UNITARY REPRESENTATIONS OF THE INFINITE SYMMETRIC GROUP

by Nobuaki OBATA, Nagoya University

INTRODUCTION

The infinite symmetric group \mathfrak{S}_{∞} is defined as the discrete group of all finite permutations of the set of all natural numbers. It was proved in Murray-von Neumann [5] that the group von Neumann algebra of \mathfrak{S}_{∞} is a factor of type II_1 . Therefore it is a non-type I group, and probably for that reason, its irreducible (unitary) representations have not been investigated satisfactorily. In fact, only few results are known, for instance, see Lieberman [4] and Ol'shanskii [6]. On the other hand, factor representations of type II have been studied in Thoma [8], Vershik-Kerov [9], [10] and [11].

Our main purpose is to study irreducible representations of the infinite symmetric group as systematically as possible. The present note is divided into two parts: The first part (§1-§3) contains some results concerning irreducible representations discussed in [4] and [6]. In the second part (§4-§6), we construct a new family of irreducible representations and give some remarks.

§ 1. IRREDUCIBLE REPRESENTATIONS $\{\pi^{\rho}\}$ AND $\{\overline{\pi}^{\rho}\}$

Let X be the set of all natural numbers and \mathfrak{S}_{∞} the group of all finite permutations of X. If Y is a subset of X, we denote by $\mathfrak{S}(Y)$ the subgroup of all finite permutations of X which act identically outside Y. For brevity, we write \mathfrak{S}_{n} and $\mathfrak{S}_{\infty-n}$ for $\mathfrak{S}(\{1,2,\ldots,n\})$ and $\mathfrak{S}(\{n+1,n+2,\ldots\})$, respectively.

If ρ is a (finite dimensional unitary) representation of \mathfrak{S}_n , we

define unitary representations π^{ρ} and $\overline{\pi}^{\rho}$ of \mathfrak{S}_{∞} as the induced representations Ind $\mathfrak{S}_{n}^{\infty} \times \mathfrak{S}_{\infty-n}^{\infty}$ $\rho \otimes 1$ and Ind $\mathfrak{S}_{n}^{\infty} \times \mathfrak{S}_{\infty-n}^{\infty}$ $\rho \otimes \text{sgn}$, respectively.

Obviously, $\pi^{\rho} = 1$ (the trivial representation) and $\overline{\pi}^{\rho} = \text{sgn}$ (the alternating representation) if ρ is the trivial representation of $\mathfrak{S}_0 = \{e\}$. The unitary representations π^{ρ} are discussed in Lieberman [4] and Ol'shanskii [6]. In view of their results, we obtain the following

PROPOSITION 1.1. (1) Let ρ be a representation of \mathfrak{T}_n . Then π^ρ is irreducible $\iff \rho$ is irreducible.

(2) Let ρ and ρ' be irreducible representations of \mathfrak{S}_n and $\mathfrak{S}_{n'}$, respectively. Then

(2-1)
$$\pi^{\rho} \simeq \overline{\pi}^{\rho'} \iff \pi^{\rho} \simeq \overline{\pi}^{\rho'} \iff \rho \simeq \rho'$$
 (including $n = n'$),

(2-2) π^{ρ} is not equivalent to $\overline{\pi}^{\rho'}$.

For the structure of the representations $\{\pi^0\}$ we have the following result. An analoguous assertions for $\{\overline{\pi}^0\}$ are easily obtained and omitted.

PROPOSITION 1.2. Let ρ and ρ' be representations of \mathfrak{S}_n and \mathfrak{S}_n' , respectively. Then we have

(1)
$$\pi^{\rho} \oplus \pi^{\rho}' \simeq \pi^{\rho \oplus \rho'}$$
 if $n = n'$,

$$(2) \ \pi^{\rho} \otimes \pi^{\rho} \overset{\text{nAn'}}{\simeq} \sum_{j=0}^{\text{nAn'}} \pi^{\tau(j)} \ \text{, where } \tau(j) = \text{Ind} \underbrace{\varsigma_{n+n'-j}}_{\varsigma_{j} \times \varsigma_{n-j} \times \varsigma_{n'-j}} \rho'' \ \text{and}$$

 $\rho\text{"is defined as }\rho\text{"}(\sigma_1,\sigma_2,\sigma_3) = \rho(\sigma_1\sigma_2) \otimes \rho\text{'}(\sigma_1\sigma_3),$

