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UNITARY REPRESENTATIONS OF THE INFINITE SYMMETRIC GROUP
by Nobuaki OBATA, Nagoya University

INTRODUCTION

The infinite symmetric group (}fa is defined as the discrete group of
all finite permutations of the set of all natural numbers. It was proved
in Murray-von Neumann [5] that the group von Neumann algebra of (§‘;.is a

factor of type II.. Therefore it is a non-type I group, and probably for

1
that reason, its irreducible (unitary) representations have not been
investigated satisfactorily. In fact, only few results are known, for
instance, see Lieberman [4] and Ol'shanskii [6]. On the other hand, factor
representations of type II have been studied in Thoma [8], Vershik-Kerov
[91,[10] and [11].

Our main purpose is to sﬁudy irreducible represeniations of the
infinite symmetric group as systematically as possible. The present note
is divided into two parts: The first part (§1-§3) contains some results
concerning irreducible representations discussed inv[4] and [6]. In the

second part (§4-§6), we construct a new family of irreducible represen-

tations and give some remarks.

§ 1. IRREDUCIBLE REPRESENTATIONS {n°} AND {7}

Let X be the set of all natural numbers and C?; the group of all
finite permutatiqns of X. If Y is a subset of X, we denote by CE"(Y) the
subgroup of all finiﬁe permutations of X which act identically outside Y.
For brevity, we write G?; and G?;-n for & ({1,2,...,n}) and
G- ({n+1,n+2,...}), respectively.

If p is a (finite dimensional unitary) representation of CE:V we



® and 7 of (s~ as the induced represen-
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define unitary representations =

Obviously, P =1 (the trivial representation) and 7° = sgn (the alternating

representation) if p is the trivial representation of Cs“o = {e}. The

P

unitary representations n are discussed in Lieberman [4] and O1'shanskii

[6]. In view of their results, we obtain the following

PROPOSITION 1.1. (1) Let p be a representation of (3*5. Then
7° is irreducible <§$>-Fp is irreducible <=> p is irreducible.
(2) Let p and p' be irreducible representations of G;; and (E;“ ,
respectively. Then
Py =p' Par =P’
2-1) "= 7 T T &>p Mp' (including n = n'),

L}
(2-2) 1 is not equivalent to 7.

For the structure of the representations {r°} we have the following

result. An analoguous assertions for {7°} are easily obtained and omitted.

PROPOSITION 1.2. Let p and p' be representations of (Ejh and (E‘;,,
respectively. Then we have

] ]
1) o1’ >~ *®P i =,

(2) Q1P nﬁn'n‘(j) where ©(j) = Ind n+n'-j o" and

§=0 - GG =Sy
" s : " = '
p" is defined as p (°1’°2’°3) p(olcz)qbo (0103),
(3) Identifying Cs\;_n with @; by shift, we have

- 1 @" '
Ind G p®1° =~ | [oQp' : Res I I L
<3;x ®@-n N G;h*' n'
Te13;+n'



The assertions (1) and (2) are easy to see and (3) follows from the next

lemma which is a consequence of transitivity of induced representations.

LEMMA 1.3. Let H be a subgroup of C§;_n and t an arbitrary répresen-

tation of H. Then, for any representation p of G?h, we have

- We shall now give a useful realization of 7°. We write X[n], n=>0,
for the set of all ordered n-tuples i = (il,iz, cens in) consisting of
distinct elements ik of X. The groups G;; and (;; act on X[n] by means of

the maps:

i —> gi= (g(i)), gi), ..., gi)), ge g, .

i —> io = (10(1)’ 1oy woo 1c(n))’ o€ (an.
Let (p,W) be a representation of Q?; and H® the Hilbert space of all W-
valued functions f defined on X[n] satisfying f(iog) = p(d)-lf(i). Then

x° is realized as

(@) ) = £g 1)

Here we add the following result.

PROPOSITION 1.4. Let (Tn’IZ(X[g])) be the unitary representation
defined naturally by the action of Cgf” on X[n]. Then we have
™ o z {dim o) .
Vas

peCs”n

Proof. Consider the representation =

~

P with the regular representation

p of (311. Q.E.D.



