※このページは北大数学COEで作成しています
第30回PDE実解析研究会 (北大数学COE協賛)
PDE Real Analysis Seminar
Program
- 組織委員:
- 新井仁之(東大),儀我美一(東大/北大)
- 幹事:
- 石井仁司(早大),河添 健(慶大),剣持信幸(千葉大),酒井 良(都立大),柴田良弘(早大),望月 清(中央大),宮地晶彦(東女大),山崎昌男(早大)
- 日 時:
- 2007年1月17日(水) 10:30-11:30
- 場 所:
- 東京大学大学院 数理科学研究科056号室
※会場へのアクセスは下記にてご確認下さい。
駒場アクセスマップ
http://www.u-tokyo.ac.jp/campusmap/map02_02_j.html
駒場キャンパス数理科学研究科棟
http://www.u-tokyo.ac.jp/campusmap/cam02_01_27_j.html
- 講 演 者:
- Alex Mahalov (Arizona State University)
- 演 題:
- Fast Singular Oscillating Limits of Hydrodynamic PDEs: application to 3D Euler, Navier-Stokes and MHD equations
- ABSTRACT:
- Methods of harmonic analysis and dispersive properties are applied to 3d hydrodynamic equations to obtain long-time and/or global existence results to the Cauchy problem for special classes of 3d initial data. Smoothness assumptions for initial data are the same as in local existence theorems. Techniques for fast singular oscillating limits are used and large and/or infinite time regularity is obtained by bootstrapping from global regularity of the limit equations. The latter gain regularity from 3d nonlinear cancellation of oscillations. Applications include Euler, Navier-Stokes, Boussinesq and MHD equations, in infinite, periodic and bounded cylindrical domains.