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Chevalley groups associated to elliptic Lie algebras of

type Al(l,l)7 Bl(l’l), Cl(l’l), Dl(l,l) *

Tadayoshi Takebayashi

1 Introduction

A toroidal Lie algebra is the universal central extension of a Lie algebra g@ C[tf*, 15, - - - | #£1],
where g is one of the finite dimensional simple Lie algebras over C and C[t!, £, ... £1]is the
ring of Laurent polynomials in m variables #;,---,t, over C. Let A := C[t¥, ... &1,

and Q4 := @, Adt; be the A-module with generators da for Va € A, and the relation
d(ab) = ad(b) + bd(a). Let =: Q4 — Q,4/dA be the canonical projection, in which there
holds the relation, 0 = d(ab) = ad(b) + bd(a), then a Lie algebra u= AQ® g (Q4s/dA),
with Lie bracket [a ® X,0QY]=ab® [X,Y]+ (da)b (X |Y), [c,u] =0, Vce Q4/dA, is
the universal central extension of A ® g. The same algebras have been given by Slodowy
( [Slo] ). Let A = (< ai,aj >)i<ij<i be any simply-laced finite Cartan matrix of rank
[ > 2, and A" = (< ;¢4 >)1;;,j51+m be any m-fold affinization of A, then Slodowy
introduced intersection matrix algebra, im(A™) := gim(Al™)/r(A™), and there holds
u ~ im(A™)). In Vertex operator’s method, Saito and Yoshii ( [S-Y] ) constructed a Lie
algebra g(®) attached to any m-extended homogeneous root system @ as certain subalgebra
of Vo@)/DVy(e), here Vg is the lattice Vertex algebra attached to a lattice ) and D is the
derivation, ( studied by Borchers ([Bo 1,2])). Then there holds u ~ g(®). Saito and Yoshii
also defined a Lie algebra &(I'(®,G)) by Chevalley generators and generalized Serre relations
attached to I'(®,G), where I'(®, G) is the simply-laced elliptic Dynkin diagram and (®,G)
is a pair consisting of an elliptic root system ® ( i.e. 2-extended affine root system ) with
a marking G.© Then there holds g(®) ~ é(I'(®,G)), where g(®) is generated by g(®) and
nondegenerate (~) extended from Cartan subalgebra h. In the toroidal Lie algebra u, one can
consider the algebra t which has only degree 0 elements as the centeri.e. ¢; := t;'dt; € Q4/dA,
and add to it the degree derivation d;, thus t =g ® C[t{,---, 2] @ (67,Ce) @ (07, Cd;),
with [di,a @ t*---t0™] = ni(a @ 7' -+ ¢%m), and [di,c;] = 0.for 1 < 4,5 < m, which is
also called toroidal Lie algebra, or Quasi-simple Lie algebra. In the above Lie algebras, in
the case of m = 2, we call elliptic Lie algebra, because its root system is associated to elliptic
root system ([Sa}). In the sequel, we denote an elliptic Lie algebra by § as the universal
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central extension of 2-fold affinization k[T*!, S*']|® g, where k[T*!,S5*!] is the ring of
two variable Laurent polynomials with coefficients in a field £ . Moody, Rao and Yokonuma
( [ M-R-Y ] ) constructed the integrable representations of g , called vertex representations,
and after that, using them , Shi ([Sh]) constructed a group ( toroidal group ) associated to g .
In this article, we construct a group associated to g, in the following way. Let p be a faithful
representation of the Lie algebra g on a finite dimensional complex vector space. Using p and
a Chevalley basis of g , Chevalley ([Ch1]), [Ch2]) and Demazure constructed an affine group
scheme G,(A, ) over Z, where A is the root system of g with respect to a ( fixed ) Cartan
subalgebra, and G,(4, ) is called the Chevalley-Demazure group scheme associated to g and
p. Since G,(4\, ) is a representable covariant functor from the category of commutative rings
with 1 to the category of groups, one can get a group G,(4A, ) of the points of a commutative
ring R with 1. It is written simply G(R) when A is arbitrary or fixed, and G(R) is called a
Chevalley group over R. For each root system o € A , there is a group isomorphism of the
additive group R* of R onto a subgroup X, of G(R) . The subgroup of G(R) generated by all
X4, a € A, is denoted by E(®) and called the elementary subgroup of G(R). Morita ([Mo)])
showed that the elementry subgroup E(k[T,T~!]) of a Chevalley group G(k[T,T~!]) has the
structure of a Tits system with an affine Weyl group. As an extension of above results, we
examine the algebraic structure of the elementary subgroup E(k[T*!,S*!]) of a Chevalley
group G(k[T**, S*!]) , where G(k[T*!, S*!]) is considered as a Chevalley group associated to
the elliptic Lie algebra §. The elliptic Weyl group defined from the elliptic root system ([Sa]),
is not a Coxeter group, so we see that E(k[T*!, S*!]) does not have a Tits system associated
to its Weyl group ( see [Bo] ) . We write down some relations of the generators of the Weyl
group defined from E(R,), where we set R := k[T*!, S*1], they are a little different from
those of the elliptic Weyl group ([S-T]). In the case of affine Lie algebra , Garland ([G])
, Iwahori and Matsumoto ([I-M]), showed the following result. Let k((T))(= k[[T,T7])
denote the T-adic completion of k[T,T?], i.e. k((T)) is the ring of all formal Laurent series

