※このページは北大数学COEで作成しています
第11回PDE実解析研究会 (北大数学COE協賛)
PDE Real Analysis Seminar
Program
- 組織委員:
- 新井仁之(東大),儀我美一(東大/北大)
- 幹事:
- 石井仁司(早大),河添 健(慶大),剣持信幸(千葉大),酒井 良(都立大),柴田良弘(早大),望月 清(中央大),宮地晶彦(東女大),山崎昌男(早大)
- 日 時:
- 2005年5月25日(水) 10:30-11:30, 11:45-12:45
- 場 所:
- 東京大学大学院 数理科学研究科056号室
※会場へのアクセスは下記にてご確認下さい。
駒場アクセスマップ
http://www.u-tokyo.ac.jp/campusmap/map02_02_j.html
駒場キャンパス数理科学研究科棟
http://www.u-tokyo.ac.jp/campusmap/cam02_01_27_j.html
10:30-11:30
- 講 演 者:
- Vincenzo Vespri (Dipartimento di Matematica Ulisse Dini Viale Morgagni)
- 演 題:
- Some regularity results for Stefan equation
- ABSTRACT:
-
We consider the eqation $\beta (u)_t = A(u)$ where $A$ is an elliptic operator and $\beta$ is a maximal graph. Under suitable hypothesis on $\beta$ and $A$ we prove the continuity of local solutions extendind some techniques introduced in the 80's.
11:45-12:45
- 講 演 者:
- Paolo Marcellini (Università degli Studi di Firenze)
- 演 題:
- Nonlinear elliptic systems with general growth
- ABSTRACT:
-
We prove \textit{local Lipschitz-continuity} and, as a consequence, $C^{k}$%\textit{\ and }$C^{\infty }$\textit{\ regularity} of \textit{weak} solutions $u$ for a class of \textit{nonlinear elliptic differential systems} of the form $\sum_{i=1}^{n}\frac{\partial }{\partial x_{i}}a_{i}^{\alpha}(Du)=0,\;\alpha =1,2\dots m$. The \textit{growth conditions} on the dependence of functions $a_{i}^{\alpha }(\cdot )$ on the gradient $Du$ are so mild to allow us to embrace growths between the \textit{linear} and the \textit{exponential} cases, and they are more general than those known in the literature.