m_{k}})$ .

Here $h$ is constructed by a homogeneous generator of the ring of invariants $\{i_{1}, i_{2}, \cdots , i_{rk\mathfrak{g}}\}\subset$

$k[\mathfrak{g}^{*}]^{G}$ . Precisely, let $m_{k}=\deg i_{k}$ . Then, substituting $H^{0}(ad(P)\otimes\omega)$ gives an homomor-
phism

$h_{i}$ : $T^{*}Bun_{G}arrow H^{0}(X,\omega^{m_{k}})$ .
Moreover, summing them up gives $h$ . It is obvious that $h^{-1}(O)=Nilp$ . It is $known[3]$ that
this is always a Lagrangian substack of $T^{*}Bun_{G}$ .
For $GL_{r}$ , there is another formulation of the same result due to $Drinfeld[1],$ $Laumon[6][8]$ .
Their approach depends on the fact that we have an explicit formula for a Whittaker func-
tion for $GL_{r}$ and that the Fourier transform of a Whittaker function is the only candidate
for $A$ . Their construction supports the conjecture $ChA$ $\subset Nilp$ . In $Frenkel[4]$ , he asserts
that the sheaf corresponding to $A$ in $X=P^{1},$ $S\neq\emptyset$ is the Gaudin model and execute
an inverse Radon transform to get symmetric power(Whittaker sheaf) for degree $0$ case.
In this article, we give a characterizations of the open stratum of the moduli stack of rank $r$

bundle with parabolic structures on $P^{1}$ . Since the sheaf $A$ must be irreducible, it should
be a minimal extension from this locus. Next, we give a construction of a candidate of an
automorphic sheaf, which is, roughly speaking, the Fourier dual of a Whittaker function.
Finally, we give an estimate for the characteristic variety of our sheaf and see it contains
Nilp for sufficiently high degree case. Moreover if an appropriate local triviality of mon-
odromy is proved, we can see that it is exactly Nilp. Since we knows that our moduli for
$P^{1}$ case can be easily written, we can expect the whole picture can be described explicitly.
Of course we can describe the moduli of rank $r$ bundle via spectral cover and compute it in
the Jacobian of a spectral curve, we do not know how to describe its Hecke correspondence
and stratification. I do not know what the moduli of rank $r$ bundle is except for the case
$r=2,$ $X$ hyperelliptic.
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2 Rough Stratification
Let us fix a finite subset $S\subset X$ .

Definition 1 ([9]) A rank $r$ bundle on $X$ with a quasi-parabolic structure at $S$ is a pair
$(E, \{F_{*}E\otimes k_{x}\}_{x\in S})$ consists of a rank $r$ locally free sheaf $E$ on $X_{f}$ and a decreasingfiltration
$\{F_{*}E\otimes k_{x}\}_{x\in S}$ of vector spaces at each $x\in S$ as follows

$E\otimes k_{x}=F_{x,0}E\otimes k_{x}\supset F_{x,1}E\otimes k_{x}\supset\cdots\supset F_{x,s_{x}}E\otimes k_{x}=\{0\}$ .

A rank $r$ bundle on $X$ with parabolic structure is a quasi-parabolic structure with an extra
data

$0\leq\alpha_{x,1}<\alpha_{x,2}<\cdots<\alpha_{x,s_{x}}<1$

associated to $\{F_{*}E\otimes k_{x}\}_{x\in S}$ .

$Re$mark 1 Unless stated otherwise, we use only parabolic structures with $s_{x}=r_{y}dimF_{x,i}E\otimes$

$k_{x}/F_{x,i-1}E\otimes k_{x}=1$ for all $i$ . In addition, we do not specify $\alpha_{x,i_{f}}$ but assume that $\alpha_{x,i}=\alpha_{y,i}$

for all $x,$ $y\in S.$ Finally, we assume that $\alpha_{x,i}$ is common to all of vector bundle with
parabolic structures.

Definition 2 An extended filtration of parabolic bundle is defined as follows.