o= Zq,-T", g; € k, where the sum on the right is allowed to be infinite, and it is called
i>i
a local field. Then E(k((T))) has the structure of a Tits system associated with the affine
Weyl group of A. As an extension to 2-dimension of k((T)) , one can consider the iterated
power series K = k((T))((S)), ( see [P1], [P2] ), which is a 2-dimensional local field with a
discrete valuation ring Og = k((T))[[S]], i.e. K is the quotient field of Ox whose residue
field is a 1-dimensional local field K = k((T)) with residue field k. We define the elementary
subgroup E(K) , in this case, using the result by Abe ([A]), we see that SL(n,K) = E(K).
In a similar way as in the case of SL, over p-adic field ( 1-dimensional local fild ) ([H2]), we
have the decomposition SL(2, Ok) = B U Bw; B, where Oy = k[[T]] ® Sk((T))[[S]] and the
group B equal to the inverse image of the B from the SL(2, K) and B is the inverse image

of the Borel subgroup of SL(2,k) , and w; = ( _(_)1 (1) ) is an element of the Weyl group of
SL(2,K).



2 Definition of Chevalley groups and some results

Let g be a finite dimensional complex simple Lie algebra, A be a root system of g with respect
to a (fixed) Cartan subalgebra h, and II = {ea, - -, 4} be a set of simple roots relative
to some fixed ordering. Let W(A) be the Weyl group of A, W(A) affine Weyl group of A.
For o, 8 € A, we set < B,a >:= 2(8,a)/(a,a) , where (, ) is a scalar product, which is
invariant under W(A). For each a € A, w, denotes the reflection with respect to o , defined
by wa(B):= 08— < B,a>. Set A= A X Z x Z, then an element of A is represented by -
al™?) where a € A, and n ;P € Z,and Aj 1s identified with an elliptic root system introduced
by Saito ([Sa]). For ea,ch a™?) € A, let w™® be the reflection with respect to o™ | defined

by wiPgma) = (wu3)(m—<Ba>na=<Ba>p)  for any Bima) ¢ A. Let W(A) be the group
generated by wi? » for all o™ € A, then W(ZS) is the elliptic Weyl group ([S-T]). We
note that W(A) is identified with the subgroup of W(A) generated by w foralla € A
and W(A) 2 (Wl aeAneZ) = {wP acA, peZ} Set hi = {00
and H(A) be the subgroup of W(A) generated by h? for all af™?) € A. In this paper, we
write G = Gy -G, when a group G is a semidirect product of two groups G; and G2, and
G, normalizes G;. Then in a similar way to [Mo], we have the following.

Lemma 2.1 (1) Let o™® and ™9 be in A, then
h(“vp)ﬂ(m,q) _ 6(m+<ﬂ,a>n, g+<B,a>p)

(2) H(&) is a free abelian group generated by h(10 and hf(,,o,.’l) for all o; € 11.
(8) Let o{™?) and B(™9) be in A, and ¥ = w3, then wf,”*”’hgm’“w&“*p)_l = p{ma),

(4) W) =HQA) W(4).
(5)  Let o™ be in A and w in W(A) and set B9 = wa™?), then

w1l = wgn’Q).

