Chevalley groups associated to elliptic Lie algebras of type $A_l^{(1,1)}, B_l^{(1,1)}, C_l^{(1,1)}, D_l^{(1,1)}$ *

Tadayoshi Takebayashi

1 Introduction

A toroidal Lie algebra is the universal central extension of a Lie algebra $\mathfrak{g} \otimes \mathbb{C}[t_1^{\pm 1}, t_2^{\pm 1}, \cdots, t_m^{\pm 1}],$ where \mathfrak{g} is one of the finite dimensional simple Lie algebras over \mathbb{C} and $\mathbb{C}[\tilde{t}_1^{\pm 1}, t_2^{\pm 1}, \cdots, t_m^{\pm 1}]$ is the ring of Laurent polynomials in m variables t_1, \dots, t_m over \mathbb{C} . Let $A := \mathbb{C}[t_1^{\pm 1}, t_2^{\pm 1}, \dots, t_m^{\pm 1}],$ and $\Omega_A := \bigoplus_{i=1}^m Adt_i$ be the A-module with generators da for $\forall a \in A$, and the relation d(ab) = ad(b) + bd(a). Let $\overline{\cdot}: \Omega_A \to \Omega_A/dA$ be the canonical projection, in which there holds the relation, 0 = d(ab) = ad(b) + bd(a), then a Lie algebra $\mathfrak{u} = A \otimes \mathfrak{g} \oplus (\Omega_A/dA)$, with Lie bracket $[a \otimes X, b \otimes Y] = ab \otimes [X, Y] + \overline{(da)b} (X \mid Y), \quad [c, \mathfrak{u}] = 0, \ \forall c \in \Omega_A/dA$, is the universal central extension of $A \otimes \mathfrak{g}$. The same algebras have been given by Slodowy ([Slo]). Let $A = (\langle \alpha_i, \alpha_j \rangle)_{1 \leq i,j \leq l}$ be any simply-laced finite Cartan matrix of rank $l \geq 2$, and $A^{[m]} = (\langle \alpha_i, \alpha_j \rangle)_{1 \leq i,j \leq l+m}$ be any m-fold affinization of A, then Slodowy introduced intersection matrix algebra, $im(A^{[m]}) := gim(A^{[m]})/r(A^{[m]})$, and there holds $\mathfrak{u} \simeq im(A^{[m]})$. In Vertex operator's method, Saito and Yoshii ([S-Y]) constructed a Lie algebra $\mathfrak{g}(\Phi)$ attached to any m-extended homogeneous root system Φ as certain subalgebra of $V_{Q(\Phi)}/DV_{Q(\Phi)}$, here V_Q is the lattice Vertex algebra attached to a lattice Q and D is the derivation, (studied by Borchers ([Bo 1,2])). Then there holds $\mathfrak{u} \simeq \mathfrak{g}(\Phi)$. Saito and Yoshii also defined a Lie algebra $\tilde{e}(\Gamma(\Phi,G))$ by Chevalley generators and generalized Serre relations attached to $\Gamma(\Phi,G)$, where $\Gamma(\Phi,G)$ is the simply-laced elliptic Dynkin diagram and (Φ,G) is a pair consisting of an elliptic root system Φ (i.e. 2-extended affine root system) with a marking G. Then there holds $\tilde{\mathfrak{g}}(\Phi) \simeq \tilde{e}(\Gamma(\Phi,G))$, where $\tilde{\mathfrak{g}}(\Phi)$ is generated by $\mathfrak{g}(\Phi)$ and nondegenerate h extended from Cartan subalgebra h. In the toroidal Lie algebra u, one can consider the algebra t which has only degree 0 elements as the center i.e. $c_i := t_i^{-1} dt_i \in \Omega_A/dA$, and add to it the degree derivation d_i , thus $\mathfrak{t} = \mathfrak{g} \otimes \mathbb{C}[t_1^{\pm 1}, \cdots, t_m^{\pm 1}] \oplus (\bigoplus_{i=1}^m \mathbb{C}c_i) \oplus (\bigoplus_{i=1}^m \mathbb{C}d_i)$, with $[d_i, a \otimes t_1^{n_1} \cdots t_m^{n_m}] = n_i(a \otimes t_1^{n_1} \cdots t_m^{n_m})$, and $[d_i, c_j] = 0$ for $1 \leq i, j \leq m$, which is also called toroidal Lie algebra, or Quasi-simple Lie algebra. In the above Lie algebras, in the case of m=2, we call elliptic Lie algebra, because its root system is associated to elliptic root system ([Sa]). In the sequel, we denote an elliptic Lie algebra by $\hat{\mathfrak{g}}$ as the universal

^{*}A talk on a symposium on Representation Theory held at Chiba, November 15-18, 1999.

central extension of 2-fold affinization $k[T^{\pm 1}, S^{\pm 1}] \otimes \mathfrak{g}$, where $k[T^{\pm 1}, S^{\pm 1}]$ is the ring of two variable Laurent polynomials with coefficients in a field k. Moody, Rao and Yokonuma ([M-R-Y]) constructed the integrable representations of $\hat{\mathfrak{g}}$, called vertex representations, and after that, using them, Shi ([Sh]) constructed a group (toroidal group) associated to $\hat{\mathfrak{g}}$. In this article, we construct a group associated to $\hat{\mathfrak{g}}$, in the following way. Let ρ be a faithful representation of the Lie algebra g on a finite dimensional complex vector space. Using ρ and a Chevalley basis of g, Chevalley ([Ch1]), [Ch2]) and Demazure constructed an affine group scheme $G_o(\Delta, \cdot)$ over \mathbb{Z} , where Δ is the root system of \mathfrak{g} with respect to a (fixed) Cartan subalgebra, and $G_{\rho}(\Delta, \cdot)$ is called the Chevalley-Demazure group scheme associated to $\mathfrak g$ and ρ . Since $G_{\rho}(\Delta, \cdot)$ is a representable covariant functor from the category of commutative rings with 1 to the category of groups, one can get a group $G_{\rho}(\Delta, \cdot)$ of the points of a commutative ring R with 1. It is written simply G(R) when Δ is arbitrary or fixed, and G(R) is called a Chevalley group over R. For each root system $\alpha \in \Delta$, there is a group isomorphism of the additive group R^+ of R onto a subgroup X_{α} of G(R). The subgroup of G(R) generated by all $X_{\alpha}, \alpha \in \Delta$, is denoted by $E(\Phi)$ and called the elementary subgroup of G(R). Morita ([Mo]) showed that the elementry subgroup $E(k[T,T^{-1}])$ of a Chevalley group $G(k[T,T^{-1}])$ has the structure of a Tits system with an affine Weyl group. As an extension of above results, we examine the algebraic structure of the elementary subgroup $E(k[T^{\pm 1}, S^{\pm 1}])$ of a Chevalley group $G(k[T^{\pm 1}, S^{\pm 1}])$, where $G(k[T^{\pm 1}, S^{\pm 1}])$ is considered as a Chevalley group associated to the elliptic Lie algebra $\hat{\mathfrak{g}}$. The elliptic Weyl group defined from the elliptic root system ([Sa]), is not a Coxeter group, so we see that $E(k[T^{\pm 1}, S^{\pm 1}])$ does not have a Tits system associated to its Weyl group (see [Bo]). We write down some relations of the generators of the Weyl group defined from $E(R_2)$, where we set $R_2 := k[T^{\pm 1}, S^{\pm 1}]$, they are a little different from those of the elliptic Weyl group ([S-T]). In the case of affine Lie algebra, Garland ([G]) Iwahori and Matsumoto ([I-M]), showed the following result. Let $k((T)) (= k[[T, T^{-1}]])$ denote the T-adic completion of $k[T, T^{-1}]$, i.e. k(T) is the ring of all formal Laurent series $\sigma = \sum_{i \in I} q_i T^i$, $q_i \in k$, where the sum on the right is allowed to be infinite, and it is called a local field. Then E(k(T)) has the structure of a Tits system associated with the affine

a local field. Then E(k(T)) has the structure of a Tits system associated with the affine Weyl group of Δ . As an extension to 2-dimension of k(T), one can consider the iterated power series K = k(T)(S), (see [P1], [P2]), which is a 2-dimensional local field with a discrete valuation ring $O_K = k(T)(S)$, i.e. K is the quotient field of O_K whose residue field is a 1-dimensional local field K = k(T) with residue field K. We define the elementary subgroup E(K), in this case, using the result by Abe ([A]), we see that SL(n,K) = E(K). In a similar way as in the case of SL_2 over p-adic field (1-dimensional local fild) ([H2]), we have the decomposition $SL(2, O_K') = B \cup Bw_1B$, where $O_K' = k[T] \oplus Sk(T)[S]$ and the group E(T) group of E(T) and E(T) is an element of the Weyl group of E(T).