$F_{x,i}E_{x}=\{$

$\{\phi\in E_{x}|\phi\otimes k_{x}\in F_{x,i}E\otimes k_{x}\}$ for $1\leq i\leq r$

$F_{x,i+js_{x}}E_{x}(-jx)$ otherwise

Here we set $\alpha_{x,i+s_{x}}=\alpha_{x,i}+1$ .

Definition 3 ([9]) A morphism of vector bundle with parabolic structures at $S$ is a mor-
phism $f$ : $Earrow F$ of base sheaves satisfying the following conditions

$f(F_{x,i}E\otimes k_{x})\subset F_{x,j}F\otimes k_{x}$ (1)
$\alpha_{E,x,i}>\alpha_{F,x,j}$ (2)

We denote the set ofmorphism between vector bundles with parabolic structures by $Hom_{par}(E, F)$ .

Lemma 1 Let $L$ and $M$ be parabolic line bundles with parameters $\{\alpha_{x}\}$ , and $\{\beta_{x}\}$ respec-
tively. Then

$Hom_{par}(L, M)\cong Hom(L, M(-H))$ .

Here $H$ is a divisor which is the sum of points $x\in S$ such that $\alpha_{x}\leq\beta_{x}$ with single
multiplicities.
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Definition 4 A rank $r$ bundle with a level structure is a pair $(E, \{v_{x,i}\}_{x\in S,1\leq i\leq r})$ consists

of a rank $r$ locally free sheaf $E$ on $X$ , and a basis $\{v_{x,i}\}_{1\leq\leq r}i$ of $E\otimes k_{x}$ for each $x\in S$ .

Let $\mathcal{M}_{S,r,d}^{level}$ be the moduli stack of the degree $d$ rank $r$ bundles with level structures at $S$ .
Let $\mathcal{M}_{S,r,d}$ be the moduli stack of the degree $d$ rank $r$ bundles with parabolic structures.
Then we have a natural homomorphism $\theta$ by making flags, i.e.

$\{v_{x,i}\}_{1\leq i\leq r}\mapsto L.h<v_{x,k}>_{k\geq i}=:\{F_{x,i}E\otimes k_{x}\}$.

Here we denote linear hull using basis by $L.h$ . It is known that

$T_{(v_{x}:}^{*}\mathcal{M}_{S,r,d}^{level}\cong Ho)m(E,\{,\}_{x\in S,1\leq\cdot\leq r}E, E\otimes\omega(D))$ .

Infinitesimal symmetry of a fiber of $\theta$ is

$\mathcal{I}:=\{\phi\in Hom(E, E)|\phi(F_{x,i}E_{x})\subseteq F_{x,i+r}E_{x}\}$ .

Therefore, we have

$T_{E}\mathcal{M}_{S,r,d}\cong Coker(H^{1}(X,\mathcal{I})Larrow H^{1}(X, Hom(E, E\otimes O(-D))))$

By the Serre duality and using the killing form, we have

Lemma 2 ([3]) We have the following isomorphism

$T_{E}^{*}\mathcal{M}_{S,r,d}\cong$ { $\phi\in Hom(E,$ $E\otimes\omega(D))|\phi(F_{x,i}E_{x})\subset F_{x,i+1}E_{x}\otimes\omega(D)$ for all $i$ }

Above identification allows us to define as follows.

Definition 5 ([3]) The global nilpotent variety Nilp of $\mathcal{M}_{S,r,d}$ is a substack of $T^{*}\mathcal{M}_{S,r,d}$

defined fiberwise as follows.
$Nilp\cap T_{E}^{*}\mathcal{M}_{S,r,d}\cong\{\phi\in Hom(E, E\otimes\omega(D))|\phi\in T_{E}^{*}\mathcal{M}_{S,r,d}, \phi^{r}=0\}$

$Re$mark 2 In [7], it is shown that the stratification induced by irreducible components of
Nilp for $S\neq\emptyset$ is the Shatz stratification. Therefore, we are dealing with an analogue of
the Shatz strata in the parabolic setting.