Let AT = (AXZXZso)U(AXZsox 0)U(ATx0x0), then A* is identified with the set of
positive real roots of the elliptic root system defined in ([B-C]). Let {Hy,, -, Hy,, €0, @ € A}
be a Chevalley basis of g ( [C] ). Let p be a faithful representation of the Lie algebra g on
a finite dimensional complex vector space, G,(A , ) ( we simply write G ) be a Chevalley-
Demazure group scheme associated with g and p ([Chl], [Ch2]). Let 4 be a universal
enveloping algebra of g, iz the subring of 4 generated by 1 and ef/k! for all @ € A and

!

k € Zso, and gz = ZZH + ZZea a Chevalley lattice in g. Let V be the representation

1=1
space of p , A the weights of V' Wlth respect to ), and V = I 4V, the weight decomposition

of V. Let M be an admissible lattice in V , i.e. M is the Z-span of a basis of V, invariant
under iz, and set M, = M NV,. Let R, = k[Til S5%1] be the ring of Laurent polynomials
with coefficients in a field k£ , and set M = Ry ®z M and M = Ry ®z M,. For each
t€k, n,p€Zand a €A,



exp tT™SPp(ey) = 1 + tT™SPp(eq)/1! + t2T2"S%p(e,)? /2! + - -
induces an automorphism of M under the following action:

(T SP%p(eq )% [k (f @ v) = (t*T™ SP* £) ® (p(eq)* /k!)v, where f € R, and v € M.
Then X, =< exp tT"SPp(es);t € k, n,p € Z > is a subgroup of G(R;) and isomorphic to
the additive group of R;. Let E(R;) denote the subgroup of G(R;) generated by X, for all
a €A Wewrite z3P(t) =z «(T™S5?t) = exp tT"SPp(ey), for each a € A, n,p € Z and
te€k. Let k*be the multlphcatlve group of k. For each o € A;n,p € Z and t € k*, we set

wiP (t) == e8P (1)) (—t71)2 P (1),
RSP (t) = wlP (w9 (1)~

We note that w{™®(t) = wa(T"SPt), R3P)(t) = ho(T™SPt). Let U the subgroup of E(R;)
generated by z(?) (t) for all o®?) € A+ and ¢ € k, H the subgroup generated by A{0(¢ (t) for
all a € A and t € k*, B the subgroup generated by U and H,and N the subgroup generated
by wi(t) for all a(" ) ¢ A and t € k*. Then we have the following three lemmas, whose
proofs are similar to those found in ( [Mo],[Ste] ).

Lemma 2.2 Let o™ and B(™9 pe in ZS, and assume o + 3 # 0, then

[z np)(t) (m, q)(u)] — E;T;Jﬁm, ip+jq)(cijtiuj)

for all t,u € k, where the product is taken over all roots of the form ia+ jB, i,j € Zsg in
some fized order, and c;;i's are as in ([Ste], Lemma 15 ).

(Proof)  Let £ and 7 be indeterminates, and let a and 8 be in A such that a+3 # 0, then
we have

[ezp Lea, exp neg] = Mezp ci; &'’ Cia+j0
in Uz[[¢,n]] , where ¢;; € Z ( cf. [Ste], Lemmal5 ). The representation p induces a map,
also denoted p of Uz to End(M) because M is admissible. The map p — id ® p of End(M)
to End(M ) yields a map , again called p , of 7 to End(M) , and next map Uz[[€, 7] to
End(M) as follows: ( for t,u € k , and u;; € Uz )

D wij & — Yt THm gy,
i3 17

where if f € k[T*!,S%!], g € End(Z/\/I\) then fg is the element in End(M\) which is “ first act
by g and then left multiply by f ” . Then the lemma is proved as in [Mo]. 0

Lemma 2.3 Let o be in A m amdn inZ, and t and u in k*, then
(1)  h$P(t) acts on M, as multzplzcatzon by t<we> T<m a>n S<ma>p

(2)  hSO() AP (w) = AP (1),



Lemma 2.4 Let o™ and ™9 be in A , and set ¥ = w3, then

(1) w‘(z ,p)() (m,q)( )w(ﬂp)(t)— (m —<Bla>n, g <B,a>P)(ct -<B,a> w), forany t €k,
and u € k, where c is as in ( [Ste], Lemma 19 ).
(2) p)(t)w(m Q)(u)w(ﬂp)(t)— m-—<ﬁ a>n, g—<B8, ct>19)( t“<ﬁ’°‘>u).

(3)  wiP () = WP ().

wgnwp) t h(m19) U wc(xn,p) t -1 — hgm—<ﬁva>n1q_<ﬁaa>p) ct—(,@,d),u h’(y—.<,8’a>n,-<ﬁ’a>p) ct—(ﬂ,&) -1
8

for any t,u € k* .
(5) hgn,p)( ) (m, q)(u)h(" p)(t)_ (m+<,8 a>n,q+<8, a>p)(t<ﬁ a> ) Y

(6)  hEP (@)™ (u)hSP) (1) _—_wfam+<ﬁ’°‘>n’q+<ﬁ’a>p)(t<ﬁ’°’>u).