(3) Identifying $\mathfrak{S}_{\infty-n}$ with \mathfrak{S}_{∞} by shift, we have

Ind
$$\widehat{\mathbb{S}_{n}} \times \widehat{\mathbb{S}_{\infty-n}} \quad \rho \otimes \pi^{\rho} \stackrel{!}{\simeq} \quad \sum_{\tau \in \widehat{\mathbb{S}_{n+n}}^{\tau}} [\rho \otimes \rho' : \operatorname{Res} \underbrace{\widehat{\mathbb{S}_{n+n}}^{\tau}}_{n} \quad \tau] \pi^{\tau}.$$

The assertions (1) and (2) are easy to see and (3) follows from the next lemma which is a consequence of transitivity of induced representations.

LEMMA 1.3. Let H be a subgroup of $\mathfrak{S}_{\infty-n}$ and τ an arbitrary representation of H. Then, for any representation ρ of \mathfrak{S}_n , we have

$$\operatorname{Ind} \ \frac{\operatorname{\mathfrak{S}}_{\infty}}{\operatorname{\mathfrak{S}}_{n} \times \operatorname{\mathfrak{S}}_{\infty-n}} \rho \otimes (\operatorname{Ind} \ \operatorname{H} \ \tau) = \operatorname{Ind} \ \operatorname{\mathfrak{S}}_{n} \times \operatorname{H} \ \rho \otimes \tau \ .$$

We shall now give a useful realization of π^{ρ} . We write $X^{[n]}$, $n \geqslant 0$, for the set of all ordered n-tuples $i = (i_1, i_2, \ldots, i_n)$ consisting of distinct elements i_k of X. The groups \mathfrak{S}_{∞} and $\mathfrak{S}_{\widetilde{n}}$ act on $X^{[n]}$ by means of the maps:

$$\begin{split} \mathbf{i} &\longmapsto \mathbf{g}\mathbf{i} = (\mathbf{g}(\mathbf{i}_1), \ \mathbf{g}(\mathbf{i}_2), \ \dots, \ \mathbf{g}(\mathbf{i}_n)), & \mathbf{g} \in \mathfrak{S}_{\infty}, \\ \mathbf{i} &\longmapsto \mathbf{i}\sigma = (\mathbf{i}_{\sigma(1)}, \ \mathbf{i}_{\sigma(2)}, \ \dots, \ \mathbf{i}_{\sigma(n)}), & \sigma \in \mathfrak{S}_{n}. \end{split}$$

Let (ρ,W) be a representation of \mathfrak{T}_n and H^ρ the Hilbert space of all W-valued functions f defined on $X^{[n]}$ satisfying $f(i\sigma) = \rho(\sigma)^{-1}f(i)$. Then π^ρ is realized as

$$(\pi^{\rho}(g)f)(i) = f(g^{-1}i)$$
.

Here we add the following result.

PROPOSITION 1.4. Let $(T^n, \ell^2(X^{[n]}))$ be the unitary representation defined naturally by the action of \mathfrak{S}_{∞} on $X^{[n]}$. Then we have

$$T^{n} \simeq \sum_{\rho \in \widehat{\mathfrak{S}_{n}}} (\dim \rho) \ \pi^{\rho}.$$

Proof. Consider the representation $\pi^{\tilde{\rho}}$ with the regular representation $\tilde{\rho}$ of \mathfrak{S}_n . Q.E.D.

§ 2. REPRESENTATIONS ON PRODUCT SPACES

Let \Z be a standard Borel space. The infinite symmetric group \image_{∞} acts on \Z^{∞} , the countably infinite product of \Z , by means of the maps:

$$z = (z_1, z_2, ...) \longrightarrow gz = (z_{g^{-1}(1)}, z_{g^{-1}(2)}, ...).$$

If μ is an \mathfrak{S}_{∞} -quasi-invariant measure on \mathfrak{Z}^{∞} , the triple $(\mathfrak{S}_{\infty}, \mathfrak{Z}^{\infty}, \mu)$ is called a *dynamical system* after Kirillov [3]. It would be very interesting to consider the unitary representation U arising from the dynamical system.

We shall give an irreducible decomposition of the unitary representation $(U,L^2(\mathcal{Z}^{\infty},\mu))$ in case when μ is an \mathfrak{S}_{∞} -invariant probability measure. By virtue of Hewitt and Savage [2], we have only to consider the case when μ is a product measure of an identical probability measure μ_1 on \mathfrak{Z} .

