※このページは北大数学COEで作成しています

第27回PDE実解析研究会 (北大数学COE協賛)

PDE Real Analysis Seminar

Contents

Program

組織委員:
新井仁之(東大),儀我美一(東大/北大)
幹事:
石井仁司(早大),河添 健(慶大),剣持信幸(千葉大),酒井 良(都立大),柴田良弘(早大),望月 清(中央大),宮地晶彦(東女大),山崎昌男(早大),山本昌宏(東大)
日  時:
2006年10月30日(月) 16:30-17:30
場  所:
東京大学大学院 数理科学研究科128号室
※会場へのアクセスは下記にてご確認下さい。
駒場アクセスマップ
http://www.u-tokyo.ac.jp/campusmap/map02_02_j.html
駒場キャンパス数理科学研究科棟
http://www.u-tokyo.ac.jp/campusmap/cam02_01_27_j.html
講 演 者:
Matti Lassas (Helsinki University of Technology, Institute of Mathematics)
演  題:
Inverse Problems and Index Formulae for Dirac Operators
ABSTRACT:

We consider a selfadjoin Dirac-type operator $D_P$ on a vector bundle $V$ over a compact Riemannian manifold $(M, g)$ with a nonempty boundary.

The operator $D_P$ is specified by a boundary condition $P(u|_{\partial M})=0$ where $P$ is a projector which may be a non-local, i.e. a pseudodifferential operator. We assume the existence of a chirality operator which decomposes $L2(M, V)$ into two orthogonal subspaces $X_+ \oplus X_-$.

In the talk we consider the reconstruction of $(M, g)$, $V$, and $D_P$ from the boundary data on $\partial M$.

The data used is either the Cauchy data, i.e. the restrictions to $\partial M \times R_+$ of the solutions to the hyperbolic Dirac equation, or the boundary spectral data, i.e. the set of the eigenvalues and the boundary values of the eigenfunctions of $D_P$. We obtain formulae for the index and prove uniqueness results for the inverse boundary value problems. We apply the obtained results to the classical Dirac-type operator in $M\times \C4$, $M \subset \R3$. The presented results have been done in collaboration with Yaroslav Kurylev (Loughborough, UK).