§ 2. REPRESENTATIONS ON PRODUCT SPACES
Let Z be a standard Borel space. The infinite symmetric group G
acts on Zfa, the countably infinite product of & , by means of the maps:

e ) —> gz = (z ).

z = (zl, Z, - «g'l(l)’ zg-l(z),
If u is an @'c-quasi-invariant measure on zm, the triple (G;, Zw,u) is
called a dynamical system after Kirillov [3]. It would be very interesting
to consider -the unitary representation U arising from the dynamical system.
We shall give an irreducible decomposition of the unitary represén-
tation (U,Lz(zm,u)) in case when y is an @’m-invariant probability
measure. By virtue of Hewitt and Savage [2], we have onl){ to consider the

case when u is a product measure of an identical probability measure u; on 2.

We put
IN; - {j = (jl’jZ"" ) ; '?2 a non-negative integer and
Te

0 except finitely many &

and

- -]

!Nk°’0 ={j = Gy3p -+ )& Ny 5 <k for all ¢}, k20,

o

The group (5 acts on N, and N

0 k,0 in the same manner as above.

PROPOSITION 2.1. U is equivalent to the unitary representation
corresponding to the @; -space lNkmo or IN; according to dim LZ(Z.,ul) =
k+l or =,

Proof. For a fixed orthogonal basis { fosl, fl’ f2, ... } for Lz(z,ul)

-]

oo (ot WN3)} for L2(2°°,u"1°)

we can construct an orthogonal basis {fj ; JE€IN

h that U(g)f. = £ .. Q.E.D.
suc a (g)J . Q

Thus it is sufficient to consider the G:-spaces )Nk‘”o and lN;. For
’

nZ1 we denote by ?(n) the set of all partitions of n:

?(n) = {d = (dl""’dn) ; dj non-negative mteger with Z de = n}.



x Y

For d € ¥(n), Y(d) denotes a Young subgroup of @;1 of the form:

Y(d) =G({*Dx... xG({'DxG{*N..... x ({1}
N— dlﬁj N— dZ —_

THEOREM 2.2. U is decomposed as follows:

vr1® ] 7 med) °(d)

n»l deP(n)
G X (d1+...+d )! '
where p(d) = Ind y 3, 1 and m(d) = (d1+_“+dn) aToar deY(m),

k+1 = dim LZ(Z ,ul), with the conventon that m(d) = » (countably infinite)
if din L2(Z,u)) = =.

Proof. First we decompose the @;—spaces ,NkTO and JN: into a diéjoint
union of @;—orbits (©. Next we consider the representation corresponding

to the transitive @;-space (®. We skip the detailed discussions. Q.E.D.

p(d)

Needless to say, = is decomposed into a finite sum of irreducible
representations a° by Proposition 1.2. Finally we remark that the dynamical
system (S, gm,u:) is not recovered from the corresponding unitary represen-

tation. In fact we can prove the following

PROPOSITION 2.3. Let u; and ul be two probability measures on z.
Then two dynamical systems (@;’2@’“:) and (G7, Zcf,uiw) are isomorphic
if and only if there exists a Borel isomorphism (defined up to null sets)

¥ : R —F with yu; = ui.

§ 3. EXTENSION OF THE @; -SPACE X[n] AND CORRESPONDING REPRESENTATIONS
Let Aut(X) denote the group of all permutations of X. Obviously, CS\;
is a normal subgroup of Aut(X). First of all, we shall give a description

of End(@‘w), the set of all endomorphisms of Cs\'w.



THEOREM 3.1. For each f& End((S”) there exist unordered pairs
- - . - ‘ ( = 3 .
@2’]( {Jkl’ ix2 } (k=1,2,...,s) and ordered sequences Om’z {121, 12'2,..}
(2=1,2,..., t), possibly s=0 or t=0, satisfying the following properties:
(1) (92’1, cens @Z,k’ @w,l’ cens Ccoo,t are mutually disjoint as subsets
of X, '

(ii) for any ge\?;, we have

(1-sgn g)/2
f(g) = ( )
K

It =2 w0

t (a1 te2
(3yq Jin) mi. . :
k1 k2 e=1 \lggc) dpg(a) o

The above result follows from routine observation of generators of @;
’

1

so we skip the proof here. The next assertion is then immediate.

COROLLARY 3.2. -For any automorphism f of @;, there exists a unique
o € Aut(X) such that f(g) = aga-l, ge 6\’&. In particular, Aut(@;) is

isomorphic to Aut(X).