Example 1 (Well-known, $See[2]$ ) If $X=P^{1}$ , then we have a smooth local open set $F^{N}$

of $\mathcal{M}_{r,0}$ identical to $N$-fold product of flag varieties of $GL_{r}$ . Let $S=\{z_{1}, \cdots, z_{N}\}$ . Then
using moment map, we can define an analogue of the Hitchin fibration as follows. Let
$\mu$ : $T^{*}Farrow N$ be a moment map. Then, let

$S:=$ { $(n_{i}) \in N^{N}|\rho=\sum\frac{n_{i}}{u-z_{i}}du$ is holomorphic at $P^{1}\backslash S_{f}\rho^{N}=0$ }

This is a Poisson submanifold of $N^{N}$ . Its pullback to $T^{*}F^{N}$ is a Lagrangian subvariety.
This is a description of an open part of even degree case.
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Definition 6 Let $(E, \{F_{x,i}\}_{x\in S,1\leq i\leq r})$ be a quasi-parabolic bundle. Let $T$ be a finite sub-
set(including empty set) of S. Then we define a vector bundle $E_{T}$ by

$E_{T,x}:=\{$
$E_{x}$ if $x\not\in T$

$\{\phi\in\xi^{-r+1}E_{x}|{\rm Res}_{x}\xi^{m}\phi\in F_{x,r-m}E\otimes k_{x}0\geq m\geq r-1\}$ if $x\in T$

Definition 7 Let the situations as above definition. Define a vector bundle $E_{T}^{i}$ by

$E_{T,x}^{i}:=\{$

$E_{x}$ if $x\not\in T$

$\{\phi\in\xi^{-i}E_{x}|{\rm Res}_{x}\xi^{i-1}\phi\in F_{x,i}E\otimes k_{x}\}$ if $x\in T$

Definition and Lemma 1 Let $(E, \{F_{x,i}\}_{x\in S,1\leq i\leq r}, \{\alpha_{x,i}\}_{x\in S,1\leq i\leq r})$ be a parabolic bundle.
Let $Earrow L$ be a surjective homomorphism of vector bundles. Then there exist a unique
quotient bundle $L^{i}$ of $E_{S}^{i}$ s $u$ch that $rkL=rkL^{i}$ , and $L=+L^{i}$ via natural homomorphism.
Similarly, let $M^{c}arrow E$ be an injective homomorphism of vector bundle. Then there exist a
unique a unique subbundle $M^{i}$ of $E_{S}^{i}$ such that rk$M=rkM_{f}^{i}$ and $Marrow\succ M^{i}$ via natural
homomorphism. We call this type of operation for $M$ by the upper modification.

From now on, we assume $X=P_{C}^{1}$ . By Grothandieck’s theorem, we can assume that every
$E_{T}$ is direct summand of $\mathcal{O}(m)$ . Here $\mathcal{O}(m)$ is the line bundle of degree $m$ on $P^{1}$ .

Definition 8 A vector bundle $E$ on $P_{C}^{1}$ is called general iff $Hom(E, E\otimes\omega)\cong\{0\}$ .

Definition 9 The fine stratification of $Al_{S,r,d}$ is the stratification defined via the decom-
position type($i.e$ . direct summands of $E_{T}$).

Lemma 3 In product of two flag varieties of $GL_{r}$ , the fine stratification induced on it is
union of Schubert cells. Moreover if we take an irreducible $component_{f}$ we can get the
Schubert decomposition.

Since parameters are discrete, we can assume that there exists an open stratum of $\mathcal{M}_{S,r,d}$ .

Theorem 1 Let $(E, \{F_{x,i}\}_{x\in S,1\leq i\leq r})$ be a parabolic bundle. Then the following two condi-
tions are equivalent

$\bullet$ $NiIp\cap T_{E}^{*}\mathcal{M}_{S,r,d}$ is nontrivial.

$\bullet$ There exists $T\subseteq S$ such that $E_{T}$ is non-generic.
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3Construction of Automorphic sheaves
Every construction in this, and the next section is a generalization of Laumon’s pap$er[8]$

to the parabolic case.
Let be a rank $r$ irreducible local system on $C$ . We assume that our local system is
algebraic, i.e. it comes from an ODE on $X$ which has at most regular singularity along
$S$ . We assume that it has unipotent monodromy along $S$ . Then we mimic the original
construction of Laumon to construct a Whittaker sheaf on the moduli stack of torsion $\mathcal{O}_{X}$

sheaves of width $\leq r$ as follows. First, take an $m$-fold external product on $C^{m}$ and take an
$6_{m}$ -invariant part which is induced by switching factors. Taking a minimal extension via
embedding

$C^{(m)_{c}}arrow Coh^{0,m,r}X$ ,

we get a Whittaker sheaf $W$ . Here this morphism is constructed by the composition of
two morphisms defined below.