2 Definition of Chevalley groups and some results

Let \mathfrak{g} be a finite dimensional complex simple Lie algebra, Δ be a root system of \mathfrak{g} with respect to a (fixed) Cartan subalgebra \mathfrak{h} , and $\Pi = \{\alpha_1, \cdots, \alpha_l\}$ be a set of simple roots relative to some fixed ordering. Let $W(\Delta)$ be the Weyl group of Δ , $\widetilde{W}(\Delta)$ affine Weyl group of Δ . For $\alpha, \beta \in \Delta$, we set $<\beta, \alpha>:=2(\beta, \alpha)/(\alpha, \alpha)$, where $(\ ,\)$ is a scalar product, which is invariant under $W(\Delta)$. For each $\alpha \in \Delta$, w_{α} denotes the reflection with respect to α , defined by $w_{\alpha}(\beta):=\beta-<\beta, \alpha>$. Set $\widehat{\Delta}:=\Delta\times\mathbb{Z}\times\mathbb{Z}$, then an element of $\widehat{\Delta}$ is represented by $\alpha^{(n,p)}$, where $\alpha\in\Delta$, and $n,p\in\mathbb{Z}$, and $\widehat{\Delta}$ is identified with an elliptic root system introduced by Saito ([Sa]). For each $\alpha^{(n,p)}\in\widehat{\Delta}$, let $w_{\alpha}^{(n,p)}$ be the reflection with respect to $\alpha^{(n,p)}$, defined by $w_{\alpha}^{(n,p)}\beta^{(m,q)}=(w_{\alpha}\beta)^{(m-<\beta,\alpha>n,q-<\beta,\alpha>p)}$ for any $\beta^{(m,q)}\in\widehat{\Delta}$. Let $W(\widehat{\Delta})$ be the group generated by $w_{\alpha}^{(n,p)}$ for all $\alpha^{(n,p)}\in\widehat{\Delta}$, then $W(\widehat{\Delta})$ is the elliptic Weyl group ([S-T]). We note that $W(\Delta)$ is identified with the subgroup of $W(\widehat{\Delta})$ generated by $w_{\alpha}^{(n,p)}$ for all $\alpha\in\Delta$, and $W(\Delta)\cong\{w_{\alpha}^{(n,0)},\alpha\in\Delta,n\in\mathbb{Z}\}\cong\{w_{\alpha}^{(0,p)},\alpha\in\Delta,p\in\mathbb{Z}\}$. Set $h_{\alpha}^{(n,p)}=w_{\alpha}^{(n,p)}w_{\alpha}^{(0,0)^{-1}}$ and $H(\widehat{\Delta})$ be the subgroup of $W(\widehat{\Delta})$ generated by $h_{\alpha}^{(n,p)}$ for all $\alpha^{(n,p)}\in\widehat{\Delta}$. In this paper, we write $G=G_1\cdot G_2$ when a group G is a semidirect product of two groups G_1 and G_2 , and G_2 normalizes G_1 . Then in a similar way to [Mo], we have the following.

Lemma 2.1 (1) Let $\alpha^{(n,p)}$ and $\beta^{(m,q)}$ be in $\widehat{\Delta}$, then $h_{\alpha}^{(n,p)}\beta^{(m,q)}=\beta^{(m+<\beta,\alpha>n,\ q+<\beta,\alpha>p)}$.

- (2) $H(\widehat{\Delta})$ is a free abelian group generated by $h_{\alpha_i}^{(1,0)}$ and $h_{\alpha_i}^{(0,1)}$ for all $\alpha_i \in \Pi$.
- (3) Let $\alpha^{(n,p)}$ and $\beta^{(m,q)}$ be in $\widehat{\Delta}$, and $\gamma = w_{\alpha}\beta$, then $w_{\alpha}^{(n,p)}h_{\beta}^{(m,q)}w_{\alpha}^{(n,p)^{-1}} = h_{\gamma}^{(m,q)}$.
- (4) $W(\widehat{\Delta}) = H(\widehat{\Delta}) \cdot W(\Delta)$.
- (5) Let $\alpha^{(n,p)}$ be in $\widehat{\Delta}$ and w in $W(\widehat{\Delta})$ and set $\beta^{(m,q)} = w\alpha^{(n,p)}$, then $ww_{\alpha}^{(n,p)}w^{-1} = w_{\beta}^{(m,q)}.$

Let $\widehat{\Delta}^+ = (\Delta \times \mathbb{Z} \times \mathbb{Z}_{>0}) \cup (\Delta \times \mathbb{Z}_{>0} \times 0) \cup (\Delta^+ \times 0 \times 0)$, then $\widehat{\Delta}^+$ is identified with the set of positive real roots of the elliptic root system defined in ([B-C]). Let $\{H_{\alpha_1}, \dots, H_{\alpha_l}, e_{\alpha}, \alpha \in \Delta\}$ be a Chevalley basis of \mathfrak{g} ([C]). Let ρ be a faithful representation of the Lie algebra \mathfrak{g} on a finite dimensional complex vector space, $G_{\rho}(\Delta)$, (we simply write G) be a Chevalley-Demazure group scheme associated with \mathfrak{g} and \mathfrak{g} ([Ch1], [Ch2]). Let \mathfrak{U} be a universal enveloping algebra of \mathfrak{g} , $\mathfrak{U}_{\mathbb{Z}}$ the subring of \mathfrak{U} generated by 1 and $e_{\alpha}^k/k!$ for all $\alpha \in \Delta$ and

 $k \in \mathbb{Z}_{>0}$, and $\mathfrak{g}_{\mathbb{Z}} = \sum_{i=1}^{\cdot} \mathbb{Z} H_{\alpha_i} + \sum_{\alpha \in \Delta} \mathbb{Z} e_{\alpha}$ a Chevalley lattice in \mathfrak{g} . Let V be the representation space of ρ , Λ the weights of V with respect to \mathfrak{h} , and $V = \coprod_{\mu \in \Lambda} V_{\mu}$ the weight decomposition of V. Let M be an admissible lattice in V, i.e. M is the \mathbb{Z} -span of a basis of V, invariant under $\mathfrak{U}_{\mathbb{Z}}$, and set $M_{\mu} = M \cap V_{\mu}$. Let $R_2 = k[T^{\pm 1}, S^{\pm 1}]$ be the ring of Laurent polynomials with coefficients in a field k, and set $\widehat{M} = R_2 \otimes_{\mathbb{Z}} M$ and $\widehat{M}_{\mu} = R_2 \otimes_{\mathbb{Z}} M_{\mu}$. For each $t \in k$, $n, p \in \mathbb{Z}$ and $\alpha \in \Delta$,