We put

$$IN_0^{\infty} = \left\{ j = (j_1, j_2, \dots) ; j_{\ell} \text{ a non-negative integer and } j_{\ell} = 0 \text{ except finitely many } \ell \right\}$$

and

$$[N_{k,0}^{\infty} = \{j = (j_1, j_2, \dots) \in N_0^{\infty}; j_{\ell} \leq k \text{ for all } \ell\}, k \geqslant 0.$$

The group \mathfrak{S}_{∞} acts on $\mathfrak{N}_{0}^{\infty}$ and $\mathfrak{N}_{k,0}^{\infty}$ in the same manner as above.

PROPOSITION 2.1. U is equivalent to the unitary representation corresponding to the \mathfrak{S}_{∞} -space $\mathfrak{N}_{k,0}^{\infty}$ or $\mathfrak{N}_{0}^{\infty}$ according to dim $L^{2}(\mathcal{Z},\mu_{1})=k+1$ or ∞ .

Proof. For a fixed orthogonal basis { $f_0 \equiv 1$, f_1 , f_2 , ... } for $L^2(\mathcal{Z}, \mu_1)$ we can construct an orthogonal basis { f_j ; $j \in |N_{k,0}^{\infty}(\text{or }|N_0^{\infty})$ } for $L^2(\mathcal{Z}^{\infty}, \mu_1^{\infty})$ such that $U(g)f_j = f_{gj}$. Q.E.D.

Thus it is sufficient to consider the G_{∞} -spaces $N_{k,0}^{\infty}$ and N_{0}^{∞} . For $n \geqslant 1$ we denote by $\Re(n)$ the set of all partitions of n:

$$\mathcal{T}(n) = \{d = (d_1, ..., d_n) ; d_j \text{ non-negative integer with } \sum_{j=1}^{n} jd_j = n\}.$$

For $d \in \mathcal{Z}(n)$, Y(d) denotes a Young subgroup of \mathfrak{S}_n of the form:

$$Y(d) = \mathfrak{S}(\{\cdot\}) \times \dots \times \mathfrak{S}(\{\cdot\}) \times \mathfrak{S}(\{\cdot\cdot\}) \dots \times \mathfrak{S}(\{\cdot\cdot\}) \dots \dots \times \mathfrak{S}(\{\cdot\cdot\}) \dots \dots$$

THEOREM 2.2. U is decomposed as follows:

$$\begin{array}{c} \text{$U\simeq 1\oplus\sum_{n\geqslant 1}\sum_{d\in \ensuremath{\mathfrak{T}}(n)} m(d)\ \pi^{\rho(d)}\ ,}\\ \text{where $\rho(d)$ = $Ind $\operatornamewithlimits{\widetilde{S}}_n$ 1 and $m(d)$ = $\Big(\frac{k}{d_1+\ldots+d_n}\Big)$ $\dfrac{(d_1+\ldots+d_n)!}{d_1!\ldots d_n!}$, $d\in \ensuremath{\mathfrak{T}}(n)$,}\\ k+1 = \dim L^2(\ensuremath{\mathfrak{Z}},\mu_1)$, with the conventon that $m(d)$ = ∞ (countably infinite) if $\dim L^2(\ensuremath{\mathfrak{Z}},\mu_1)$ = ∞.} \end{array}$$

Proof. First we decompose the $\mathfrak{S}_{\infty}^{-}$ -spaces $|N_{k,0}^{\infty}|$ and $|N_{0}^{\infty}|$ into a disjoint union of $\mathfrak{S}_{\infty}^{-}$ -orbits \mathbb{O} . Next we consider the representation corresponding to the transitive $\mathfrak{S}_{\infty}^{-}$ -space \mathbb{O} . We skip the detailed discussions. Q.E.D.