$C^{(m)} \ni(x_{1}, \cdots, x_{m})\mapsto\sum_{i=1}^{i=m}[x_{i}]\in Div^{m}C$

$Div^{m}C\ni Drightarrow \mathcal{O}_{D}\in Coh^{0,m,r}X$

Here we denote $\mathcal{O}_{X}/\mathcal{O}_{X}(-D)$ by $\mathcal{O}_{D}$ . Since we have $T_{E_{0}}^{*}Coh^{0,m,r}X\cong Hom(E_{0}, E_{0}\otimes\omega)$ ,
we can define the r-th nilpotent variety $\Lambda_{0,r}$ of $Coh^{0,m,r}X$ via the following fiberwise de-
scription

$T_{E_{0}}^{*}Coh^{0,m,r}X\cap\Lambda_{0,r}:=\{\phi\in Hom(E_{0}, E_{0}\otimes\omega)|\phi^{r}=0\}$

From a result of Laumon,[6] we knows that characteristic variety of $W$ coincides with $\Lambda_{0,r}$

if $S=\emptyset$ .

Definition 10 Let $\phi:Larrow M$ be a morphism between torsion $\mathcal{O}_{X}$ modules. Let $M=\oplus M_{x}$

be its decomposition to stalk. Let us choose a local unifomizer $\xi_{x}$ at each $x\in SuppM$ . Let
$D=\Sigma_{x\in SuppM}[x]$ We define a $D$ shifl of $\phi$ to be the composition of $\phi$ and $\Sigma\xi_{x}$ , and denote
it by $\phi(D)$ .

It is obvious that $D$ shifts are compatible with the composition of morphisms. Moreover,
if a $D$ shift of a morphism $\psi$ vanishes, then any $D$ shifts of $\psi$ vanishes.

$D$efinition 11 Let $\Psi$ be a subvariety of $T^{*}Coh^{0,m,r}X$ defined fiberwise as follows.
$T_{E_{0}}^{*}Coh^{0,m,r}X\cap\Psi:=\{\phi\in Hom(E_{0}, E_{0}\otimes\omega)|\phi|c=0\phi^{r}((r-1)D)=0\}$

Proposition 1 $ChW=\Lambda_{0,r}+\Psi_{f}$ without multiplicity.
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Let $\mathcal{M}_{S,r,d,coh}$ be the moduli stack of coherent $\mathcal{O}_{X}$ module of generic rank $r$ , degree $i$ ,
equipped with parabolic structure for locally free part $E_{i,lf}$ of $E_{i}$ along $S$ . Let $C_{i,d}(1\leq i\leq$

$r-1)$ be an open substack of $\mathcal{M}_{S,r,d,coh}$ , defined as follows.

$C_{i,d}=\{(B_{i}, B_{i,lf}, \{F_{*}\}_{S,[1,r]})\in \mathcal{M}_{S,r,d,coh}|Hom(B_{i},\omega^{-r+i+1})=\{0\}\}$

We restrict locally free part for $i=r$ . Let us define two fiber bundles on $C_{i,d},$ $\mathcal{E}_{i},$ $\mathcal{E}_{i}^{\vee}$

fiberwise as follows.

$\mathcal{E}_{i,(B:,B.,\iota j\{F_{*}\}_{S,[1,r]})}.,:=PHom(\omega^{-r+i},$ $B_{S,i})$ (3)

$\mathcal{E}_{i,(B_{i},B_{lf},\{F_{*}\}_{S,[1,r]})}^{\vee}.\cdot,:=PExt^{1}(B_{S,i},\omega^{-r+i+1})$ (4)

By the Serre duality, these vector spaces are dual to each other before projectification.
Here we denote locally free part of a coherent $\mathcal{O}_{X}$-module $E$ by $E_{lf}$ . This is an direct
component of $E$ . Let $\mathcal{E}_{i+1}^{o}$ be an locally closed substack of $\mathcal{E}_{i+1}$ defined fiberwise by

$\bullet$ $\phi\in \mathcal{E}_{i+1,E}^{o}$ i $s$ injective.