We shall now consider the extension of the @;-space X[n]. Generally
speaking, for an arbitraryi set Z, the first cohomology set H1 (@;,X[n];Aut(Z))
describes extensions of the @;-space X[n]. For notations, see [3]. Here
we shall restrict ourselves to those extensions which are described by
ul (@;,x[“]; @;-n)' l:‘ix a cross section i > g[i] € @'@ for the canonical
projection (5 x> @: / @\'m_n. For ariy f €& End( @;_n) we define’

a 1-cocycle 8. & 2 (G, X" ;G2 ) by 8,(e.1) = £(glilg glg™li]). Then

we have the following

PROPOSITION 3.3. The map f F—>-g . induces a surjection from End(G;;_n)
onto H! ((s\w,x[n];@;_n). Moreover Be and Bgy are cohomologuous if and only

if f and f' are conjugate in Aut({n+1,n+2,....}).



Finally we shall consider the corresponding unitary representations.
Let n and m be two non-negative integers. We put Z = {n+1,n+2,...}CX. For

any Bfé zl(Cs\;,x[“]; (s::_n), feEnd(G\;_n), we define an action of Cs\’m on
x[n]xz[m] by means of the maps:
(1,) —> g(i,5) = (gi, 8.(e,0)7'5), geG.

n,m,f

We denote by U the corresponding unitary representation. Viewing

Un,m,f n,m,f'

Proposition 3.3, if f and f' are conjugate in Aut(Z), and U

are equivalent.

THEOREM 3.4. If f is an automorphism of <§fn, we have

vt ™mEa T (gim ) APV

with the notation in Proposition 1.4.

§ 4. GENERAL RESULTS FOR DISCRETE GROUPS

Let G be a discrete group, H a subgroup and @ = G/H the quotient space.
We denote by w0<5 Q@ the point whose isotropy group is H. For each unitary
character x of H we consider the induced representation UX = Ind g x- It is
convenient toradopt the following realization of uX, |

Let LZ(Q) be the Hilbert space of all square summable functions on Q.
We fix a cross section w +—>- g[w]€ G for the canonical projection
g > 8uy € 2, g&€G. Then the induced representétion uX is give by the
formula: |

W) (w) = x(glo] tg glg o]) £fglw), f£eL’(@) and geo.

PROPOSITION 4.1. Assume that all H-orbits in @ are infinite sets
except {mo}. Then we have
(1) UX is irreducible,

)
(2) uX is equivalent to uX if and only if y = x'.



Proof. Take an orthonormal basis {ﬁw; wEQ } , where dw denotes the
delta-function concentrated at w. Suppose that T is a bounded operator on
LZ(Q) satisfying Ux(g)T = TUx(g) for all g€ G. Then one can see that
ITGwO(w)I is constant on each H-orbit in Q. By assumption we conclude that

T is a scalar operator. This proves (1). The assertion (2) is shown in a

similar manner. Q.E.D.
By mimicking the above proof we have the following

PROPOSITION 4.2. Let a be an automorphism of G. If |H :u(gHg'l)nHl
1
= + o for all g&G, two unitary representations UX and UX o q are disjoint

for any unitary characters-y and x' of H.

Several authors gave analoguous results for their own purposes. We

refer to Godement [1], Saito [7] and Yoshizawa [12].

§ 5. IRREDUCIBLE REPRESENTATIONS {U°"%)

Using the results of the previous section, we give a new family of
irreducible representations of @; For any 6 € Aut(X) we ‘denote by H(8)
the subgroup of all finite permutations which commute with 8:

H(e) = { geG2 ; g8 = 0g } (= He ™).
In what follows we shall restrict ourselves to some special automorphisms.
For any integer pzz, we denote by AUtp(X) the set of all automorphisms 6&
Aut (X) having the following two properties:

(e=1n@d ) in cycle-notation,
m

m0 'ml " 'm p-1
(ii) supp 6 = X, i.e. no point of X is fixed by 6.
Let A(6) be the abelian subgroup of @’“ which is generated by all

the cyclic permutations (i , i ), m=1,2,.... And let S(8) be

m0 ‘ml " 'm p-1



the subgroup of all permutations g E:C-S\'°° satisfying the property: there

exists some(Jé;G?; such that g(imk) for all m=1,2,... and k=0,1,.

