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Representations of Weyl groups and Hecke rings

on virtual character modules of a semisimple Lie group

2R3 i L "_%"_ (Kyo NISHIYAMA)

St  Introduction. Let G be a semisimple Lie group. The

irreducible admissible representations of G was classified by
Langlands. However, his method is inductive one and parameters
of irreducible representétions are not so available that one can
proceed to harmonic analysis on them. So we change the point of
view, and want not to classify each representation but to classify
representations into some classes. We think that useful
Classification theory can be developped using representations of
Weyl groups on virtual character modules. Weyl group(or Hecke
ring) representations will classify irreducible representations
into some classes, which have good invariants such as Gel'fand
-Kirillov dimension, Borho-Jantzen—Duflo's‘t-invariant and so on.

Here, we define representations of Weyl groups and Hecke
rings on virtual character modules of G and state some results
which are direcgly deduced from the definitions. Classification
theory using them is to be mentioned in the near‘future.

§1 Preliminaries and notations. From now on, G 1is a

connected semisimple Lie group with finite centre. We also
assume G to be acceptable for technical reasons. Let g be a-
Lie algebra of G and 9o the complexification of g . We

denote by U(g¢) the enveloping algebra of dc¢ - Take an



algebra homomorphism X of the centre 2 of U(gc) into the
complex number field € . We put Mod(X)={[M]| M is an
irreducible admissible (gc,K)—module on which the centre 2Z acts
as scalar operators through thé morphismvx } , where [M] denotes
the equivalence class of M and K is a maximal compact
subgroup of G . We know #Mod(X) is finite. We denote by

®(M) (MeMod(X)) the grobal character of M which is an

invariant eigendistribution(IED) on G by definition. Put

V(%)= @ cOHM) .
[M] € Mod(X)
We call V(X)) a virtual‘character module with infinitesimal
character X . One can prove that V(%) is the space of
constant coefficient IEDs on G which have the eigenvalue X
(see [6]).

Let Car(G) be the set of all the cojugacy classes of
Cartan subgroups of G . We fix [H]E€ Car(G) for a while ([H]
is the cojugaéy class of H ).‘ Through the Harish-Chandra map,
Z 1is isomorphic to U(gc)w as C-algebras, where W=W(g¢,gc) is
the Weyl group of (ge,gc) . On the other hand, since U(gc)
is a polynomial ring, an algebra homomorphism of U(gc) into C
is determined by ) € h¥ . We denote by Xa the corresponding

homomorphism in Homalg(g,C) .
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Remark that ’7()‘=’X,w}\ for any weW . 1In the following, we also
fix A and write X=%) . Define a subgroup WH(A) of W as

follows.

Definition 1.1. Let Ho be the identity component of H .

We put

WH()\)={WGW exp x > eicp wA(x) (xeh) defines a well-}

defined character on HO .

Then W, (A) 1is defined to be the largest subgroup of W which

leaves WH(;\) invariant under the right multiplication. We call

WH(A) integral Weyl group of A and H .

For wtsﬁh(l) , define a character on H, by Ewl(exp X)=
exp wWA(x) (xe h) . For a root o4 , we also define the similar
Character on the whole H by Ad(h)X,=Ey(h)X¢ (heH) , where X,
is a non-zero root vector for « . Let us define some more
functions on H .

Let A=A(g¢,§¢) be the root system of (g¢,gc) and choose
a positive system A" . Put Ag={reAl « (h)C R} and A= {xed|
o(h)c -1 R)- . We call elements.of AR real roots and those of
AilR imaginary roots. Let pP€h* be half the sum of positive

—C
roots. Then we define the Weyl denominator by
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D(h) = E_(h) T . (1-%,(h)”"') (he H) .
gP 0(€A+ g“
We also define a function on H which takes values in tt1} :

Eg(h) = C>LTT . son (1-E(m)™) (hem .
eA
R
Put W(G;H)=NG(H)/zG(H). Then a function g(;) on HXW(G;H) is
defined by the following equation: ERD(sh)=Elh;S)§RD(h) (he H,
SEW(G;H)) .

§2. Representations of Weyl groups. In the following, we

assume that XEEQE satisfies the following assumption.

