※このページは北大数学COEで作成しています

第5回PDE実解析研究会 (北大数学COE協賛)

PDE Real Analysis Seminar

Contents

Program

代 表 者:
小池茂昭 (埼玉大) ,新井仁之 (東大) ,儀我美一 (北大)
日  時:
2004年12月15日 (水) 10:30〜11:30, 11:45〜12:45
場  所:
東京大学大学院 数理科学研究科122号室
講 演 者:
Andrzej Swiech (ジョージア工科大学・教授)
Francesca Da Lio (Dipartimento di Matematica P. e A.Universit di Padova researcher)
演  題:
"Hamilton-Jacobi-Bellman equations for optimal control of stochastic Navier-Stokes equations." (Andrzej Swiech)
時  間:10:30-11:30
ABSTRACT:
We consider a parameterized family of continuous functions, which containsas its members Bourbai's and Perkins's nowhere differentiable functions as well as the Cantor-Lebesgue singular functions.
演  題:
"A GEOMETRICAL APPROACH TO FRONT PROPAGATION PROBLEMS IN BOUNDED DOMAINS WITH NEUMANN-TYPE BOUNDARY AND APPLICATIONS" (Francesca Da Lio)
時  間:11:45-12:45
ABSTRACT:
We talk about a new definition of weak solution for the global-in-time motion of a front in bounded domains with normal velocity depending not only on its curvature but also on the measure of the set it encloses and with a contact angle boundary condition. We apply this definition to study the asymptotic behaviour of the solutions of some local and nonlocal reaction-diffusion equations.