 $\exp tT^nS^p\rho(e_\alpha) = 1 + tT^nS^p\rho(e_\alpha)/1! + t^2T^{2n}S^{2p}\rho(e_\alpha)^2/2! + \cdots$ induces an automorphism of \widehat{M} under the following action:

$$(t^k T^{nk} S^{pk} \rho(e_\alpha)^k / k!)(f \otimes v) = (t^k T^{nk} S^{pk} f) \otimes (\rho(e_\alpha)^k / k!)v, \quad \text{where } f \in R_2 \text{ and } v \in M.$$

Then $X_{\alpha} = \langle \exp t T^n S^p \rho(e_{\alpha}); t \in k, n, p \in \mathbb{Z} \rangle$ is a subgroup of $G(R_2)$ and isomorphic to the additive group of R_2 . Let $E(R_2)$ denote the subgroup of $G(R_2)$ generated by X_{α} for all $\alpha \in \Delta$. We write $x_{\alpha}^{(n,p)}(t) = x_{\alpha}(T^n S^p t) = \exp t T^n S^p \rho(e_{\alpha})$, for each $\alpha \in \Delta$, $n, p \in \mathbb{Z}$ and $t \in k$. Let k^* be the multiplicative group of k. For each $\alpha \in \Delta$, $n, p \in \mathbb{Z}$ and $t \in k^*$, we set

$$w_{\alpha}^{(n,p)}(t) := x_{\alpha}^{(n,p)}(t) x_{-\alpha}^{(-n,-p)}(-t^{-1}) x_{\alpha}^{(n,p)}(t),$$

$$h_{\alpha}^{(n,p)}(t) := w_{\alpha}^{(n,p)}(t)w_{\alpha}^{(0,0)}(1)^{-1}$$

We note that $w_{\alpha}^{(n,p)}(t) = w_{\alpha}(T^nS^pt)$, $h_{\alpha}^{(n,p)}(t) = h_{\alpha}(T^nS^pt)$. Let \widehat{U} the subgroup of $E(R_2)$ generated by $x_{\alpha}^{(n,p)}(t)$ for all $\alpha^{(n,p)} \in \widehat{\Delta}^+$ and $t \in k$, H the subgroup generated by $h_{\alpha}^{(0,0)}(t)$ for all $\alpha \in \Delta$ and $t \in k^*$, \widehat{B} the subgroup generated by \widehat{U} and H, and \widehat{N} the subgroup generated by $w_{\alpha}^{(n,p)}(t)$ for all $\alpha^{(n,p)} \in \widehat{\Delta}$ and $t \in k^*$. Then we have the following three lemmas, whose proofs are similar to those found in ([Mo],[Ste]).

Lemma 2.2 Let $\alpha^{(n,p)}$ and $\beta^{(m,q)}$ be in $\widehat{\Delta}$, and assume $\alpha + \beta \neq 0$, then

$$[x_{\alpha}^{(n,p)}(t),x_{\beta}^{(m,q)}(u)]=\prod x_{i\alpha+j\beta}^{(in+jm,\ ip+jq)}(c_{ij}t^{i}u^{j})$$

for all $t, u \in k$, where the product is taken over all roots of the form $i\alpha + j\beta$, $i, j \in \mathbb{Z}_{>0}$ in some fixed order, and c_{ij} 's are as in ([Ste], Lemma 15).

(Proof) Let ξ and η be indeterminates, and let α and β be in Δ such that $\alpha+\beta\neq 0$, then we have

$$[exp \ \xi e_{\alpha}, exp \ \eta e_{\beta}] = \Pi exp \ c_{ij} \ \xi^{i} \eta^{j} \ e_{i\alpha+j\beta}$$

in $\mathfrak{U}_{\mathbb{Z}}[[\xi,\eta]]$, where $c_{ij}\in\mathbb{Z}$ (cf. [Ste], Lemma15). The representation ρ induces a map, also denoted ρ of $\mathfrak{U}_{\mathbb{Z}}$ to End(M) because M is admissible. The map $\rho\to id\otimes\rho$ of End(M) to $End(\widehat{M})$ yields a map, again called ρ , of $\mathfrak{U}_{\mathbb{Z}}$ to $End(\widehat{M})$, and next map $\mathfrak{U}_{\mathbb{Z}}[[\xi,\eta]]$ to $End(\widehat{M})$ as follows: (for $t,u\in k$, and $u_{ij}\in\mathfrak{U}_{\mathbb{Z}}$)

$$\sum_{ij} u_{ij} \, \xi^i \eta^j \longrightarrow \sum_{ij} t^i u^j \, T^{in+jm} S^{ip+jq} \rho(u_{ij}),$$

where if $f \in k[T^{\pm 1}, S^{\pm 1}]$, $g \in End(\widehat{M})$ then fg is the element in $End(\widehat{M})$ which is "first act by g and then left multiply by f". Then the lemma is proved as in [Mo].

Lemma 2.3 Let α be in Δ , m and n in \mathbb{Z} , and t and u in k^* , then

(1) $h_{\alpha}^{(n,p)}(t)$ acts on \widehat{M}_{μ} as multiplication by $t^{<\mu,\alpha>} T^{<\mu,\alpha> n} S^{<\mu,\alpha> p}$

(2)
$$h_{\alpha}^{(m,q)}(t) h_{\alpha}^{(n,p)}(u) = h_{\alpha}^{(m+n,q+p)}(tu).$$

Lemma 2.4 Let $\alpha^{(n,p)}$ and $\beta^{(m,q)}$ be in $\widehat{\Delta}$, and set $\gamma = w_{\alpha}\beta$, then (1) $w_{\alpha}^{(n,p)}(t)x_{\beta}^{(m,q)}(u)w_{\alpha}^{(n,p)}(t)^{-1} = x_{\gamma}^{(m-<\beta,\alpha>n, q-<\beta,\alpha>p)}(ct^{-<\beta,\alpha>u})$, for any $t \in k^*$,

and
$$u \in k$$
, where c is as in ([Ste], Lemma 19).
(2) $w_{\alpha}^{(n,p)}(t)w_{\beta}^{(m,q)}(u)w_{\alpha}^{(n,p)}(t)^{-1} = w_{\gamma}^{(m-<\beta,\alpha>n, q-<\beta,\alpha>p)}(ct^{-<\beta,\alpha>}u).$

(3)
$$w_{\alpha}^{(n,p)}(t) = w_{-\alpha}^{(-n,-p)}(-t^{-1}).$$

$$(4) w_{\alpha}^{(n,p)}(t)h_{\beta}^{(m,q)}(u)w_{\alpha}^{(n,p)}(t)^{-1} = h_{\gamma}^{(m-<\beta,\alpha>n,q-<\beta,\alpha>p)}(ct^{-<\beta,\alpha>}u)h_{\gamma}^{(-<\beta,\alpha>n,-<\beta,\alpha>p)}(ct^{-<\beta,\alpha>})^{-1},$$

for any $t, u \in k^*$.

(5)
$$h_{\alpha}^{(n,p)}(t)x_{\beta}^{(m,q)}(u)h_{\alpha}^{(n,p)}(t)^{-1} = x_{\beta}^{(m+<\beta,\alpha>n,q+<\beta,\alpha>p)}(t^{<\beta,\alpha>}u).$$

(6)
$$h_{\alpha}^{(n,p)}(t)w_{\beta}^{(m,q)}(u)h_{\alpha}^{(n,p)}(t)^{-1} = w_{\beta}^{(m+<\beta,\alpha>n,q+<\beta,\alpha>p)}(t^{<\beta,\alpha>}u).$$

$$(7) \quad h_{\alpha}^{(n,p)}(t)h_{\beta}^{(m,q)}(u)h_{\alpha}^{(n,p)}(t)^{-1} = h_{\beta}^{(m+<\beta,\alpha>n,q+<\beta,\alpha>p)}(t^{<\beta,\alpha>}u)h_{\beta}^{(<\beta,\alpha>n,<\beta,\alpha>p)}(t^{<\beta,\alpha>})^{-1}.$$

Let N be the subgroup of $E(R_2)$ generated by $w_{\alpha}^{(0,0)}(t)$ for all $\alpha \in \Delta$ and $t \in k^*$, and \widehat{H} the subgroup generated by $h_{\alpha}^{(n,p)}(t)$ for all $\alpha^{(n,p)} \in \widehat{\Delta}$ and $t \in k^*$, then we have the following, whose proof is similar to that found in ([Mo]).