7 h((lnvp) t h(va) u hgn'vp) t -1 — h(m+<ﬁya>n1Q+<ﬁaa>p) t<ﬁ,a>u h(<ﬁva>n1<ﬁya>p) t<ﬁ,a> -1
¢ B 8

Let N be the subgroup of E(R;) generated by w 0)(t) for all o € A and t € k*, and H the
subgroup generated by AGP)(t) for all o™® € A and t € k* , then we have the following,
whose proof is similar to that found in ([Mo]).

Lemma 2.5 (1) B=0U-H.
(2) H and H are normal subgroups of N.
(39 N=HNand HNN = H.
(4) N/H=W(A).

In the sequel, we assume A is of rank 1, then A= {£a™P) n p € Z,+a € A}, and
At = {£a™?), n € Z, p € Zso, 0™, n € Lyo and o }. Set E = E(Ry) and for
each a™? € A, let X ) be the subgroup of E generated by z&P(t) for all t € k. We
identify v, w? W and w%Y in W(A) with w(oo)(l), w(_l,;o)(l), w 1)(1) and

w )(1) in N respectively, and we simply write w; := wi® , Wo i=w _1;0 , Wi = w®) and
wy = w(_lal). Then the following statements hold.

Lemma 2.6 (1) wX{Pw;!=X"%P,
(2) le(nP) -1 X(np)

(3) on( p) —1 _X(ﬂ+2p)

(4)  wo X(nm) X(ﬂ— )
(5)  wiX&Pwpt = x0,
(6) wiXuit = X,

(7) X(n \P) *—1 X£2+2,p+2) .



(8) X(n’p) *x—1 X(ﬂ—?,p—Z)

(Proof) From Lemma 2.4 (1) , we have the following relations .
walt)za(u) (1) = ol —t20),

Wo (1) () we (t) ™! = zo( —t?u),
W_g(t)Ta(u)w_q(t)™! = z_o(—t?u),
W_o(t)Zoa(v)w_o(t) P =2 (—t‘2 )-

From the above relations and the fact w{*® (t) = w,(T™S?t), we have,

(ﬂ»P)( t)z m,Q)(u)w(n,p)( £)~1 = (_m—2n,q 2p)(—t"2u),
(n,p)(t)x(m,Q)( Jw m)(t)— — m+2n1q+2p)( t20),
w&"&p)(t) vq)(u)w 1p)(t)— (m+2n7Q+2p)(_t2 )
w("’p)(t)x(m"”)(u)w("’p)(t)" — x(m 2nyq—2p)( £=2).
Using these, we can prove this lemma. a

Further we have the following statements.

Lemma 2.7 (1) wle1 C BU Bw, B.
(2) ’UJono C B U BwoB

() wiBuwi? c BU |J Bulr?BU | BulrVB U BulB.

ﬂezso neZ
(4) wiBwi™ c BU U Bw™PB U UB\w(_"o’,l)E.
n€Zg nezZ

(Proof) (1) From Lemma 2.5 (1), B = U-H and U is generated by X{™ and X% for

o(™?) and —a(™?) € A+ respectively. By Lemma 2.6 (1) and (2), except for the element X§° 0,

all the elements X, X ¢ T, satisfy wy X{Pw! € U, wy X"Pwi! € U, and actually

w XVt = X9, However from the relation, x,(,,o O(t) = z{ 0)( 1)w((,t0 O (—t-1)z00(1-1) ¢
BunB, wesee w X0 wit = X©9 ¢ Bu,B. Further, by Lemma 2.5 (2), w; Hwy* ¢ H
, so we get w,Bw'C BU Bw, B. The other relations are proved similarly O

3 Relations of the generators of the Weyl group defined
from E (Rz)

In this section, we write down some relations of the generators of the Weyl groups of the elliptic
root systems A(1 1) B (1.1) C'(1 Y and D (1) defined from the group E(R;), the relations are



inducd from the relations of w{*?(t). Dynkin diagrams of A", B, 01 and DM are
given in the Appendex.

Let «, 3, a*, and B* € {ag, 0, --,, o} be the roots corresponding to the vertices
of the Dynkin diagrm, and a, b, a*, and b* denote the corresponding reflections, and A and
B denote a, a* and 8, 3*, respectively, and further with the abuse of notation, they denote
a,a* and b,b*, respectively. Then we have the following.

Theorem 3.1 For any subdiagram of the Dynkin diagrams, the following relations hold.