Assumption 2.1. Let Hy, Hyp ooy Hp be a complete
system of representatives of W(G;H)-conjugacy classes of
connecCted components of H . Then there exists aié Hi (0sisk)
such that

* -
(*) gtx(ai

where W(G;Hi)=NG(Hi)/ZG(Hi) .

'sa;)=1  (teW,(A), seW(GE,)) ,

Remarkl. Since a; and sa; belongs to H; , ai°1sai
belongs to HO and (*) has meaning. For i=0, we always put
a,=e (identity element of G).

Remark2. Assumption 2.1 is satisfied for any A in case
that G= SL(n,R), Sp(2n,R), SOO(p,q) (p+g=2n) . We cannot find
a group which does not satisfy the assumption yet. See also

Lemmal.6 in [7].



In the sequel, we assume all the elements in Qé which appears
in this reportbsatisfies Assumption 2.1 for common {ai} .

Now we define a class of analytic functions B(H;)) on H
after T.Hirai[2,3]. Define {Hi} as in Assumption 2.1. For

0<isk and tééﬁh(k) , We construct an analytic function

Z(i,t;*) as follows. On H, , it is given by the equation:

Q(i,t;ai exp X)= EZ E(ai;s) exp stA(x) (xeh) .
SEW(G;H,)
On W(G;H)-orbit of H; , it is given by 3(i,t;wh)=¢€(h;w)q(i,t;h)
(hGHi, wEW(G;H)). Finally, outside the W(G;H)-orbit of Hi ’
we define §(i,t;h)=0 . We put
B(H;jA)= <3(i,t;%)| 0sisk, teW (A)>/c ,
BHH; )= <3(i, %) tEeW (/e

and call elements of B(H;A) €£-symmetric functions of constant

coefficients with eigenvalue A .

Theorem 2.2(T.Hirai[3];[6]). There exists an isomorphism

of the vector spaces:

® B(H;A) ———> V(%)) .
[H] € Car(G) T

The isomorphism T can be write down explicitly.

By the above theorem, if we put V4(A)=T(B(H;A)) , then we



have a direct sum decomposition: V(;)=0 VH(A) . Let

[H] € Car(G)
us define a representation of WH(A) on VH(A) in case where A

is regular.

Proposition 2.3. Let AE}Q% be regular and satisfy

Assumption 2.1.

(1) For wGWH()) , we define an operator T(w) on B(H;))
as follows. For basis {Q(i,t;*)} , it operates as:

T(w)T(i,t;*) = Q(i,tw—1;*) (0sisk, tGWH(X)) .

Then T defines a representation of WH(A) . Since B(H;A) is
isomorphic to VH(X), we have a representation of WH(X) on VH(A).

(2) T leaves gi(H;A) invariant and the representation
(T, gi(H;A)) is equivalent to a finite direct sum of
represehtations induced from 1-dimenéionai representations.

(3) For an integral A , we have WH(Ai=W and hence a
representation of W on V(XA)=@VH(A) is defined. 1In this

case, we have

W
V.(A) = & In . E(a,;*) .
rA) =9 0%gmy) Sy
When A 1is integral, the representation (T,V(Xa)) has
another interpretation using tensor products with finite
dimensional representations (2Zuckerman(5], Barbasch-Vogan[1]).
Our definition of the representation of WH(A) is a

generalization of it.



§3. Representations of Hecke rings. In the case A\ is

regular, we succeed in constructing the representation T of
integral Weyl groups. Then, how about singular A ? 1In this
section, we construct in three ways representations of Hecke
rings on V(%X,) , where A is a singular infinitesimal character.
We fix a Cartan subgroup H of G and singular A ¢ g;: which is
dominant with respect tosome ordering. At first, we introduce
notions of Hecke rings. Let Wl=§_w€W\ wA=A Y be the fixed

subgroup of A .

Lemma 3.1. W, is a subgroup of WH(k) .

Then a Hecke ring E(WH(K),Wx) is defined as in [4]. 1In
our case, since WH(A) is a finite group, simpler interpretation
is available. Namely E(WH(X)IWX) is isomorphic as a C-algebra
to a subalgebra elc[wH(A)]eA of the group ring C[W] , where

e, is an idempotent in C[W] defined by

e = (W)Y s .
seW,
In the following, we always identify E(WH(R):Wx) with
eAC[WH(x)]el , @ subalgebra of C[W] . Now we explain three ways
of constructing representations of E(WH(A),W;) on VH(A) .