Needless to say, $\pi^{\rho}(d)$ is decomposed into a finite sum of irreducible representations π^{ρ} by Proposition 1.2. Finally we remark that the dynamical system $(\mathfrak{S}_{\infty}, \mathfrak{Z}^{\infty}, \mu_{1}^{\infty})$ is not recovered from the corresponding unitary representation. In fact we can prove the following

PROPOSITION 2.3. Let μ_1 and μ_1' be two probability measures on \mathbb{Z} . Then two dynamical systems $(\mathfrak{S}_{\infty}, \mathfrak{Z}^{\infty}, \mu_1^{\infty})$ and $(\mathfrak{S}_{\infty}, \mathfrak{Z}^{\infty}, \mu_1^{\infty})$ are isomorphic if and only if there exists a Borel isomorphism (defined up to null sets) $\psi: \mathfrak{Z} \longrightarrow \mathfrak{Z}$ with $\psi \mu_1 = \mu_1'$.

§ 3. EXTENSION OF THE \mathfrak{S}_{∞} -SPACE $X^{[n]}$ AND CORRESPONDING REPRESENTATIONS Let Aut(X) denote the group of all permutations of X. Obviously, \mathfrak{S}_{∞} is a normal subgroup of Aut(X). First of all, we shall give a description of $End(\mathfrak{S}_{\infty})$, the set of all endomorphisms of \mathfrak{S}_{∞} .

THEOREM 3.1. For each $f \in \operatorname{End}(\mathfrak{S}_{\infty})$ there exist unordered pairs $\mathfrak{S}_{2,k} = \{j_{k1}, j_{k2}\}$ (k=1,2,...,s) and ordered sequences $\mathfrak{S}_{\infty,\ell} = \{i_{\ell 1}, i_{\ell 2}, ...\}$ (l=1,2,..., t), possibly s=0 or t=0, satisfying the following properties:

(i) $\mathcal{O}_{2,1},\ldots,\mathcal{O}_{2,k},\mathcal{O}_{\infty,1},\ldots,\mathcal{O}_{\infty,t}$ are mutually disjoint as subsets of X,

(ii) for any $g \in \widetilde{S}_{\infty}$, we have

$$\mathbf{f}(\mathbf{g}) = \begin{pmatrix} \mathbf{s} & & \\ \mathbf{I} & (\mathbf{j}_{k1} \ \mathbf{j}_{k2}) \end{pmatrix}^{(1-sgn \ g)/2} \quad \mathbf{t} \begin{pmatrix} \mathbf{i} \ \ell 1 & \mathbf{i} \ \ell 2 & \cdots \\ & & \mathbf{I} \\ \mathbf{i} \ \ell g(1) & \mathbf{i} \ \ell g(2) & \cdots \end{pmatrix}.$$

The above result follows from routine observation of generators of \mathfrak{S}_{∞} , so we skip the proof here. The next assertion is then immediate.

COROLLARY 3.2. For any automorphism f of \mathfrak{S}_{∞} , there exists a unique $\alpha \in \operatorname{Aut}(X)$ such that $f(g) = \alpha g \alpha^{-1}$, $g \in \mathfrak{S}_{\infty}$. In particular, $\operatorname{Aut}(\mathfrak{S}_{\infty})$ is isomorphic to $\operatorname{Aut}(X)$.

We shall now consider the extension of the \mathfrak{S}_{∞} -space $X^{[n]}$. Generally speaking, for an arbitrary set Z, the *first cohomology set* $H^1(\mathfrak{S}_{\infty},X^{[n]};\operatorname{Aut}(Z))$ describes extensions of the \mathfrak{S}_{∞} -space $X^{[n]}$. For notations, see [3]. Here we shall restrict ourselves to those extensions which are described by $H^1(\mathfrak{S}_{\infty},X^{[n]};\mathfrak{S}_{\infty-n})$. Fix a cross section $i \mapsto g[i] \in \mathfrak{S}_{\infty}$ for the canonical projection $\mathfrak{S}_{\infty} \to X^{[n]} \cong \mathfrak{S}_{\infty} / \mathfrak{S}_{\infty-n}$. For any $f \in \operatorname{End}(\mathfrak{S}_{\infty-n})$ we define a 1-cocycle $\mathfrak{S}_f \in Z^1(\mathfrak{S}_{\infty},X^{[n]};\mathfrak{S}_{\infty-n})$ by $\mathfrak{S}_f(g,i) = f(g[i]g[g[g^{-1}i])$. Then we have the following

PROPOSITION 3.3. The map $f \mapsto_{\beta_f}$ induces a surjection from $\operatorname{End}(\mathfrak{S}_{\infty-n})$ onto $\operatorname{H}^1(\mathfrak{S}_{\infty},X^{[n]};\mathfrak{S}_{\infty-n})$. Moreover β_f and β_f , are cohomologuous if and only if f and f' are conjugate in $\operatorname{Aut}(\{n+1,n+2,\ldots\})$.