*

0 o
Q
' = d’a* = a*d?, a*?a = aa™?
IO]
o

0,
0o o = AB=BA
A B

%)
o—o0 = A?B = BA?, B?A = AB?
A B

I

? oo = ABA=BAB, AB’A=B?  BA’B=A’
A B

11, 2 2 2 2 2 2
o——©0 == (AB)*=(BA)?, AB? = B?A, BA’B=A
A 2B

Is %\ Ba*B~'.q-Ba*B'=a-Ba*B'-a
e =
- B BaB~!.a* - BaB ! =a*- BaB™!-a*
o

1L, oa\
' 0O => a*BaB = BaBa", aBa*B = Ba*Ba
1 B

2
a
1 o

IIS1 Q
b = a*BaB = BaBa*, aBa*B = Ba*Ba
o3 B
o



Q
*
»
*

aa*bb* = b*aa*b = bb*aa* = a*bb*a

8
!

a® g3
| A @ A aba* = b*ab, ab*a* = b*a*db
X =
. o a*ba = bab*, a*b*a = ba*b*
a
m .2
L) 't = g*ba*! = ab*a”!
a 2 3
I4+11
/8*
A2 _,  obeTlbeb™ = beblabta!
0’ aba1b*ch*~! = b*cb*laba™?
¥
B
t=1, 2#!

( Remark 1) From the diagram II;', we obtain a? = a*2.

(Proof ) We have the following relations: (i) a*BaB = BaBa*, (i) aBa*B =
Ba*Ba, (iii) A’B = BA? (iv) AB?*A = B2 From (i) and (ii), aBa* =
B~ 'a*BaB, aBa* = Ba*BaB™!, then we get B~ !a*BaB = Ba*BaB~!. We multiply by

a* and a in the above equation, and use (iii) and (iv) to get a* = a*2.

( Remark 2 ) From the dagram II;, we odtain B*=1.

( Proof ) We have the relations : (i) BAB = A?, (ii) AB? = B?A.
We multiply by B in (i), so we get B2A2B? = A%, and using (ii), we get B*=1.

(Proof of Theorem 3.1) Let {es, Hy | @ € A} be a Chevalley basis of g satisfying
[ea’ eﬁ] = Na,ﬁea+ﬁ’ o+ ﬂ ?é 0,

Nop = —Npgo=—N_q_p,
Nop=0 ifandonly if a+8#0, a+ 3¢ A,
Nog=%£(r+1)if a+B€A,
where r is the largest integer such that 8 —ra € A.
If g is of type A;, we have the following relations .



Lemma 3.2 ([Ste], [St], [Ma]) If o,B,a+ B3 € A (A is of type A; ), then
(1) 0u(t)0p(0)0a(t) ™ = werps(Nagtu),
(2)  alt)asa(w)walt)™ = wp(Nup(~t~10),
(3) wa+ﬁ(t)wa(u)wa+ﬁ(t)_l = w—B(Na,ﬁ(“‘t—lu)%

(4)  wa(H)wa(w)wa(t) ™t = w_g(—t72u) = wu(t2u?).

We identify the elliptic roots @, a* with a®®, o® in A, respectively. Using w{™? (1) =
wa(T"57t), we identify a:= wy = w?(1) = wo(l), @* 1= W = wc(,o’l)(l) = wy(S). From
Lemma 3.2 (4), we see that

Wo () wa (W) wa(t) ™ = wa(tPu™),  wa(t) lwe(u)we(t) = wa(t?u™1),

from these, we get  wa(t)?w,(u) = wo(u)wa(t)? (0)

so, for the diagram 0 we obtain the relation a%a* = a*a?, a*?a = ea*?. The diagrams oo,

and oo4 appear only in Agl’l), S0 We set a 1= Wy, = w(_lgo)(l) = wW_o(T) = wo(=T71), a* :=
way = wE(1) = w_o(TS) = wa(~=T7157Y), b= wa, = (1) = wa(l), b i= wey =

w&M(1) = wo(S). From these, for the diagram ooy , using (0), we obtain A%B =
BA? AB? = B?A. For the diagram oco4, we use the following fact ABCD = BCDA <
BCDAD™'C'B™'=A (%) andset A=wy(t), B=wa(s), C =we(u) and D = wy(p),
then BCDAD 'C7'B™' = w,(s®p’u~%t"!), so from () we get s’p*> = t?u? . Here
s, p, t and wu are either of 41, 45, £771S"! and #+T~! so we obtain the relation
aa*bb* = b*aa*b = bb*aa* = a*bb*a (xx) aihd corresponding relations where we arbitrar-
ily replace a,a* b, and b* by a™*,a**,6~! and b*~! respectively. However they are reduced
to the relations (#*), by using the relation of coz. For the diagram 05, we obtain the relation
W (t)wa(u)ws(t)™ = wg(u), so wy(t)wg(u) = we(u)wa(t). Since b= wp(1), b* = ws(S),