$\bullet$ $\phi\in \mathcal{E}_{i+1,E}^{o}$ comes from $Hom(\omega^{-r+i+1}, B_{i+1})$ .

$\bullet$ The maximal upper modification $L^{i+1}$ of $\omega^{-r+i+1}$ does not meet $F_{x,1}B_{i+1,lf}$ for every
$x\in S$ .

Then we can define a homomorphism $\mathcal{E}_{i+1}^{o}arrow j^{\vee}\mathcal{E}_{i+1}^{\vee}$ just by sending quotient according to
the diagram

$0arrow\omega^{-r+i+1}arrow B_{S,i+1}arrow B_{S,i}arrow 0$.
Here $B_{S,i}:=\{B_{i,lf}\}_{S}\oplus B_{i,tor}$ . Let us denote the inclusion $\mathcal{E}_{i+1}^{o}carrow \mathcal{E}_{i+1}$ by $j_{i+1}$ . Let $P_{i}$ be
a fiber bundle on $C_{i,d}$ defined fiberwise as follows.

$\mathcal{P}_{i},(B_{i},B_{i,lj},\{F_{*}\}_{S,[1,r]}):=\{(\phi, \xi)\in \mathcal{E}_{i,E}\cross \mathcal{E}_{i,E}^{\vee}|<\phi,\xi>=0\}$

Then we can define the first, the second projections $\pi_{i}$ : $\mathcal{R}_{i}arrow \mathcal{E}_{i},\check{\pi}_{i}$ : $\mathcal{R}_{i}arrow \mathcal{E}_{i}^{\vee}$ . The
Radon transform $\mathcal{R}_{i}$ on $\mathcal{E}_{i}$ is defined by $\mathcal{R}_{i}:=\check{\pi}_{i!}\pi_{i}^{*}[-dim_{C_{i}}\mathcal{E}_{i}]$ . We think $\check{\pi}_{i!}$ be its derived
functor because of base change theorem. Let $W^{00}$ be a pullback of $W$ Then we put
$W^{oi+1}:=j_{i+1,!}j_{i}^{\vee*}\mathcal{R}_{i}W^{oi}$ . In the original setting, it is conjectured to be isomorphic to
$W^{oi+1}:=j_{i+1,!+}j_{i}^{\vee*}\mathcal{R}_{i}W_{L}^{oi}$ . Let $\mathcal{H}_{i,m}^{n}(0\leq i\leq r-1)$ be a stack which classifies the triple
$(B_{i}, B_{i}’, \phi)$ . Here $B_{i}\in C_{i,m},$ $B_{i}’\in C_{i,m+i}$ ,

$0arrow B_{i}arrow B_{i}’\emptysetarrow k_{x}^{\oplus i}arrow 0$ (exact)

. Let $\rho_{i}^{1}$ : $\mathcal{H}_{i,m}^{n}arrow C_{0,n}\cross C_{i,m}$ be the morphism induced by the first projection and the
cokernel of the third projection. Let $\rho_{i}^{2}$ : $\mathcal{H}_{i,m}^{n}arrow C_{i,m+n}$ be the second projectio-n. Let
$T^{i}:=\rho_{i!}^{1}\rho_{i}^{2*}$ be the Hecke operators. In this case Hecke eigenvalue property is formulated
by restriction to $C\ni x$ }$arrow k_{x}^{n}\in C_{0,n}$ . All of Laumon’s arguments were local, so we have
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Lemma 4 $W$ satisfies the Hecke eigenvalue property at $C=X\backslash S$ .

We can pullback the Hecke operators by taking fiber product and looking only at the
effective part.

Proposition 2 The property being a Hecke eigensheaf is preserved by

$\bullet$ Radon transform $\mathcal{R}_{i}$ .

$\bullet$ pullback $j_{i}^{\vee,*}$

Lemma 5 $W^{or}$ satisfies the Hecke eigenvalue property for $x\in C$ .