Finally we shall consider the corresponding unitary representations. Let n and m be two non-negative integers. We put Z = {n+1,n+2,...} \subset X. For any $\beta_f \in Z^1(\widetilde{S}_{\infty}, X^{[n]}; \widetilde{S}_{\infty-n})$, $f \in End(\widetilde{S}_{\infty-n})$, we define an action of \widetilde{S}_{∞} on $\chi^{[n]} \times Z^{[m]}$ by means of the maps:

$$(i,j) \longrightarrow g(i,j) = (gi, \beta_f(g^{-1},i)^{-1}j), g \in \mathcal{C}_{\infty}$$

We denote by $U^{n,m,f}$ the corresponding unitary representation. Viewing Proposition 3.3, if f and f' are conjugate in Aut(Z), $U^{n,m,f}$ and $U^{n,m,f'}$ are equivalent.

THEOREM 3.4. If f is an automorphism of \mathfrak{S}_{∞} , we have

$$U^{n,m,f} \simeq \sum_{\rho \in \widehat{\mathfrak{S}_{n+m}}} (\dim \rho) \ \pi^{\rho} \cong T^{n+m}$$

with the notation in Proposition 1.4.

§ 4. GENERAL RESULTS FOR DISCRETE GROUPS

Let G be a discrete group, H a subgroup and Ω = G/H the quotient space. We denote by $\omega_0 \in \Omega$ the point whose isotropy group is H. For each unitary character χ of H we consider the induced representation $U^\chi = \operatorname{Ind} \frac{G}{H} \chi$. It is convenient to adopt the following realization of U^χ .

Let $L^2(\Omega)$ be the Hilbert space of all square summable functions on Ω . We fix a cross section $\omega \longmapsto g[\omega] \in G$ for the canonical projection $g \longmapsto g\omega_0 \in \Omega$, $g \in G$. Then the induced representation U^X is give by the formula:

$$(U^{X}(g)f)(\omega) = \chi(g[\omega]^{-1}g g[g^{-1}\omega]) f(g^{-1}\omega), \quad f \in L^{2}(\Omega) \text{ and } g \in G.$$

PROPOSITION 4.1. Assume that all H-orbits in Ω are infinite sets except $\{\omega_{\Omega}\}$. Then we have

- (1) U^{χ} is irreducible,
- (2) U^{X} is equivalent to $U^{X'}$ if and only if $\chi = \chi'$.

Proof. Take an orthonormal basis $\{\delta_{\omega};\ \omega\in\Omega\ \}$, where δ_{ω} denotes the delta-function concentrated at ω . Suppose that T is a bounded operator on $L^2(\Omega)$ satisfying $U^X(g)T=TU^X(g)$ for all $g\in G$. Then one can see that $|T\delta_{\omega}(\omega)|$ is constant on each H-orbit in Ω . By assumption we conclude that T is a scalar operator. This proves (1). The assertion (2) is shown in a similar manner. Q.E.D.

By mimicking the above proof we have the following

PROPOSITION 4.2. Let α be an automorphism of G. If $|H:\alpha(gHg^{-1}) \cap H|$ = + ∞ for all $g \in G$, two unitary representations U^X and $U^{X'} \circ \alpha$ are disjoint for any unitary characters χ and χ' of H.

Several authors gave analoguous results for their own purposes. We refer to Godement [1], Saito [7] and Yoshizawa [12].

5 5. IRREDUCIBLE REPRESENTATIONS {U0,X}

Using the results of the previous section, we give a new family of irreducible representations of \mathfrak{S}_{∞} . For any $\theta \in \operatorname{Aut}(X)$ we denote by $H(\theta)$ the subgroup of all finite permutations which commute with θ :

$$H(\theta) = \{ g \in \mathcal{G}_{\infty} ; g\theta = \theta g \} (= H(\theta^{-1})).$$

In what follows we shall restrict ourselves to some special automorphisms. For any integer $p \geqslant 2$, we denote by Aut p(X) the set of all automorphisms $\theta \in Aut(X)$ having the following two properties:

(i)
$$\theta = \prod_{m} (i_{m0} i_{m1} \dots i_{m p-1})$$
 in cycle-notation,

(ii) supp θ = X, i.e. no point of X is fixed by θ .