Construction 1. Since Vi (A) 1is isomorphic to B(H;A) , we

define a representation of g(WH(A),WA) on B(H;A) . Recall

that (i,t;*)'s (0sisk, tE&ﬁ’(A)) are generators for B(H;A) .
H



We define an operator O (e wey,) (wGWHO\)) on B(H;A) as

Cleywen) (i, t:*%) = (#0p) ™' 2 Z(i,tsw ;%) .
S € Wy
In this case ;(i,t;*) is not necessarily a basis of B(H;)) ,
but G(ejwe,) extends to a well-defined linear operator on the

space B(H;\) .

Proposition 3.2. (O, VH(A)) defined as above is a

representation of the Hecke ring E(WH(A)IWA) .

Construction 2. Choose an integral (€ h% such that

7\0=A+p\ is dominant regular. Then we have

Lemma 3.3. (1) The subset WH(AO) of W is equal to 'VTH(}\) .

(2) The integral Weyl group WH(/'\'O) is equal to WH(7\) .

We have constructed a representation of WH(A0)=WH(A) on
VH(XO) in §2. Put UH()0)={VG VHU\O)\ ’L‘(e;\)v=0} , where we
regard T as a representation of the group ring C[WHO‘)] . As
a subalgebra of CIW (A)] , H(W,(2),W,) acts on VH(}\O)/UH(KO) .
We denote this representation of H(W (A),Wy) by

Wy (A) -
Wa VH(AO)) °
Construction 3. Let (-P;‘O: V(A)

(0, Red

>V(Ay) and \ll?;f V(Ay)

>V(A) be Zuckerman's translation functors([9]). The

functor @ is injective and Y is surjective. These functors



preserve VH(7\) and VH(ﬁo) . For elweleg(WH(A),W)\) , we
define G(e,we;) by
T (exwen v=(#2) T PR Tiewen)o Phiv)  (vevy(a)) .
Then (o, VH(A)) is a representation of g(wH(A),wx) .
Now we have the foilowing theorem about the above three
constructions. |

W.()
Theorem 3.4. (1) The space Red gA VH(ZO) is isomorphic

to VH(A) and (o, VH(A))IZ (05, Red VH(AO)) as a representation
of H(W(A),W)) .

(2) The representations (O, VE(A))'s of H(W(A),W)) in
Construction 1 and 3 are mutually equivalent.

§4. Some applications. In this section we state two

applications of §§2 and 3 . We use notations in the former
sections.

4.1. The number of irreducible representations. If we put

Ug(Ag)={v€ Vg(A,)| T(ep)v=v} , then clearly it holds that Vg(Ag)
=Ué(KO)QUH(}O) (direct sum of vector spaces). Therefore we have

Vg (MZV(A0) /U (Ag)ZULA) « Put ng(A)= dim UL(A,) .

Corollary 4.1(to Theorem 3.4). Using above notations, we

have dim V(Xp)= X ng(A) .
[H] € Car(G)

Remark that dim V(X%) is the number of irreducible
admissible representations of G which have infinitesimal

character 'Xa . So, Corollary 4.1 says we are able to know the



number of irreducible representations of G with singular
infinitesimal character A from the representations of integral

Weyl groups at the regular infinitesimal character 20 .

4.2. T-invariants. From Theorem 3.4 (1), Red VH(AO) is
isomorphic to VH(A) . Moreover, we know an isomorphism is given
Ao, ’ .
by Y3 Vg(Rg)——>Vy(A) , i.e., ker Y =U_(A;)) . Now let us
consider the case where #Wy=2 . In this case, since A is
dominant, W1={e,s} for some simple reflection s . Then we have

the following corollary to Theorem 3.4.

Corollary 4.2. Let Ko be dominant regular element in gé

such that <?\0,0l>/<o(,0l> €2 for some simp‘le root KX . We put
R=Ao-'§%%%§d., a dominant singular element in Qé . Let ® be a
irreducible character with infinitesimal character }0 . Then
the two conditions below are mutually equivalent.

() Yl@)=o .

(2) T(sx)®=-® , where sy is the simple reflection with

respect to & .
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