Lemma 2.5 (1) $\widehat{B} = \widehat{U} \cdot H$.

- H and \widehat{H} are normal subgroups of \widehat{N} .
- $\widehat{N} = \widehat{H}N$ and $\widehat{H} \cap N = H$. (3)
- $\widehat{N}/H \cong W(\widehat{\Delta}).$ (4)

In the sequel, we assume Δ is of rank 1, then $\widehat{\Delta} = \{\pm \alpha^{(n,p)}, n, p \in \mathbb{Z}, \pm \alpha \in \Delta\}$, and $\widehat{\Delta}^{+} = \{ \pm \alpha^{(n,p)}, \ n \in \mathbb{Z}, \ p \in \mathbb{Z}_{>0}, \ \pm \alpha^{(n,0)}, \ n \in \mathbb{Z}_{>0} \ \text{ and } \ \alpha^{(0,0)} \ \}.$ Set $E = E(R_2)$ and for each $\alpha^{(n,p)} \in \widehat{\Delta}$, let $X_{\alpha}^{(n,p)}$ be the subgroup of E generated by $x_{\alpha}^{(n,p)}(t)$ for all $t \in k$. identify $w_{\alpha}^{(0,0)}$, $w_{-\alpha}^{(1,0)}$, $w_{\alpha}^{(0,1)}$ and $w_{-\alpha}^{(1,1)}$ in $W(\widehat{\Delta})$ with $w_{\alpha}^{(0,0)}(1)$, $w_{-\alpha}^{(1,0)}(1)$, $w_{\alpha}^{(0,1)}(1)$ $w_{-\alpha}^{(1,1)}(1)$ in \widehat{N} respectively, and we simply write $w_1 := w_{\alpha}^{(0,0)}$, $w_0 := w_{-\alpha}^{(1,0)}$, $w_1^* := w_{\alpha}^{(0,1)}$ $w_0^* := w_{-\alpha}^{(1,1)}$. Then the following statements hold.

Lemma 2.6 (1) $w_1 X_{\alpha}^{(n,p)} w_1^{-1} = X_{-\alpha}^{(n,p)}$. (2) $w_1 X_{-\alpha}^{(n,p)} w_1^{-1} = X_{\alpha}^{(n,p)}$.

(2)
$$w_1 X_{-\alpha}^{(n,p)} w_1^{-1} = X_{\alpha}^{(n,p)}$$
.

(3)
$$w_0 X_{\alpha}^{(n,p)} w_0^{-1} = X_{-\alpha}^{(n+2,p)}.$$

(4)
$$w_0 X_{-\alpha}^{(n,p)} w_0^{-1} = X_{\alpha}^{(n-2,p)}$$
.

(5)
$$w_1^* X_{\alpha}^{(n,p)} w_1^{*-1} = X_{-\alpha}^{(n,p-2)}$$

(6)
$$w_1^* X_{-\alpha}^{(n,p)} w_1^{*-1} = X_{\alpha}^{(n,p+2)}$$
.

(7)
$$w_0^* X_\alpha^{(n,p)} w_0^{*-1} = X_{-\alpha}^{(n+2,p+2)}$$

(8)
$$w_0^* X_{-\alpha}^{(n,p)} w_0^{*-1} = X_{\alpha}^{(n-2,p-2)}$$
.

(Proof) From Lemma 2.4 (1), we have the following relations .
$$w_{\alpha}(t)x_{\alpha}(u)w_{\alpha}(t)^{-1} = x_{-\alpha}(-t^{-2}u),$$

$$w_{\alpha}(t)x_{-\alpha}(u)w_{\alpha}(t)^{-1} = x_{\alpha}(-t^{2}u),$$

$$w_{-\alpha}(t)x_{\alpha}(u)w_{-\alpha}(t)^{-1} = x_{-\alpha}(-t^{2}u),$$

$$w_{-\alpha}(t)x_{-\alpha}(u)w_{-\alpha}(t)^{-1} = x_{\alpha}(-t^{-2}u).$$

From the above relations and the fact $w_{\alpha}^{(n,p)}(t) = w_{\alpha}(T^{n}S^{p}t)$, we have,

$$\begin{split} &w_{\alpha}^{(n,p)}(t)x_{\alpha}^{(m,q)}(u)w_{\alpha}^{(n,p)}(t)^{-1} = x_{-\alpha}^{(m-2n,q-2p)}(-t^{-2}u), \\ &w_{\alpha}^{(n,p)}(t)x_{-\alpha}^{(m,q)}(u)w_{\alpha}^{(n,p)}(t)^{-1} = x_{\alpha}^{(m+2n,q+2p)}(-t^{2}u), \\ &w_{-\alpha}^{(n,p)}(t)x_{\alpha}^{(m,q)}(u)w_{-\alpha}^{(n,p)}(t)^{-1} = x_{-\alpha}^{(m+2n,q+2p)}(-t^{2}u), \\ &w_{-\alpha}^{(n,p)}(t)x_{-\alpha}^{(m,q)}(u)w_{-\alpha}^{(n,p)}(t)^{-1} = x_{\alpha}^{(m-2n,q-2p)}(-t^{-2}u). \end{split}$$

Using these, we can prove this lemma.

Further we have the following statements.

Lemma 2.7 (1) $w_1\widehat{B}w_1^{-1} \subset \widehat{B} \cup \widehat{B}w_1\widehat{B}$.

 $(2) w_0 \widehat{B} w_0^{-1} \subset \widehat{B} \cup \widehat{B} w_0 \widehat{B}.$

$$(3) \quad w_{1}^{*}\widehat{B}w_{1}^{*-1} \subset \widehat{B} \cup \bigcup_{n \in \mathbb{Z}_{\leq 0}} \widehat{B}w_{\alpha}^{(n,2)}\widehat{B} \cup \bigcup_{n \in \mathbb{Z}} \widehat{B}w_{\alpha}^{(n,1)}\widehat{B} \cup \widehat{B}w_{\alpha}^{(0,0)}\widehat{B}.$$

$$(4) w_0^* \widehat{B} w_0^{*-1} \subset \widehat{B} \cup \bigcup_{n \in \mathbb{Z}_{\leq 1}} \widehat{B} w_{-\alpha}^{(n,2)} \widehat{B} \cup \bigcup_{n \in \mathbb{Z}} \widehat{B} w_{-\alpha}^{(n,1)} \widehat{B}.$$

(Proof) (1) From Lemma 2.5 (1), $\widehat{B} = \widehat{U} \cdot H$ and \widehat{U} is generated by $X_{\alpha}^{(n,p)}$ and $X_{-\alpha}^{(n,p)}$ for $\alpha^{(n,p)}$ and $-\alpha^{(n,p)} \in \widehat{\Delta}^+$ respectively. By Lemma 2.6 (1) and (2), except for the element $X_{\alpha}^{(0,0)}$, all the elements $X_{\alpha}^{(n,p)}, X_{-\alpha}^{(n,p)} \in \widehat{U}$, satisfy $w_1 X_{\alpha}^{(n,p)} w_1^{-1} \in \widehat{U}$, $w_1 X_{-\alpha}^{(n,p)} w_1^{-1} \in \widehat{U}$, and actually $w_1 X_{\alpha}^{(0,0)} w_1^{-1} = X_{-\alpha}^{(0,0)}$. However from the relation, $x_{\alpha}^{(0,0)}(t) = x_{\alpha}^{(0,0)}(t^{-1})w_{\alpha}^{(0,0)}(-t^{-1})x_{\alpha}^{(0,0)}(t^{-1}) \in \widehat{B}w_1\widehat{B}$, we see $w_1 X_{\alpha}^{(0,0)} w_1^{-1} = X_{-\alpha}^{(0,0)} \in \widehat{B}w_1\widehat{B}$. Further, by Lemma 2.5 (2), $w_1 H w_1^{-1} \subset H$, so we get $w_1 \widehat{B}w_1^{-1} \subset \widehat{B} \cup \widehat{B}w_1\widehat{B}$. The other relations are proved similarly

3 Relations of the generators of the Weyl group defined from $E(R_2)$

In this section, we write down some relations of the generators of the Weyl groups of the elliptic root systems $A_l^{(1,1)}, B_l^{(1,1)}, C_l^{(1,1)}$ and $D_l^{(1,1)}$ defined from the group $E(R_2)$, the relations are

inducd from the relations of $w_{\alpha}^{(n,p)}(t)$. Dynkin diagrams of $A_l^{(1,1)}, B_l^{(1,1)}, C_l^{(1,1)}$ and $D_l^{(1,1)}$ are given in the **Appendex**.