Let $A(\theta)$ be the abelian subgroup of \mathfrak{S}_{∞} which is generated by all the cyclic permutations $(i_{m0}\ i_{m1}\ \dots\ i_{m\ p-1})$, $m=1,2,\dots$ And let $S(\theta)$ be

the subgroup of all permutations $g \in \mathfrak{S}_{\infty}$ satisfying the property: there exists some $\sigma \in \mathfrak{S}_{\infty}$ such that $g(i_{mk}) = i_{\sigma(m)k}$ for all m=1,2,... and k=0,1,...,p-1. As is easily seen, $A(\theta)S(\theta) = S(\theta)A(\theta) = S(\theta) \bowtie A(\theta)$ (semidirect product).

PROPOSITION 5.1. $H(\theta) = S(\theta) \ltimes A(\theta)$.

The proof is skipped for want of space. The next result describes the structure of $H(\theta)$ for an arbitrary automorphism $\theta \in Aut(X)$.

PROPOSITION 5.2. Any $\theta \in \operatorname{Aut}(X)$ admits an expression of the form: $\theta = \theta_{\infty} \theta_{2}\theta_{3} \dots$, where θ_{n} is a product of disjoint cycles of length n and supp θ_{n} ($n=\infty,2,3,\ldots$) mutually disjoint. Furthermore we have $H(\theta) = G(X-\sup \theta) \times H'(\theta_{2}) \times H'(\theta_{3}) \times \ldots$, in the sence of restricted direct product. Here $H'(\theta_{k})$ denotes the subgroup of all permutations in $G(\sup \theta_{k})$ which commute with θ_{k} .

Let $\theta \in \operatorname{Aut}_p(X)$ with $p \geqslant 2$. It follows from Proposition 5.1 that $H(\theta)$ admits exactly 2p unitary characters. (Note that $S(\theta) \cong \mathfrak{S}_{\infty}$ has exactly two unitary characters 1 and sgn.) By Proposition 4.1 we have the following

THEOREM 5.3. Let $\theta \in Aut_p(X)$ with $p \gg 2$.

- (1) For any unitary character χ of $H(\theta)$, U^{θ} , χ is irreducible.
- (2) For two unitary characters χ and χ' of $H(\theta)$, $U^{\theta,\chi}$ is equivalent to $U^{\theta,\chi'}$ if and only if $\chi = \chi'$.

For two automorphisms $\theta = \Pi \ (i_{m0} \dots i_{m p-1}) \in \operatorname{Aut}_p(X)$ and $\theta' = \Pi \ (j_{n0} \dots j_{n p'-1}) \in \operatorname{Aut}_p(X)$ we denote by $N(\theta, \theta')$ the number of pairs (m,n) such that $\{i_{m0}, \dots, i_{m p-1}\} = \{j_{n0}, \dots, j_{n p'-1}\}$.

THEOREM 5.4. If $N(\theta, \theta')$ is finite, two unitary representations $U^{\theta', \chi}$ and $U^{\theta', \chi'}$ are not equivalent for any unitary characters χ and χ' of $H(\theta)$ and $H(\theta')$, respectively.

Proof (in case of p=p'). First we note that $|H(\theta):H(\theta)\cap H(\theta')|=\infty$ by assumption. We choose $\alpha\in Aut(X)$ such that $\theta'=\alpha\theta\alpha^{-1}$ and denote by $\hat{\alpha}$ the automorphism of \widehat{S}_{∞} defined by $\hat{\alpha}(g)=\alpha g\alpha^{-1}$, $g\in\widehat{S}_{\infty}$. Then one can show that $|H(\theta):\hat{\alpha}(gH(\theta)g^{-1})\cap H(\theta)|=\infty$. Applying Proposition 4.2, we get the desired result. The proof for $p\neq p'$ is similar. Q.E.D.

THEOREM 5.5. Let $\theta \in \operatorname{Aut}_p(X)$ with $p \not \geq 2$ and χ a unitary character of $H(\theta)$. Then U^{θ}, χ is equivalent to neither π^{ρ} nor $\overline{\pi}^{\rho}$ for any irreducible representation ρ of \mathfrak{S}_p , $n=0,1,2,\ldots$

Proof. We have only to repeat the arguments in Propositions 4.1 and 4.2. Q.E.D.