4 Characteristic Varieties
Every construction in this, and the previous section is a generalization of Laumon’s $paper[8]$

to the parabolic case.
Let $\overline{Nil}p$ be a pullback of global nilpotent variety on $T^{*}\mathcal{E}_{r}^{o}$ . Radon transform for charac-
teristic varieties is projectified version of isomorphism

$T^{*}C^{N}\cong C^{N}\cross C^{*N}arrow C^{*N}\underline{\simeq}\cross C^{N}\cong T^{*}C^{*N}$

Here the second isomorphism is switching factor to factor. This yields $PT^{*}\mathcal{E}_{i}\cong PT^{*}\mathcal{E}_{i}^{\vee}$ .
Therefore, what we have to do is to describe $j_{i}^{-1}T^{*}\mathcal{E}_{i}^{o}arrow T^{*}\mathcal{E}_{i}$. This can be done as follows.
First, since $\mathcal{E}_{i}$ and $\mathcal{E}_{i}^{\vee}$ are fiber bundles, we can think $T^{*}\mathcal{E}_{i}$ and $T^{*}\mathcal{E}_{i}^{\vee}$ are stacks representing
$(B_{i}, \rho_{i}, \phi, v)\in T^{*}C_{i,m}x\mathcal{E}_{i,B:}\cross T_{\phi}^{*}\mathcal{E}_{i,B}\dot{.},$ $(B_{i}, \rho_{i},\xi, v)\in C_{i,m}\cross \mathcal{E}_{i,B:}^{\vee}\cross T_{\xi}^{*}\mathcal{E}_{i,B:}^{\vee}$ .

Lemma 6 Under the situations as $above_{f}$ we have

$T_{\phi}^{*}\mathcal{E}_{i,B:}$
$\cong$ $ker(Ext^{1}(B_{S,i},\omega^{-r+i+1})arrow Ext^{1}\phi^{*}(\omega^{-r+i},\omega^{-r+i+1}))$ (5)

$T_{\xi}^{*}\mathcal{E}_{i,B}^{\vee}.\cdot$

$\cong$ { $\phi\in Hom(\omega^{-r+i},$ $B_{S,i})|$ (6)
$0$ $arrow$

$B_{S,i}\uparrow\phi$

$arrow$

$Bs_{\dagger},i+1$

$arrow$

$\omega_{\dagger id}^{r+i+1}$

$arrow$

$0\}$

(7)
$0$ $arrow$

$\omega^{-r+i}$
$arrow$

$\omega^{-r+i}\oplus\omega^{-r+i+1}$ $arrow$
$\omega^{-r+i+1}$

$arrow$ $0$

Let $(B:+1, p_{i+1}, \phi_{i+1}, v)\in T^{*}\mathcal{E}_{i+1}$ . Then the inverse image via $j_{i}^{\vee}$ is constructed as follows.
By the arguments at above, we can think $\rho_{+1}.\in Hom(B_{i+1}, B_{i+1}\otimes\omega(D))$ as

$\rho_{i+1}$ : $B_{i+1,S,x}^{i}arrow B_{i+1,S,x}^{i+1}\otimes\omega$ for all $i$ .

Lemma 7 Let the situations as above. Then the following assignment gives the r$estr\cdot iction$

$T_{\epsilon^{o}}^{*}.\mathcal{E}_{i}arrow T^{*}\mathcal{E}_{i-1}^{\vee}$ .
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$\bullet$ $B_{i}$ comes from
$0arrow\omega^{-r+i+1}arrow B_{S,i+1}\emptysetarrow B_{S,i}arrow 0$ .