Let α , β , α^* , and $\beta^* \in \{\alpha_0, \alpha_0^*, \dots, \alpha_l, \alpha_l^*\}$ be the roots corresponding to the vertices of the Dynkin diagrm, and a, b, a^* , and b^* denote the corresponding reflections, and A and B denote α , α^* and β , β^* , respectively, and further with the abuse of notation, they denote a, a^* and b, b^* , respectively. Then we have the following.

Theorem 3.1 For any subdiagram of the Dynkin diagrams, the following relations hold.

$$\begin{array}{ccc} \mathbf{0} & \overset{\alpha^*}{\bigcirc} \\ & \overset{\circ}{\bigcirc} \\ & \vdots \\ & \overset{\circ}{\bigcirc} \\ & \overset{\circ}{\alpha} \end{array} \implies a^2 a^* = a^* a^2, \qquad a^{*2} a = a a^{*2}$$

$$\begin{array}{ccc} \mathbf{0_2} & & & & \\ & \bigcirc & & \bigcirc & \Longrightarrow & AB = BA \\ & A & & B & & \end{array}$$

$$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \longrightarrow A^2B = BA^2, \qquad B^2A = AB^2$$

II₂
$$\Longrightarrow (AB)^2 = (BA)^2, \qquad AB^2 = B^2A, \qquad BA^2B = A^2$$

$$\mathbf{I_3} \quad \overset{\alpha^*}{\underset{\stackrel{|}{\bigcirc}}{\bigcirc}} \quad Ba^*B^{-1} \cdot a \cdot Ba^*B^{-1} = a \cdot Ba^*B^{-1} \cdot a$$

$$\Rightarrow \quad BaB^{-1} \cdot a \cdot BaB^{-1} = a \cdot BaB^{-1} \cdot a^*$$

II₃
$$\alpha^*$$
 \Rightarrow $a^*BaB = BaBa^*,$ $aBa^*B = Ba^*Ba$

$$II_{3}^{-1} \overset{\alpha^{*}}{\bigcirc} \Longrightarrow a^{*}BaB = BaBa^{*}, \qquad aBa^{*}B = Ba^{*}Ba$$

(Remark 1) From the diagram II_3^{-1} , we obtain $a^2 = a^{*2}$.

(Proof) We have the following relations: (i) $a^*BaB = BaBa^*$, (ii) $aBa^*B = Ba^*Ba$, (iii) $A^2B = BA^2$, (iv) $AB^2A = B^2$. From (i) and (ii), $aBa^* = B^{-1}a^*BaB$, $aBa^* = Ba^*BaB^{-1}$, then we get $B^{-1}a^*BaB = Ba^*BaB^{-1}$. We multiply by a^* and a in the above equation, and use (iii) and (iv) to get $a^2 = a^{*2}$.

(Remark 2) From the dagram II_2 , we odtain $B^4 = 1$.

(Proof) We have the relations: (i) $BA^2B=A^2$, (ii) $AB^2=B^2A$. We multiply by B in (i), so we get $B^2A^2B^2=A^2$, and using (ii), we get $B^4=1$.

(Proof of Theorem 3.1) Let $\{e_{\alpha}, H_{\alpha} \mid \alpha \in \Delta\}$ be a Chevalley basis of \mathfrak{g} satisfying $[e_{\alpha}, e_{\beta}] = N_{\alpha,\beta}e_{\alpha+\beta}, \quad \alpha+\beta \neq 0,$ $N_{\alpha,\beta} = -N_{\beta,\alpha} = -N_{-\alpha,-\beta},$ $N_{\alpha,\beta} = 0 \text{ if and only if } \alpha+\beta \neq 0, \ \alpha+\beta \notin \Delta,$ $N_{\alpha,\beta} = \pm (r+1) \text{ if } \alpha+\beta \in \Delta,$

where r is the largest integer such that $\beta - r\alpha \in \Delta$.

If g is of type A_l , we have the following relations.

Lemma 3.2 ([Ste], [St], [Ma]) If $\alpha, \beta, \alpha + \beta \in \Delta$ (Δ is of type A_l), then

- (1) $w_{\alpha}(t)w_{\beta}(u)w_{\alpha}(t)^{-1} = w_{\alpha+\beta}(N_{\alpha,\beta}tu),$
- (2) $w_{\alpha}(t)w_{\alpha+\beta}(u)w_{\alpha}(t)^{-1} = w_{\beta}(N_{\alpha,\beta}(-t^{-1}u)),$
- (3) $w_{\alpha+\beta}(t)w_{\alpha}(u)w_{\alpha+\beta}(t)^{-1} = w_{-\beta}(N_{\alpha,\beta}(-t^{-1}u)),$
- (4) $w_{\alpha}(t)w_{\alpha}(u)w_{\alpha}(t)^{-1} = w_{-\alpha}(-t^{-2}u) = w_{\alpha}(t^{2}u^{-1}).$

We identify the elliptic roots α , α^* with $\alpha^{(0,0)}$, $\alpha^{(0,1)}$ in $\widehat{\Delta}$, respectively. Using $w_{\alpha}^{(n,p)}(t) = w_{\alpha}(T^nS^pt)$, we identify $a := w_{\alpha} = w_{\alpha}^{(0,0)}(1) = w_{\alpha}(1)$, $a^* := w_{\alpha^*} = w_{\alpha}^{(0,1)}(1) = w_{\alpha}(S)$. From Lemma 3.2 (4), we see that

$$w_{\alpha}(t)w_{\alpha}(u)w_{\alpha}(t)^{-1} = w_{\alpha}(t^{2}u^{-1}), \quad w_{\alpha}(t)^{-1}w_{\alpha}(u)w_{\alpha}(t) = w_{\alpha}(t^{2}u^{-1}),$$

from these, we get $w_{\alpha}(t)^2 w_{\alpha}(u) = w_{\alpha}(u) w_{\alpha}(t)^2$ (0)

