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We will propose a new reconstruction scheme for identify the viscoelasticity of living body
from MRE measurements. The reconstruction scheme consistes of application of oscillating -
dacaying solutions, complex geometrical optics solution, solving the Cauchy problem for elliptic
and hyperbolic equations.

1 Introduction

In the method of dynamic MR-Elastography, it is
reasonable to consider not only the elastic properties
of the material but also the viscous properties of the
material. There are various models to introduce vis-
cosity into the elastic equation. The simplest model
is the so-called Voigt model.

That is, for any time t > 0, and a point x =
(x1, · · · , xn) in a bounded domain Ω ⊂ Rn(n = 2, 3)
whose boundary ∂Ω is C∞ smooth, the displacement
u(x, t) satisfies the equation:
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ρ(x) > 0 is the density, the elasticity tensor λilkm and
the viscosity tensor ηilkm satisfy the symmetries:

λilkm = λkilm = λikml = λlmik,

ηilkm = ηkilm = ηikml = ηlmik.

If we assume that the material is isotropic and in-
compressible, the Voigt model (1.1) reduces to a scalar
equation with shear modulus µ(x) and viscosity coef-
ficient η(x).

For simplicity, we assume n = 2 and
µ(x), η(x), ρ(x) ∈ C∞(Ω̄) satisfy the following
condition

µ(x), η(x), ρ(x) > 0 on Ω̄.

Then, the forward problem is as follow.

Forward Problem:
For any f ∈ C0([0,∞);H

1
2 (∂Ω)), to find a solution

u ∈ C0([0,∞);H1(Ω)) ∩ C1([0,∞);L2(Ω)) to
ρ(x)∂2

t u −∇ · (µ(x)∇u + η(x)∇ut) = 0
in (0,∞) × Ω,

u = f on (0,∞) × ∂Ω,

u = ut = 0 on {0} × Ω.

(1.2)

It is well known the forward problem is well posed.
We denote the solution u to (1.2) by u = u(f). More-
over, we have the following:

Proposition 1.1. For any u0 ∈ H1(Ω), u1 ∈
L2(Ω), F ∈ C0([0,∞);L2(Ω)), there exists a unique
solution u ∈ C0([0,∞);H1(Ω)) ∩ C1([0,∞);L2(Ω)) to

ρ(x)∂2
t u −∇ · (µ(x)∇u + η(x)∇ut) = F

in (0,∞) × Ω,

u = 0 on (0,∞) × ∂Ω,

u = u0, ut = u1 on {0} × Ω.

(1.3)

Also, there exists a constant c0 > 0 independent of
u0, u1, F such that

∥u(t)∥H1(Ω) + ∥∂tu(t)∥L2(Ω) = O(e−c0t) (t → ∞).
(1.4)

Based on the well posedness of the forward problem,
we formulate our inverse problem as follow.
Inverse Problem:

Suppose µ(x), η(x), ρ(x) are unknown. Reconstruct
µ(x), η(x), ρ(x) from u(f) in (0, T ) × Ω̄ for finitely
many f ’s, where u = u(f) is the solution to (1.2).

Theorem 1.2. There is a reconstruction procedure
for this inverse problem.
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The details of the reconstruction procedure will be
given later. In section 2, we reduce our forward prob-
lem to a kind of elliptic partial differential equation,
then in section 3 we construct the oscillating-decaying
solution to this elliptic equation and state an alternat-
ing iterative method to solving the Cauchy problem
for this elliptic equation in section 4. Finally, in sec-
tion 5, by the application of the oscillating-decaying
solution to solve the first order hyperbolic equation
and solve the Cauchy problem for elliptic equation re-
peatedly, we can reconstruct the coefficients in our
inverse problem.

2 The dominant part of u(f)

Theorem 2.1. Let ω > 0 be a constant and f(x.t) =
eiωtg(x) with g(x) ∈ H

1
2 (∂Ω). Then, the bound-

ary value problem (1.2) has a unique solution u ∈
C0([0,∞);H1(Ω)) ∩ C1([0,∞);L2(Ω)) with dominant
part eiωtv(x) where v(x) ∈ H1(Ω) solves{

∇ · (µ∇v + iωη∇v) + ρω2v = 0 in Ω,

v = g on ∂Ω,

(2.5)

Remark 2.2. Hence, we can say that we know v in
Ω if we know u(eiωtg) in Ω × [0,∞).

3 Application of oscillating-
decaying solutions

Theorem 3.1. By using interior measurements asso-
ciated to oscillating - decaying solutions (abbreviated
by OD solutions), and two different ω’s, we can ap-
proximately reconstruct µ(x), η(x) near ∂Ω if ρ, µ|∂Ω

and η|∂Ω are known.

Since the construction of the oscillating - decaying
solution is local near any point on the ∂Ω, Theorem
3.1 is respect to

Lemma 3.2. By using an OD solution, and two dif-
ferent ω’s, we can continue γ̃ω from Γ̃ into its neigh-
borhood in the direction of yn by solving the Cauchy
problem for a hyperbolic equation with respect to γ̃ω.

4 Application of complex geo-
metrical optics solution

Base on the argument in section 3, we can smoothly
extend the coefficients to an larger domain which con-
tains Ω (see [3]). Next, in the domain Ω̃ ⊂ Rn which is
large enough (e.g. some ball BR0+2), we consider some
domain Ω1, such that Ω̄1 b Ω̃, µ(x), η(x) are known
in Ω̃ \ Ω̄1 and its shape is analogous to that of Ω̃, we

state an iterative method (Johansson’s iteration, [1])
to solve the Cauchy problem

Lv := ∇ · (γ∇v) + ρω2v = 0 in Ω̃ \ Ω̄1,

u = φ on Γ0,

Nu := ∂Lu = ψ on Γ0,

(4.1)

with an incomplete Cauchy data (i.e. the Cauchy data
with noise). We would like to find the Dirichlet input
g on ∂Ω such that it does not contain any unknown
data and the interior measurement generated by this
input approximates the CGO solution in the sense of
Ck (k ≥ 2, k ∈ N).

5 Reconstruction of µ(x), η(x)

By giving an specified input g, we have an interior
measurement v(g) which approximates to the CGO
solution. By using this data we can solve the Cauchy
problem for hyperbolic equation respect to γ just as
we did in section 3 in the direction k repeatedly and
the coefficients µ and η are reconstructed in Ω.
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