- io(m)k
S(8)A(B8) = S(8)IXA(8) (semidirect

..,p-1. As is easily seen, A(6)S(6)

product).
PROPOSITION S.1. H(6) = S(8)XA(8).

The proof is skipped for want of space. The next result describes the

structure of H(8) for an arbitrary automorphism p & Aut(X).

PROPOSITION 5.2. Any 6 & Aut(X) admits an expression of the form:

& = 0_ 8263 ..... , where en is a product of disjoint cycles of length n

and supp en ( n=*,2,3,...) mutually disjoint. Furthermore we have
H(e) = (S° (X-supp S)X-H'(GZ)X-H‘(63)>< ..... , in the sence of restricted
direct product. Here H'(Sk) denotes the subgroup of all permutations in

(§Tsupp'ek) which commute with @, .

Let 6 & Autp(X) with p>2. It follows from Proposition 5.1 that
H(6) admits exactly 2p unitary characters. (Note that S(8) C;’m has
‘exactly two unitary characters 1 and sgn.) By Proposition 4.1 we have

the following

THEOREM 5.3. Let GGrAutp(X) with p2-2.

B,Xx

(1) For any unitary character x of H(8), U is irreducible.

(2) For two unitary characters x and x' of H(6), Ue’x is equivalent to

]
u¥ X" if and only if x = x'.

. _ . . I
For two automorphisms 6 =1 (1m0... i p_l)E?Autp(X) and 6

T (G- ) E‘AUtp,(X) we denote by N(6,8') the number of pairs

In p'-1
(m,n) such that {1m0,...,1 1 } = {Jno,i...,J

m p- n p'-l}'

- _15_



THEOREM 5.4. If N(6,6') is finite, two unitary representations
Ue’X and Ue"X’ are not equivalent for any unitary characters x and x' of
H(8) and H(8'), respectively.
Proof (in case of p=p'). First we note that l H(e) : H(e)r\H(e')I = ©
by assumption. We choose a & Aut(X) such that @' = aea—l and denote by
.a the automorphism of Cs\m defined by a(g) = aga—l, g &€&~ _ . Then one
can show that |H(8) : &(gH(e)g-l)r)H(e)| == ., Applying Proposition 4.2,

we get the desired result. The proof for p+p' is similar. Q.E.D.

THEOREM 5.5. Let 6 & Autp(x) with p7 2 and x a unitary character
of H(8). Then Ua’x is equivalent to neither =° nor 7° for any irreducible
representation p of (E”h, n=0,1,2,....

Proof. We have only to:repeat the arguments in Propositions 4.1

and 4.2. Q.E.D.

§ 6. CONCLUDING REMARks

In this note we‘restricted ourselves to rather special kind of
automorphisms, namely, Autp(Xj, and discussed the unitary representations
Us’x. However, with the help‘of Proposition 5.2, we might discuss them
in more general situation. Two remarks are now in order.

If 8 has a finite support, i.e. 6 € Cgi” , H(8) admits a direct
product decomposition H(8) = H'(8) % G?(X-suppe ), where H'(8) C (¥ (supp6 ).

Then the next result is easy to see.

2 (;tsuppe )
Ind H(9) p'®1 = z [ o' : Res H'(8) p ]

PaN
pe G (supp )
where p' is a representation of H'(8). Hence our method yields the irredu-

cible representations which are discussed in [4] and [6].



)

Next assume that 6 € Aut(X) admits a cycle-notation II (imo... im p-1
with X-supp 6 = {1,2,...,n }. Since H(®) is a direct product G?nx H'(8),
any unitary character is of the form e®yx , where € = 1 or sgn. Then we
see that o
Ind yio) €®x = Ind @n"z\m-n e@udx

where Cng-n is identified with G?Jm. Thus the problem is reduced to the
study of the representations stated in Lemma 3.1.

Before closing this note, I would like to pose four problems which
seem important and intefesting.

(1) Study of the unitary representations arising from the dynamical
system (G’w, Zm,u) with a quasi-invariant measure yu.

(2) Complete classification of the uﬁitary representations Ue’x.

(3) Irfeducible decompositions of factor representations of type II.

(4) Systematic study of irreducible representations of discrete

groups.
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