so, for the diagram $\mathbf{0}$ we obtain the relation $a^2a^* = a^*a^2$, $a^{*2}a = aa^{*2}$. The diagrams ∞_2 and ∞_4 appear only in $A_1^{(1,1)}$, so we set $a := w_{\alpha_0} = w_{-\alpha}^{(1,0)}(1) = w_{-\alpha}(T) = w_{\alpha}(-T^{-1})$, $a^* := w_{\alpha_0^*} = w_{-\alpha}^{(1,1)}(1) = w_{-\alpha}(TS) = w_{\alpha}(-T^{-1}S^{-1})$, $b := w_{\alpha_1} = w_{\alpha}^{(0,0)}(1) = w_{\alpha}(1)$, $b^* := w_{\alpha_1^*} = w_{\alpha}^{(0,1)}(1) = w_{\alpha}(S)$. From these, for the diagram ∞_2 , using (0), we obtain $A^2B = BA^2$, $AB^2 = B^2A$. For the diagram ∞_4 , we use the following fact $ABCD = BCDA \iff BCDAD^{-1}C^{-1}B^{-1} = A$ (*) and set $A = w_{\alpha}(t)$, $B = w_{\alpha}(s)$, $C = w_{\alpha}(u)$ and $D = w_{\alpha}(p)$, then $BCDAD^{-1}C^{-1}B^{-1} = w_{\alpha}(s^2p^2u^{-2}t^{-1})$, so from (*) we get $s^2p^2 = t^2u^2$. Here s, p, t and u are either of ± 1 , $\pm S$, $\pm T^{-1}S^{-1}$ and $\pm T^{-1}$ so we obtain the relation $aa^*bb^* = b^*aa^*b = bb^*aa^* = a^*bb^*a$ (**) and corresponding relations where we arbitrarily replace a, a^*, b , and b^* by a^{-1}, a^{*-1}, b^{-1} and b^{*-1} respectively. However they are reduced to the relations (**), by using the relation of ∞_2 . For the diagram $\mathbf{0}_2$, we obtain the relation $w_{\alpha}(t)w_{\beta}(u)w_{\alpha}(t)^{-1} = w_{\beta}(u)$, so $w_{\alpha}(t)w_{\beta}(u) = w_{\beta}(u)w_{\alpha}(t)$. Since $b = w_{\beta}(1)$, $b^* = w_{\beta}(S)$, for the diagram $\mathbf{0}_2$, we obtain the

for the diagram $\mathbf{0_2}$ we obtain AB = BA. For the diagram $\overset{\alpha}{\bigcirc} \overset{\beta}{\bigcirc}$ we obtain the relation

$$w_{\alpha}(t)w_{\beta}(u)w_{\alpha}(t)^{-1} = w_{\alpha+\beta}(N_{\alpha,\beta}tu), \tag{1}$$

$$w_{\beta}(t)w_{\alpha}(u)w_{\beta}(t)^{-1} = w_{\alpha+\beta}(-N_{\alpha,\beta}tu). \tag{2}$$

From (1), we obtain

$$w_{\alpha}(t)w_{\beta}(u)w_{\alpha}(t)^{-1} = w_{\alpha}(t)^{-1}w_{\beta}(u)^{-1}w_{\alpha}(t), \tag{3}$$

$$w_{\alpha}(t)w_{\beta}(u)w_{\alpha}(t)^{-1} = w_{\alpha}(u)w_{\beta}(t)w_{\alpha}(u)^{-1}.$$
 (4)

From (2), we obtain

$$w_{\beta}(t)w_{\alpha}(u)w_{\beta}(t)^{-1} = w_{\beta}(t)^{-1}w_{\alpha}(u)^{-1}w_{\beta}(t), \tag{5}$$

$$w_{\beta}(t)w_{\alpha}(u)w_{\beta}(t)^{-1} = w_{\beta}(u)w_{\alpha}(t)w_{\beta}(u)^{-1}.$$
 (6)

From (1) and (2), we obtain

$$w_{\alpha}(t)w_{\beta}(u)w_{\alpha}(t)^{-1} = w_{\beta}(t)^{-1}w_{\alpha}(u)w_{\beta}(t),$$
 (7)

$$w_{\alpha}(t)w_{\beta}(u)w_{\alpha}(t)^{-1} = w_{\beta}(t)w_{\alpha}(u)^{-1}w_{\beta}(t)^{-1}, \tag{8}$$

$$w_{\alpha}(t)w_{\beta}(u)w_{\alpha}(t)^{-1} = w_{\beta}(u)^{-1}w_{\alpha}(t)w_{\beta}(u),$$
 (9)

$$w_{\alpha}(t)w_{\beta}(u)w_{\alpha}(t)^{-1} = w_{\beta}(u)w_{\alpha}(t)^{-1}w_{\beta}(u)^{-1}.$$
 (10)

We find that all relations among a, a^*, b and b^* in (3) - (10), are reduced to the following relations, ABA = BAB, $AB^2A = B^2$, $BA^2B = A^2$.

For the diagram I_3 , from the relations

$$\begin{split} & w_{\alpha}(s)w_{\alpha+\beta}(t)w_{\alpha}(s)^{-1} = w_{\beta}(N_{\alpha,\beta}(-s^{-1}t)), \\ & w_{\alpha+\beta}(t)^{-1}w_{\alpha}(s)w_{\alpha+\beta}(t) = w_{-\beta}(N_{\alpha,\beta}(t^{-1}s)) = w_{\beta}(N_{\alpha,\beta}(-s^{-1}t)), \end{split}$$

we obtain $w_{\alpha+\beta}(t)w_{\alpha}(s)w_{\alpha+\beta}(t)=w_{\alpha}(s)w_{\alpha+\beta}(t)w_{\alpha}(s)$, and noting that $w_{\beta}(t)w_{\alpha}(u)w_{\beta}(t)^{-1}=0$

 $\begin{array}{ll} w_{\alpha+\beta}(N_{\alpha,\beta}tu), & \text{we obtain} & w_{\beta}(t)w_{\alpha}(u)w_{\beta}(t)^{-1}\cdot w_{\alpha}(s)\cdot w_{\beta}(t)w_{\alpha}(u)w_{\beta}(t)^{-1} = w_{\alpha}(s)\cdot w_{\beta}(t)w_{\alpha}(u)w_{\beta}(t)^{-1}\\ w_{\beta}(t)^{-1}\cdot w_{\alpha}(s), & \text{therefore we get} & Ba^*B^{-1}\cdot a\cdot Ba^*B^{-1} = a\cdot Ba^*B^{-1}\cdot a, & and & BaB^{-1}\cdot a^* \end{array}$

 $BaB^{-1} = a^* \cdot BaB^{-1} \cdot a^*$. For the diagram $\mathbf{I_4}$, all relations of a, a^* , b and b^* in (3) - (10) are reduced the following relations $aba^* = b^*ab$, $ab^*a^* = b^*a^*b$, $a^*ba = bab^*$, and $a^*b^*a = b^*a^*b$

 ba^*b^* . Next we examine the relations associated to the diabgram $\overset{\alpha}{\bigcirc} \overset{2}{\longrightarrow} \overset{\beta}{\bigcirc}$. In this case α , β , $\alpha + \beta$ and $\alpha + 2\beta$ are roots, and their scalar products are given by

$$(\alpha, \beta^{\vee}) = -2, \ (\beta, \alpha^{\vee}) = -1, \ (\alpha, \beta) = -2, \ (\alpha, \alpha) = 4, \ (\beta, \beta) = 2, \ (\alpha, \alpha^{\vee}) = 2, \ (\beta, \beta^{\vee}) = 2, \ ($$

(see [Bo]). Then the following relations hold ([Ma]).

$$w_{\alpha}(t)w_{\beta}(u)w_{\alpha}(t)^{-1} = w_{\alpha+\beta}(ctu), \qquad (1)$$

$$w_{\alpha}(t)w_{\alpha+\beta}(u)w_{\alpha}(t)^{-1} = w_{\beta}(c't^{-1}u),$$
 (2)

$$w_{\alpha}(t)w_{\alpha+2\beta}(u)w_{\alpha}(t)^{-1} = w_{\alpha+2\beta}(u),$$
 (3)

$$w_{\beta}(t)w_{\alpha}(u)w_{\beta}(t)^{-1} = w_{\alpha+2\beta}(c''t^{2}u),$$
 (4)

$$w_{\beta}(t)w_{\alpha+\beta}(u)w_{\alpha}(t)^{-1} = w_{\alpha+\beta}(-u), \quad (5)$$

$$w_{\beta}(t)w_{\alpha+2\beta}(u)w_{\beta}(t)^{-1} = w_{\alpha}(c'''t^{-2}u),$$
 (6)

where $c=c(\alpha,\beta),\ c'=c(\alpha,\alpha+\beta),\ c''=c(\beta,\alpha),\ c'''=c(\beta,\alpha+2\beta)$ equal ± 1 .