2

for the diagram 0, we obtain AB = BA.  For the diagram %——O we obtain the
relation

wa(t)wp(u)wa(t) ™ = Wats(Na,gtu), (1)

wg(t)wa(u)ws(t) ™" = wats(—Na,stu). (2)
From (1), we obtain

wa(t)wp(u)wa(t) ™ = wa(t) " ws(u) " wa(t), 3)

We(B)wp(u)wa(t)™ = wa(u)ws(t)wa(u)™. (4)
From (2), we obtain

w0 (£)wa(w)wa(t) ™ = wp(t) ua(u) 0(t), 5)

wp(t)wa(u)wp(t) ™ = we(w)wa(t)ws(u) ™. (6)
From (1) and (2), we obtain

Wa(HJws(w)wa(t) ™" = wp(t) ™ wa(w)ws(t), (7)



wa(t)wp(u)wa(t) ™ = wp(t)wa(u)wg(t) ™, (8)

wa(t)ws(u)wa(t) ™ = wp(u) " wal(t)ws(w), (9)
wa (t)wp(u)wa(t)™ = wp(u)wa(t) " wa(u) ™. (10)
We find that all relations among a,a*,b and b* in (3) - (10), are reduced to the following

relations, ABA = BAB, AB’A = 32 BA?B = A%,

For the diagram I3, from the relations
a8 (t)10a(5) = wp(Nayp(=5714)),
Wartp(t) " Wa(8)Wasrp(t) = w_p(Nas(t™'5)) = ws(Nas(—s7')),
weobtain  Wayp(t)Wa(8)Watrs(t) = WalS)Wats(t)wa(s), and noting that — wp(t)wa(u)ws(t)™ =

wano(Nagtu), weobtain  wp(t)ua(u)us(t)" wa(s)ws(£)wa(u)ws(t)™ = wals)wa(t)wa(u)
wp(t)™!-we(s), therefore weget Ba*B~'-a-Ba*B™!'=a-Ba*B~'-a, and BaB!

BaB™! = a*-BaB~'-a*. For the diagram L4, all relations of a, a*, b and b* in (3) - (10) are
reduced the follwing relations aba* = b*ab, ab*a* = b*a*b, a*ba = badb*, and a*b*a =

ba*b*. Next we examine the relations associated to the diabgram g_?_g . In this

case @, 3, a+ 3 and o+ 28 areroots, and their scalar products are given by

(a’l@\’) = -2, (B’av) = -1, (o, 8) = =2, (o, ) =4, (8,8) =2, (e, av) =2, (lg’ﬁv) =
( see [Bo] ). Then the following relations hold ([Ma]).
wa(t)wp(u)wa(t)™! = warp(ctu), (1)
Wa(t)Warp(u)wa(t) ™ = wp(ct™u),  (2)
et arap(w)0alt) ™ = warag(w), (3
wp(t)wa(W)wp(t) ™! = warap(c't*u),  (4)
wp(t)Watp(w)wa(t)™ = wass(—u), (5)
wp () waap(u)ws(t) ™ = wa(c"t*u),  (6)
where ¢ = ¢(a,f), ¢ = c(a,a+ ), " =¢(B,0a), " =c(B,a+2F) equal *1.
From (1) and (5), we get wa(s)wq(u)ws(t)we(u) we(s)™! = wayp(—cty) and from (1),
wa(u) " wp(t)wa(u) = warp(—ctu),
wa(w)wp(t) Twa(u) ™! = wass(—ctu),
from above relations, we get
wa(t)wa(u)wa(t)ws(s) = wa(s)wa(t)ws(u)wa(t), (7)
wa(t)wp(v) " wa(t) " wp(s) = wp(s)wa(tyws(w)wa(t)™.  (8)
From (3) and (4), we get

