Reconstruction of cavities in medium from boundary measurements

Kazuki Yoshida

1 Introduction

We consider the inverse problem for identifying cavities in medium. The method is based on the enclosure method which was introduced by Ikehata [1].

Let Ω be a bounded domain in \mathbb{R}^2 with Lipschitz boundary, and D be an open set in Ω with C^2 boundary satisfying $\overline{D} \subset \Omega$. We assume that $\Omega \setminus \overline{D}$ is connected and that the conductivity in $\Omega \setminus \overline{D}$ is 1. Then the electric potential function u(x) in $\Omega \setminus \overline{D}$ satisfies the following boundary problem:

$$\begin{cases} \Delta u = 0 & \text{in } \Omega \setminus \overline{D} \\ \partial_{\nu} u = 0 & \text{on } \partial D \\ u = f & \text{on } \partial \Omega \end{cases}$$

where ν is the outer unit normal to ∂D .

This problem has a unique solution $u(f) \in H^1(\Omega \setminus \overline{D})$ for any $f \in H^{\frac{1}{2}}(\partial \Omega)$. The boundary measurements are given by the Dirichlet-to-Neumann map (DN-map), defined by

$$\Lambda_D f = \partial_{\nu} u(f)|_{\partial\Omega} \in H^{-\frac{1}{2}}(\partial\Omega) \ (f \in H^{\frac{1}{2}}(\partial\Omega))$$

Inverse Problem. From given Λ_D , reconstruct the shape and the location of D.

We can reconstruct the convex hull of D by the enclosure method. In the method the special solution of Laplace equation in Ω , called complex geometrical optics (CGO) solution, plays the central role. It is defined by

$$v(x; \tau, t, \omega) = e^{\tau(x \cdot \omega - t)} e^{i\tau x \cdot \omega^{\perp}}$$

where $\tau(>0)$ and $t \in \mathbb{R}$ are parameters, and $\omega, \omega^{\perp} \in S^1$ satisfy $\omega \cdot \omega^{\perp} = 0$. Using this function, we define the indicator function:

Definition 1.1 (indicator function). Define

$$I_{\omega}(\tau, t) := \langle (\Lambda_D - \Lambda_{\emptyset}) v |_{\partial \Omega}, \overline{v} |_{\partial \Omega} \rangle$$

where Λ_{\emptyset} is the DN-map for $D = \emptyset$

Note that the indicator function can be calculated from the boundary measurements.

Ikehata proved that we can reconstruct the convex hull of D by investigating the asymptotic behavior of the indicator function. Note that we can reconstruct the convex hull of D by reconstructing the function $h_D(\omega) := \sup_{x \in D} x \cdot \omega \ (\omega \in S^1)$.

Theorem 1.2 (Ikehata). $h_D(\omega)$ can be reconstructed. More precisely,

$$t > h_D(\omega) \Longrightarrow \lim_{\tau \to \infty} I_{\omega}(\tau, t) = 0,$$

$$t = h_D(\omega) \Longrightarrow \lim_{\tau \to \infty} I_{\omega}(\tau, t) \neq 0.$$

2 Main result

We want to reconstruct the information about D better than its convex hull by using other CGO-solution of the Laplace equation. The CGO-solution with nonlinear phase was obtained for more general equation by Kenig, Sjöstrand, and Uhlmann [2]. In particular, the following function can be applied to our case.

Definition 2.1.

$$v(x;\tau,t,x_0,\omega) := e^{\tau(t-\log|x-x_0|)} e^{-i\tau f(x)} \quad (x \in \overline{\Omega})$$

where $\tau(>0)$ and $t \in \mathbb{R}$ are parameters, $x_0 \in \mathbb{R}^2 \setminus \overline{\Omega}$, $\omega \in S^1$, and f(x) is a function given by

$$f(x) = d_{S^1}\left(\frac{x - x_0}{|x - x_0|}, \omega\right)$$

where $d_{S^1}(\cdot,\cdot)$ is the metric function on S^1 .

v satisfies the Laplace equation in Ω .

Lemma 2.2. Assume that there exists $\omega_0 \in S^1$ such that $\{x \in \mathbb{R}^2 : x - x_0 = k\omega_0, k > 0\} \cap \partial\Omega = \emptyset$, then $v(x; \tau, t, x_0, \omega_0)$ satisfies $\triangle v = 0$ in Ω .

Using this special solution, we define the indicator function:

Definition 2.3.

$$I_{x_0}(\tau,t) := \langle (\Lambda_D - \Lambda_{\emptyset})v|_{\partial\Omega}, \overline{v}|_{\partial\Omega} \rangle$$

We define a function $h_D(x_0)$ by $h_D(x_0) := \inf_{x \in D} \log |x - x_0| \ (x_0 \in \mathbb{R}^2 \setminus \overline{\Omega}).$

Theorem 2.4. Assume that there exists $\omega_0 \in S^1$ such that $\{x \in \mathbb{R}^2 : x - x_0 = k\omega_0, k > 0\} \cap \partial\Omega = \emptyset$, then we can reconstruct $h_D(x_0)$. More precisely,

$$t < h_D(x_0) \Longrightarrow \lim_{\tau \to \infty} I_{\omega}(\tau, t) = 0,$$

$$t = h_D(x_0) \Longrightarrow \lim_{\tau \to \infty} I_{\omega}(\tau, t) \neq 0.$$

Note that $e^{h_D(x_0)}$ is the distance between x_0 and D. Therefore, $D \subset \{x \in \Omega ; |x - x_0| \ge e^{h_D(x_0)}\}$. Setting $M = \{x_0 \in \mathbb{R}^2 \setminus \overline{\Omega} ; x_0 \text{ satisfies assumption in theorem}\}$, we have

$$D \subset \bigcap_{x_0 \in M} \{ x \in \Omega ; |x - x_0| \ge e^{h_D(x_0)} \} \subset ch(D)$$

where ch(D) is the convex hull of D.

References

- [1] Ikehata,M., Enclosing a polygonal cavity in a two dimensional bounded domain from Cauchy data, Inverse Problems, 15(1999), 1231-1241
- [2] C.E.Kenig, J.Sjöstrand, and G.Uhlmann, The Calderón problem with partial data, Ann. of Math.(to appear), arXiv:math.AP/0405486.