From (1) and (5), we get $w_{\beta}(s)w_{\alpha}(u)w_{\beta}(t)w_{\alpha}(u)^{-1}w_{\beta}(s)^{-1} = w_{\alpha+\beta}(-ctu)$ and from (1), we see

$$w_{\alpha}(u)^{-1}w_{\beta}(t)w_{\alpha}(u) = w_{\alpha+\beta}(-ctu),$$

$$w_{\alpha}(u)w_{\beta}(t)^{-1}w_{\alpha}(u)^{-1} = w_{\alpha+\beta}(-ctu),$$

from above relations, we get

$$w_{\alpha}(t)w_{\beta}(u)w_{\alpha}(t)w_{\beta}(s) = w_{\beta}(s)w_{\alpha}(t)w_{\beta}(u)w_{\alpha}(t), \tag{7}$$

$$w_{\alpha}(t)w_{\beta}(u)^{-1}w_{\alpha}(t)^{-1}w_{\beta}(s) = w_{\beta}(s)w_{\alpha}(t)w_{\beta}(u)w_{\alpha}(t)^{-1}.$$
 (8)

From (3) and (4), we get

$$w_{\alpha}(s)w_{\beta}(u)w_{\alpha}(t)w_{\beta}(u)^{-1}w_{\alpha}(s)^{-1}=w_{\alpha+2\beta}(u^2t)$$

and from (4), we see that

$$w_{\beta}(u)w_{\alpha}(t)w_{\beta}(u)^{-1} = w_{\alpha+2\beta}(u^{2}t),$$

 $w_{\beta}(u)^{-1}w_{\alpha}(t)w_{\beta}(u) = w_{\alpha+2\beta}(u^{2}t),$

so from the above relations, we get

$$w_{\alpha}(t)w_{\beta}(u)w_{\alpha}(s)w_{\beta}(u) = w_{\beta}(u)w_{\alpha}(s)w_{\beta}(u)w_{\alpha}(t), \tag{9}$$

$$w_{\alpha}(t)w_{\beta}(u)w_{\alpha}(s)w_{\beta}(u)^{-1} = w_{\beta}(u)w_{\alpha}(s)w_{\beta}(u)^{-1}w_{\alpha}(t).$$
 (10)

We examine all relations of a, a^*, b and b^* in (7) - (10), and they are reduced the relations in $\mathbf{II_2}$, $\mathbf{II_3}$, and $\mathbf{II_3^{-1}}$. Further from the relation (1), we obtain $w_{\alpha}(t)w_{\beta}(u)w_{\alpha}(t)^{-1} = w_{\alpha}(u)w_{\beta}(t)w_{\alpha}(u)^{-1}$, so we have the relation in $\mathbf{II_4}$. Next we prove $\mathbf{I} + \mathbf{II}$. In all cases $t = 1, 2^{\pm 1}$, we have $w_{\beta+\gamma}(t)w_{\alpha+\beta}(u)w_{\beta+\gamma}(t)^{-1} = w_{\alpha+\beta}(ct^{-\langle\alpha+\beta,\beta+\gamma\rangle}u)$, where $c = c(\beta+\gamma,\alpha+\beta) = 1$, because $(\beta+\gamma)+(\alpha+\beta)\neq 0$, $(\beta+\gamma)+(\alpha+\beta)\notin \Delta$ (see [Ma]), and $(\alpha+\beta,\beta+\gamma)=0$, so we get $w_{\beta+\gamma}(t)w_{\alpha+\beta}(u)=w_{\alpha+\beta}(u)w_{\beta+\gamma}(t)$. This means $w_{\beta}(s)w_{\gamma}(t)w_{\beta}(s)^{-1}$. $w_{\alpha}(u)w_{\beta}(p)w_{\alpha}(u)^{-1}=w_{\alpha}(u)w_{\beta}(p)w_{\alpha}(u)^{-1}\cdot w_{\beta}(s)w_{\gamma}(t)w_{\beta}(s)^{-1}$, and which implies $\mathbf{I}+\mathbf{II}$. \square

4 Chevalley groups over 2-dimensional local field

We recall the definition of 2-dimensional local field ([P1], [P2]). We say that K is a 2-dimensional local field with k as the last residue field if K is the quotient field of a (complete) discrete valuation ring O_K whose residue field is a local field of dimension 1 with residue field k. The first residue field is denoted by \bar{K} . As such an example, let K = k(T)(S) be the field of iterated power series with $O_K = k(T)[S]$, and $\bar{K} = k(T)$. There exists the reduction map $\varphi: O_K \longrightarrow \bar{K}$ and denote by \bar{m} the maximal ideal of the local ring $O_{\bar{K}} = k[T]$, then $\bar{m} = Tk[T]$. There also exists the canonical map $\phi: O_{\bar{K}} \longrightarrow O_{\bar{K}}/\bar{m} \cong k$. Let $O'_K = \varphi^{-1}(O_{\bar{K}})$ be a subring in K, and $m = \varphi^{-1}(\bar{m})$, then m is the maximal ideal of O'_K , and let O'_K be the group of units in O'_K then

$$O'_{K} = k[[T]] \oplus Sk((T))[[S]],$$

 $m = Tk[[T]] \oplus Sk((T))[[S]],$
 $(O'_{K})^{*} = k^{*} \oplus Tk[[T]] \oplus Sk((T))[[S]],$

with the obvious abuse of notation. The maps φ and ϕ induce the maps of the matrices

$$\varphi: SL(2, O_K) \longrightarrow SL(2, \bar{K}),$$

 $\phi: SL(2, O_{\bar{K}}) \longrightarrow SL(2, k),$

and we let the group \bar{B} be the inverse image of the upper triangular group, i.e. the Borel subgroup of SL(2,k), and B be the inverse image of \bar{B} from $SL(2,\bar{K})$, then

$$B = \begin{pmatrix} (O'_K)^* & O'_K \\ m & (O'_K)^* \end{pmatrix}, \quad \bar{B} = \begin{pmatrix} (O_{\bar{K}})^* & O_{\bar{K}} \\ \bar{m} & (O_{\bar{K}})^* \end{pmatrix},$$

where $(O_{\overline{K}})^* = k^* \oplus Tk[[T]]$. Let N equal the subgroup of monomial matrices and W = N/T, where $T = B \cap N$, then $T = \begin{pmatrix} (O_K')^* & 0 \\ 0 & (O_K')^* \end{pmatrix}$ and $W = \langle w_0, w_1, w_2 \rangle$, $w_0 = \begin{pmatrix} 0 & -T^{-1} \\ T & 0 \end{pmatrix}$, $w_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, and $w_2 = \begin{pmatrix} 0 & -S^{-1} \\ S & 0 \end{pmatrix}$. We set $P_1 = SL(2, O_K')$, $P_0 = \left\{ \begin{pmatrix} a & T^{-1}b \\ Tc & d \end{pmatrix}$, with $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, O_K') \right\}$, then P_1 and P_0 are subgroups of SL(2, K) and we have the following.

Proposition 4.1 For $i = 0, 1, P_i = B \cup Bw_iB$.

(Proof) There exists the canonical map $O_K' o O_K'/m \cong k$ and which induces a homomorphism $\phi': P_1 = SL(2, O_K') \to SL(2, k)$. Clearly $\ker \phi' \subset B$ (indeed, B is the inverse image of the upper triangular group). Note that ϕ' sends w_1 to $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \in SL(2, k)$, which represents the nontrivial generator for the Weyl group in SL(2, k). Using the Bruhat decomposition in the (rank 1) group SL(2, k) and the fact that $\ker \phi' \subset B$, we get $P_1 = B \cup Bw_1 B$ by lifting back to P_1 . Next the matrix $g = \begin{bmatrix} 0 & 1 \\ T & 0 \end{bmatrix} \in GL(2, K) - SL(2, K)$ normalizes B, and $g^{-1}P_1g = P_0$, $g^{-1}w_1g = w_0$. So $P_1 = B \cup Bw_1 B$ forces $P_0 = B \cup Bw_0 B$, this is proved as in ([H2], § 15.3, Lemma 2).