Wo(8)wp(w)wa(t)ws(u) " wal(s) ™ = watas(u’t)



and from (4), we see that
wp(w)wa(B)we(u) ™! = warap(u’t),
w(u) ™ wa(t)ws(u) = waras(u’t),
so from the above relations, we get
wa(t)ws(u)wa(s)ws(u) = wp(u)wa(s)ws(u)wal(t), (9)
wa(t)ws(u)wa(s)ws(u) " = we(u)wa(s)we(u)wal?).  (10)
We examine all relations of a,a*,b and b* in (7) - (10), and they are reduced the relations
in Iz, II3, and II3'. Further from the relation (1), we obtain  wy(t)ws(u)wy(t)™! =
wo(u)wp(t)ws(u)™, so we have the relation in II;. Next we prove I+ IL In all cases
t = 1,25, we have wpiy(t)Wars(u)Wainr(t)™! = Wapps(ct™<CHFP+7>y) where ¢ = (8 +

v,a+B) =1, because (B+7)+ (a+8)#0,(B+7)+ (a+8) ¢ A (see [Ma] ), and < o+

B,B+7v >= 0, 50 we get wp i (t)Wats(t) = Wats(u)wpsy(t). This means wg(s)w,(t)ws(s)t-
Wo(U)ws(P)wa(u)™ = wo(w)ws(p)wa(u)™ - ws(s)w,(t)ws(s)~, and which implies I + II.

O

4 Chevalley groups over 2-dimensional local field

We recall the definition of 2-dimensional local field ([P1], [P2]). We say that K is a 2-
dimensional local field with & as the last residue field if K is the quotient field of a (complete)
discrete valuation ring Ox whose residue field is a local field of dimension 1 with residue
field k. The first residue field is denoted by K. As such an example, let K = k((T))((S5))
be the field of iterated power series with Ox = k((T))[[S]], and K = k((T)). There
exists the reduction map ¢ : Ok — K and denote by /m the maximal ideal of the local ring
Og = k[[T]], then m = Tk[[T]]. There also exists the canonical map ¢ : Og — Og/m = k.
Let Oy = ¢ '(Og) be a subring in K , and m = ¢~!(7n), then m is the maximal ideal of
Ok, and let (Ok)* be the group of units in Of then

Ok = K[[T]] ® SE((T))I[S1],

m = TH[T] @ Sk((T))S],

(Ok)" =k~ @ Tk[[T]] & Sk((T))I[S]],
with the obvious abuse of notation. The maps ¢ and ¢ induce the maps of the matrices

¢ :SL(2,0x) — SL(2,K),

¢:SL(2,0g) — SL(2,k),
and we let the group B be the inverse image of the upper triangular group, i.e. the Borel
subgroup of SL(2,k) , and B be the inverse image of B from SL(2,K) , then

(% &) 5-(W &)

I



where (Og)* = k* @ Tk[[T]]. Let N equal the subgroup of monomial matrices and W =

/ \*
N/T, where T = BN N, then T = (06{) (O(') ) ) and W =< wg,w,ws >, wo =
K
-1 -1
( 3, %1 , wy = __(_)1 (1) , and wy = g, ﬁ ) . Weset P, = SL(2,0%),
Py = a T with { ¢ b € SL(2, Ok) then P, and P, are subgroups of
0 Te d ) c d UK | ! 0 group

SL(2,K) and we have the following.
Proposition 4.1 For:=0,1, P,=BUBwB .

(Proof)  There exists the canonical map Oy — Oy /m = k and which induces a homo-
morphism ¢ : P, = SL(2, Og) — SL(2,k). Clearly ker ¢' C B ( indeed, B is the inverse
(1’ _01 € SL(2,k), which
represents the nontrivial generator for the Weyl group in SL(2, k). Using the Bruhat decom-
position in the ( rank 1 ) group SL(2, k) and the fact that ker ¢’ C B, we get P, = BUBun B
by lifting back to P;. Next the matrix g = [ 3, (1) ] € GL(2,K) — SL(2,K) normalizes B,
and ¢g-'Pig= P, g 'wig=we. So P, =BUBuwB forces Py = BU BwyB, this is
proved as in ( [H2], § 15.3, Lemma 2 ). ]

image of the upper triangular group ). Note that ¢’ sends w; to

An element of K = k((T))((S)) can be written as

O'(T, S) = Z q,'jTiSj, qij € k.

120, J2Jo

We set  z,(0(T,95)) := H 20 (g;) and M := K ®z M, then z.(0(T,S)) €
1240, J>J0

Aut(M), because from the relation z4(01(T, 5))za(02(T, S)) = za(01(T, S) + 02(T, S)), we
get z,(0(T,S))! = z4(—0(T,S)). Welet E C Aut(M) denote the subgroup generated
by the elements z,(c (T, S)), a € A, o(T,S) € K. For a € A, and o(T,S) € K with
o(T,S) # 0, we set

wa(o(T,5)) = za(0(T, 5))z-a(—0(T, 5) " )za(o(T, 5)),

ho(a(T,8)) := walo(T, S))wa(l)L.
Similarly to the case of affine Lie algebra ([G]), we give the following definition.