§ 6. CONCLUDING REMARKS

In this note we restricted ourselves to rather special kind of automorphisms, namely, $\operatorname{Aut}_p(X)$, and discussed the unitary representations $U^{\theta,X}$. However, with the help of Proposition 5.2, we might discuss them in more general situation. Two remarks are now in order.

If θ has a finite support, i.e. $\theta \in \mathfrak{S}_{\infty}$, $H(\theta)$ admits a direct product decomposition $H(\theta) = H'(\theta) \times \mathfrak{S}(X-\operatorname{supp}\theta)$, where $H'(\theta) \subset \mathfrak{S}(\operatorname{supp}\theta)$. Then the next result is easy to see.

Ind
$$G_{\infty}$$

$$H(\theta) \quad \rho' \otimes 1 = \sum_{\rho \in G} [\rho' : \operatorname{Res}_{H'(\theta)} \rho] \pi^{\rho},$$

$$\rho \in G(\operatorname{supp} \theta)$$

where ρ' is a representation of $H'(\theta)$. Hence our method yields the irreducible representations which are discussed in [4] and [6].

Next assume that $\theta \in \operatorname{Aut}(X)$ admits a cycle-notation Π $(i_{m0} \dots i_{m\ p-1})$ with X-supp $\theta = \{1,2,\dots,n\ \}$. Since $H(\theta)$ is a direct product $\mathfrak{S}_n \times H'(\theta)$, any unitary character is of the form $\epsilon \otimes \chi$, where $\epsilon = 1$ or sgn. Then we see that

$$\operatorname{Ind}_{H(\theta)}^{\mathbb{G}_{\infty}} \quad \varepsilon \otimes \chi = \operatorname{Ind}_{\mathbb{G}_{n}^{\times} \mathbb{G}_{\infty-n}}^{\mathbb{G}_{\infty}} \quad \varepsilon \otimes U^{\theta,\chi} ,$$

where $\mathfrak{S}_{\infty-n}$ is identified with \mathfrak{S}_{∞} . Thus the problem is reduced to the study of the representations stated in Lemma 3.1.

Before closing this note, I would like to pose four problems which seem important and interesting.

- (1) Study of the unitary representations arising from the dynamical system $(\mathfrak{F}_{\infty}, \mathcal{Z}^{\infty}, \mu)$ with a quasi-invariant measure μ .
 - (2) Complete classification of the unitary representations $U^{\theta,\chi}$.
 - (3) Irreducible decompositions of factor representations of type II.
- (4) Systematic study of irreducible representations of discrete groups.

REFERENCES

- [1] R.Godement, Les fonctions de type positif et la théorie des groupes, Trans.Amer.Math.Soc., 63 (1948), 1-84.
- [2] E.Hewitt and L.J.Savage, Symmetric measures on cartesian products, Trans.Amer.Math.Soc., 80 (1955), 470-501.
- [3] A.A.Kirillov, Dynamical systems, factors and representations of groups, Russian Math.Surveys, 22-5 (1967), 63-75.
- [4] A.Lieberman, The structure of certain unitary representations of infinite symmetric groups, Trans.Amer.Math.Soc., 164 (1972), 189-198.

- [5] F.J.Murray and J.von Neumann, On rings of operators, IV, Ann.Math., 44 (1943), 716-808.
- [6] G.I.Ol'shanskii, New "large" groups of type I, J.Soviet Math., 18 (1982), 22-39.
- [7] M.Saito, Représentations unitaires monomiales d'un groupe discret, en particulier du groupe modulaire, J.Math.Soc.Japan, 26 (1974), 464-482.
- [8] E.Thoma, Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe, Math.Z., 85 (1964), 40-61.
- [9] A.M. Vershik and S.V. Kerov, Asymptotic theory of characters of the symmetric group, Funct. Anal. Appl., 15 (1981), 246-255.
- [10] A.M. Vershik and S.V. Kerov, Characters and factor representations of the infinite symmetric group, Soviet Math. Dokl., 23 (1981), 389-392.
- [11] A.M. Vershik and S.V. Kerov, The K-functor (Grothendieck group) of the infinite symmetric group, J. Soviet Math., 28 (1985), 549-568.
- [12] H.Yoshizawa, Some remarks on unitary representations of the free group, Osaka Math.J., 3 (1951), 55-63.