An element of K = k((T))((S)) can be written as

$$\sigma(T,S) = \sum_{i \ge i_0, \ j \ge j_0} q_{ij} T^i S^j, \quad q_{ij} \in k.$$

We set $x_{\alpha}(\sigma(T,S)) := \prod_{i \geq i_0, \ j \geq j_0} x_{\alpha}^{(i,j)}(q_{ij})$ and $\widetilde{M} := K \otimes_{\mathbb{Z}} M$, then $x_{\alpha}(\sigma(T,S)) \in$

Aut(M), because from the relation $x_{\alpha}(\sigma_1(T,S))x_{\alpha}(\sigma_2(T,S)) = x_{\alpha}(\sigma_1(T,S) + \sigma_2(T,S))$, we get $x_{\alpha}(\sigma(T,S))^{-1} = x_{\alpha}(-\sigma(T,S))$. We let $\widehat{E} \subset Aut(\widehat{M})$ denote the subgroup generated by the elements $x_{\alpha}(\sigma(T,S))$, $\alpha \in \Delta$, $\sigma(T,S) \in K$. For $\alpha \in \Delta$, and $\sigma(T,S) \in K$ with $\sigma(T,S) \neq 0$, we set

$$w_{\alpha}(\sigma(T,S)):=x_{\alpha}(\sigma(T,S))x_{-\alpha}(-\sigma(T,S)^{-1})x_{\alpha}(\sigma(T,S)),$$

$$h_{\alpha}(\sigma(T,S)) := w_{\alpha}(\sigma(T,S))w_{\alpha}(1)^{-1}.$$

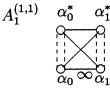
Similarly to the case of affine Lie algebra ([G]), we give the following definition.

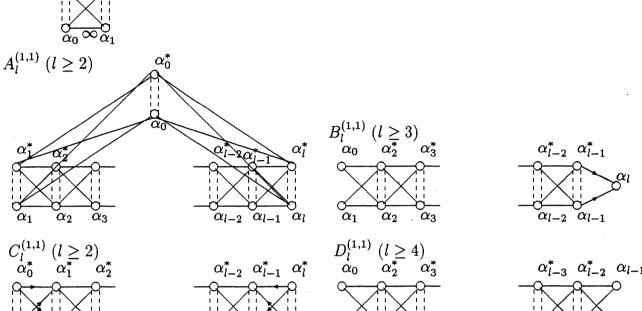
Definition 4.2 We let $I \subset \widehat{E}$ denote the subgroup generated by the elements $x_{\alpha}(\sigma(T,S))$, where either $\alpha \in \Delta^+$, $\sigma(T,S) \in O'_K$, or $\alpha \in \Delta^-$, $\sigma(T,S) \in m$, and by the elements $h_{\alpha}(\sigma(T,S))$, $\sigma(T,S) \in (O'_K)^*$, $\alpha \in \Delta$. We call I the Iwahori subgroup of \widehat{E} .

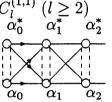
We see the following.

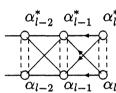
(Fact) If Δ is of type A_1 , then $I \cong B$.

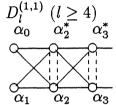
Dynkin diagrams of $A_l^{(1,1)}$, $B_l^{(1,1)}$, $C_l^{(1,1)}$ and $D_l^{(1,1)}$ are given by ; (Appendex)











$$\alpha_{l-3}^* \quad \alpha_{l-2}^* \quad \alpha_{l-1}$$

$$\alpha_{l-3} \quad \alpha_{l-2} \quad \alpha_{l}$$

References

- [A] E. Abe Chevalley groups over local rings, Tôhoku Math. J. 21 (1969), 474 494
- [Bo] N. Bourbaki Groups et Algébres de Lie, Chap. IV, V, VI, Hermann, Paris, 1968
- [Bo1] R. Borcherds Vertex algebras, Kac-Moody algebras and Monster, Proc.Natl.Acad.Sci USA 83 (1986), 3068-3071
- [Bo2] R. Borcherds Monstrous moonshine and monstrous Lie superalgebras, Inventiones Math. 109 (1992), 405-444
- [Be] H. Behr Eine endliche Präsentation der symplektischen Gruppe $Sp_4(\mathbb{Z})$, Math. Z. 141 (1975), 47 - 56
- [B-C] S. Berman and B. Cox Enveloping algebras and representations of toroidal Lie algebra, Pacific Journal of Math. vol 165 No.2 (1994), 239 - 267
- [C] R.W. Carter Simple Groups of Lie Type, Wiley London, 1972

- [Ch1] C. Chevalley Sur certains groups simples, Tôhoku Math. J. (2) 7 (1965), 14 46
- [Ch2] C. Chevalley certains schémes de groupes semi-simples, Sém.N.Bourbaki, exposé 219 (1980-1981), Benjamin, Newyork, 1966
- [G] H. Garland The arithmetic theory of loop groups, Publ. Math. I.H.E.S, 52 (1980), 5 136
- [H1] J.E. Humphreys Introduction to Lie algebras and Representation Theory, Springer-Verlag, New York, Heidelberg, berlin, 1972
- [H2] J.E. Humphreys Arithmetic groups, Lecture notes in mathematics 789
- [I-M] N. Iwahori and H. Matsumoto On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Publ. Math. I.H.E.S., 25 (1965), 5 48
- [Mo] J. Morita Tits' systems in Chevalley groups over Laurent polynomial rings, Tsukuba J. Math. vol. 3, No. 2 (1979), 41 - 51
- [M-R-Y] R.V. Moody, Eswara. Rao and T. Yokonuma Toroidal Lie algebras and vertex representations, Geom.Ded.35 (1990), 283 307
- [Ma] H. Matsumoto Sur les sous-groups arithmétiques des groupes semi-simples, déployés, Ann. Sci. Ec. Norm. Sup. (4) 2 (1969), 1 62
- [P1] A.N. Parshin Algebra and Number Theory, Proc. Conf. Held at the Inst. Exp. Math., Univ. Essen, Def. 2-4, 1992, Berlin: De Gruyter, 1994, 165-192
- [P2] A.N. Parshin Vector Bundles and Arithmetical Groups. I, Proc. of Steklov Inst. Math. vol 208, 1995, 212-233
- [Sa] Kyoji. Saito Extended affine root systems I, II, Publ. RIMS, Kyoto Univ., 21 (1985), 75
 179, 26 (1990), 15 78
- [Slo] P. Slodowy Beyond Kac-Moody algebras and inside, Can.Math.Soc.Proc. 5 (1986), 361-371
- [S-T] Kyoji. Saito and T. Takebayashi Extended Affine Root System III (Elliptic Weyl Groups), Publ. RIMS, Kyoto Univ.,33 (1997), 301-329
- [S-Y] Kyoji. Saito and D. Yoshii Extended affine root system IV, RIMS. preprint, 1999
- [St] M. Stein Generators, relations and coverings of Chevalley groups over commutative rings, Amer. J. Math., 93 (1971), 965 1004
- [Ste] R. Steinberg Lectures on Chevalley groups, Yale Univ. Lecture notes, 1967/1968
- [Sh] Z. Shi Toroidal groups, Communications in algebra, (11) 20 (1992), 3411 3458
- [Ta] T. Takebayashi Chevalley groups associated to elliptic Lie algebras, Journal of algebra 210 (1998), 498-513