Definition 4.2 We let I C E denote the subgroup generated by the elements z,(a(T,S)),
where either o € A*, o(T,S) € O, or a€ A~, o(T,S) € m, and by the elements
ho(a(T,S)), o(T,S) € (Ok)*, a € A. We call I the Iwahori subgroup of E .

~ We see the following .
(Fact) IfA isof type Ay ,then I=B.



(Appendex) Dynkin diagrams of A", B, C’,(l’l) and D™V are given by ;

* A4

Agl’l) Qy

C O @ O
(87] (4] Q2 Ql_2 Q-1 Qp (03] Qg Qs Q-3 Q-2 Q

References

[A] E. Abe Chevalley groups over local rings, Téhoku Math. J. 21 (1969), 474 - 494
[Bo] N. Bourbaki Groups et Algébres de Lie, Chap.IV, V, VI, Hermann, Paris, 1968

[Bol] R. Borcherds Verter algebras, Kac-Moody algebras and Monster, Proc.Natl.Acad.Sci
USA 83 (1986), 3068-3071

[Bo2] R. Borcherds Monstrous moonshine and monstrous Lie superalgebras, Inventiones

Math. 109 (1992), 405-444

[Be] H. Behr Eine endliche Prdsentation der symplektischen Gruppe Sps(Z) , Math. Z. 141
(1975), 47 - 56

[B-C] S. Berman and B. Cox FEnveloping algebras and representations of toroidal Lie algebra,
Pacific Journal of Math. vol 165 No.2 (1994), 239 - 267

[C] R.W. Carter Simple Groups of Lie Type, Wiley London, 1972



[Chl] C. Chevalley Sur certains groups simples, Tohoku Math. J. (2) 7 (1965), 14 - 46
]

[Ch2] C. Chevalley certains schémes de groupes semi-simples, Sém.N.Bourbaki, exposé 219
(1980-1981), Benjamin, Newyork, 1966

[G] H. Garland The arithmetic theory of loop groups, Publ. Math. L.H.E.S, 52 (1980), 5 - 136

[H1] J.E. Humphreys Introduction to Lie algebras and Representation Theory, Springer-
. Verlag, New York, Heidelberg, berlin, 1972

[H2] J.E. Humphreys Arithmetic groups, Lecture notes in mathematics 789

[I-M] N. Iwahori and H. Matsumoto On some Bruhat decomposition and the structure of the
Hecke rings of p-adic Chevalley groups, Publ. Math. LH.E.S., 25 (1965), 5 - 48

[Mo] J. Morita Tits’ systems in Chevalley groups over Laurent polynomial rings, Tsukuba J.
Math. vol. 3, No. 2 (1979), 41 - 51

[M-R-Y] R.V. Moody, Eswara. Rao and T. Yokonuma Toroidal Lie algebras and vertex
representations , Geom.Ded.35 (1990), 283 - 307

[Ma] H. Matsumoto Sur les sous-groups arithmeétiques des groupes semi-simples, déployés,

Ann. Sci. Ec. Norm. Sup. (4) 2 (1969), 1 - 62

[P1] A.N. Parshin Algebra and Number Theory, Proc. Conf. Held at the Inst. Exp. Math.,
Univ. Essen, Def. 2-4, 1992, Berlin : De Gruyter, 1994, 165-192

[P2] A.N. Parshin Vector Bundles and Arithmetical Groups. I, Proc. of Steklov Inst. Math.
vol 208, 1995, 212 -233

[Sa] Kyoji. Saito FExztended affine root systems I, II, Publ. RIMS, Kyoto Univ., 21 (1985), 75
- 179, 26 (1990), 15 - 78

[Slo] P. Slodowy Beyond Kac-Moody algebras and inside, Can.Math.Soc.Proc. 5 (1986), 361-
371 A

[S-T] Kyoji. Saito and T. Takebayashi FEztended Affine Root System III ( Elliptic Weyl
Groups) , Publ. RIMS, Kyoto Univ.,33 (1997), 301-329

[S-Y] Kyoji. Saito and D. Yoshii Eztended affine root system IV, RIMS. preprint, 1999

[St] M. Stein Generators, relations and coverings of Chevalley groups over commutative

rings, Amer. J. Math.,93 (1971), 965 - 1004
[Ste] R. Steinberg Lectures on Chevalley groups, Yale Univ. Lecture notes, 1967/1968
[Sh] Z. Shi Toroidal groups, Communications in algebra, (11) 20 (1992), 3411 - 3458

[Ta] T. Takebayashi Chevalley groups associated to elliptic Lie algebras, Journal of algebra
210 (1998), 498-513



