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1 Introduction
We consider the inverse problem for identifying cavities in medium. The method is based

on the enclosure method which was introduced by Ikehata [1].
Let Ω be a bounded domain in R2 with Lipschitz boundary, and D be an open set in Ω with

C2 boundary satisfying D ⊂ Ω. We assume that Ω \D is connected and that the conductivity
in Ω\D is 1. Then the electric potential function u(x) in Ω\D satisfies the following boundary
problem : 




∆u = 0 in Ω \ D

∂νu = 0 on ∂D

u = f on ∂Ω

where ν is the outer unit normal to ∂D.
This problem has a unique solution u(f) ∈ H1(Ω \ D) for any f ∈ H

1
2 (∂Ω). The boundary

measurements are given by the Dirichlet-to-Neumann map (DN-map), defined by

ΛDf = ∂νu(f)|∂Ω ∈ H− 1
2 (∂Ω) (f ∈ H

1
2 (∂Ω))

Inverse Problem. From given ΛD, reconstruct the shape and the location of D.

We can reconstruct the convex hull of D by the enclosure method. In the method the special
solution of Laplace equation in Ω, called complex geometrical optics (CGO) solution, plays
the central role. It is defined by

v(x; τ, t, ω) = eτ(x·ω−t)eiτx·ω⊥

where τ(> 0) and t ∈ R are parameters, and ω, ω⊥ ∈ S1 satisfy ω · ω⊥ = 0.
Using this function, we define the indicator function :

Definition 1.1 (indicator function). Define

Iω(τ, t) := 〈(ΛD − Λ∅)v|∂Ω, v|∂Ω〉

where Λ∅ is the DN-map for D = ∅

Note that the indicator function can be calculated from the boundary measurements.
Ikehata proved that we can reconstruct the convex hull of D by investigating the asymptotic

behavior of the indicator function. Note that we can reconstruct the convex hull of D by
reconstructing the function hD(ω) := supx∈D x · ω (ω ∈ S1).
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Theorem 1.2 (Ikehata). hD(ω) can be reconstructed. More precisely,

t > hD(ω) =⇒ lim
τ→∞

Iω(τ, t) = 0,

t = hD(ω) =⇒ lim
τ→∞

Iω(τ, t) 6= 0.

2 Main result
We want to reconstruct the information about D better than its convex hull by using other

CGO-solution of the Laplace equation. The CGO-solution with nonlinear phase was obtained
for more general equation by Kenig, Sjöstrand, and Uhlmann [2]. In particular, the following
function can be applied to our case.

Definition 2.1.
v(x; τ, t, x0, ω) := eτ(t−log |x−x0|)e−iτf(x) (x ∈ Ω)

where τ(> 0) and t ∈ R are parameters, x0 ∈ R2 \ Ω, ω ∈ S1, and f(x) is a function given by

f(x) = dS1

(
x − x0

|x − x0|
, ω

)

where dS1( · , · ) is the metric function on S1.

v satisfies the Laplace equation in Ω.

Lemma 2.2. Assume that there exists ω0 ∈ S1 such that {x ∈ R2 ; x − x0 = kω0, k >
0} ∩ ∂Ω = ∅, then v(x; τ, t, x0, ω0) satisfies 4v = 0 in Ω.

Using this special solution, we define the indicator function :

Definition 2.3.
Ix0(τ, t) := 〈(ΛD − Λ∅)v|∂Ω, v|∂Ω〉

We define a function hD(x0) by hD(x0) := infx∈D log |x − x0| (x0 ∈ R2 \ Ω).

Theorem 2.4. Assume that there exists ω0 ∈ S1 such that {x ∈ R2 ; x − x0 = kω0, k >
0} ∩ ∂Ω = ∅, then we can reconstruct hD(x0). More precisely,

t < hD(x0) =⇒ lim
τ→∞

Iω(τ, t) = 0,

t = hD(x0) =⇒ lim
τ→∞

Iω(τ, t) 6= 0.

Note that ehD(x0) is the distance between x0 and D. Therefore, D ⊂ {x ∈ Ω ; |x − x0| ≥
ehD(x0)}. Setting M = {x0 ∈ R2 \ Ω ; x0 satisfies assumption in theorem}, we have

D ⊂
⋂

x0∈M

{x ∈ Ω ; |x − x0| ≥ ehD(x0)} ⊂ ch(D)

where ch(D) is the convex hull of D.
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