$\bullet$

$\rho_{i}$ is a unique vector in $Hom(B_{i}, B_{i}\otimes\omega(D))$ which comes from
$0$ $arrow$ $Hom(B_{i+1},\omega^{-r+i+1})$ $arrow$ $Hom(B_{i+1},$ $B_{i+1}^{1}\otimes\omega)$ $arrow$ $Hom(B_{i+1}, B_{i}^{1}\otimes\omega)$

$\downarrow$
$\downarrow$

$\downarrow$

$0$ $arrow$ $Hom(B_{i},\omega^{-r+i+1})$ $arrow$ $Hom(B_{i},$ $B_{i+1}^{1}\otimes\omega)$ $arrow$ $Hom(B_{i}, B_{i}^{1}\otimes\omega)$

$\downarrow$
$\downarrow$

$\downarrow$

$0$ $arrow$ Ext $(\omega^{-r+i},\omega^{-r+i+1})$ $arrow$ Ext $(\omega^{-r+i},$ $B_{i+1}^{1}\otimes\omega)$ $arrow$ Ext $(\omega^{-r+i}, B_{i}^{1}\otimes\omega)$

by using $\rho_{i+1}\in Hom(B_{i+1},$ $B_{i+1}^{1}\otimes.\omega),\overline{v}\in Im$ (Ext $(Bs,i+1,\omega^{-r+i+2})arrow Ext^{1}(B_{i+1},\omega^{-r+i}$

and $\phi_{i+1}$ . Here the diagram above is exact for all lines,

$\bullet$ $\phi_{i}$ is uniquely determined via the composition

$0arrow\omega-r+i+1^{\phi i+1\rho i+1}arrow B_{i+1}arrow B_{i+1}^{1}\otimes\omegaarrow B_{i}\otimes\omega$ .

$\bullet$ Extension is the short exact sequence above.

Let $[p]_{i}$ : $B_{i}arrow B_{i-1}\otimes\omega$ be the composition of $\rho_{i}$ and $B_{i}^{1}arrow B_{i-1}$ . Then we have

Corollary 1 The following diagram is commutative.

$\omega_{1id}^{-r+i}$

$L\Rightarrow$

$\downarrow[\rho]_{i}B_{i}$

$arrow$

$B_{i-1}(-D)\downarrow[\rho]_{i-1}$

$\omega^{-r+i}$
$carrow$ $B_{i-1}\otimes\omega$ $arrow$ $B_{i-2}\otimes\omega(-D)$

Using this corollary repeatedly, we have the reverse composition.

Proposition 3 The image of composition of Radon transforms and restrictions from $\mathcal{E}_{r}^{o}$

to $\mathcal{E}_{0}$ carries $\overline{Nil}p\subset T^{*}\mathcal{E}_{r}^{o}$ into pullback of $\Lambda_{0,r}\cup\Psi$ in $T^{*}\mathcal{E}_{0}$ .

To prove this correspondence more rigidly, we need some extra lemmas.

Lemma 8 Let $R$ be a commutative ring.

$0arrow Aarrow Barrow Carrow 0$

be a short exact sequence of $R$ -modules. Let $L$ be a $R$ -module. Then the morphism $\iota$ in

$Hom_{R}(L, B)arrow Hom_{R}(L, C)-^{\iota}Ext_{R}^{1}(L, A)$

is given by
$0$ $arrow$ $A$ $arrow$ $B$ $arrow$ $C$ $arrow$ $0$

$Hom_{R}(L, C)\ni\phi$ $\vdash\Rightarrow$

$0$ $arrow$

$\uparrow idA$

$arrow$

$B^{-}\uparrow$

$arrow$

$\uparrow\emptyset L$

$arrow$ $0$

Here $B^{-}$ is a $R$-module generated by the preimage of $L$ in $B\oplus ker\phi$ .
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Using this result, we get the following.

Proposition 4 If the corresponding cotangent vector defines locally free sheaf on $C_{ff}$ we
have

$\bullet$ $kerp_{0}^{i}\cong \mathcal{O}_{D_{1}}\oplus\cdots\oplus \mathcal{O}_{D_{i}}$ for all $i$ .
$\bullet D_{1}\geq D_{2}\geq\cdots\geq D_{r}$ .

Theorem 2 Under the identification above the preimage of inverse image of $\Lambda_{0,t}\cup\Psi$ in
$T^{*}\mathcal{E}_{0}$ to $T^{*}\mathcal{E}_{r}^{o}$ is $\overline{Nil}p$ .

Corollary 2 ([3]) $\overline{Nil}p$ is a Lagrangian substack of $T^{*}\mathcal{E}_{r}^{o}$ .
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