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Let ∂D be the unit circle {z; |z| = 1} in C, and D the open unit disc {z; |z| < 1}.
Let µ be a probability measure on ∂D which is not supported on a finite number

of points. Then, by applying the Gram–Schmidt method to 1, z, z2, . . ., z = eiθ,

we can define monic orthogonal polynomials on the unit circle:

Φn(z) = zn + lower order, n = 0, 1, . . . , (Φm, Φn)µ = 0, m 6= n.

These obey the Szegö recursion formula

Φn+1(z) = zΦn(z)− ᾱnz
nΦn(1/z̄), n = 0, 1, . . . ,

with αn = −Φn+1(0) ∈ D. The parameters αn are called the Verblusky coefficients

of dµ. See [13] for background.

A function g ∈ H1 is said to be rigid (or strongly outer) if it is determined by

its argument up to a positive constant factor: If k ∈ H1 satisfies k/|k| = g/|g|
a.e. on ∂D, then k = ag for some a > 0, see, e.g., [8, 9, 10, 11]. A rigid function

g is outer, and hence it may expressed as g = h2 with an outer function h ∈ H2.

For φ ∈ L∞, we define the Toeplitz operator Tφ on H2 by Tφf = P (φf), where

P is the orthogonal projection operator of L2 onto H2. The square of h ∈ H2 is

rigid if and only if h ∈ the closure of Th/h̄H
2 in L2, cf.[2].

Theorem 1 ([1, 7, 9]). We have

hΦn ∈ the closure of [ zn(h/h̄)H2 + zH2] in L2, n = 0, 1, . . . ,

if and only if dµ = 1
2π
|h|2dθ and h2 is rigid.

Theorem 2. We have

hΦn ∈ zn(h/h̄)H2 + zH2, n = 0, 1, . . . ,

if and only if dµ = 1
2π
|h|2dθ and h ∈ Th/h̄H

2.

Proposition 3. Let h ∈ H2. We have h ∈ Th/h̄H
2 and ‖h‖2 ≤ 1 if and only if

h =
1

σ − zτ

for some σ, τ ∈ H2 such that σ is outer and |σ|2 − |τ |2 = 1 a.e. on ∂D.



For simplicity, we assume that h(0) > 0. For φ ∈ L∞, we define the Han-

kel operator Hφ from H2 to zH2 by Hφf = Q(φf), where Q is the orthogonal

projection operator of L2 onto zH2. Let n = 0, 1, . . . and write Hn = Hzn(h/h̄).

Putting

ϕ2k
n = {H∗

nHn}k 1, ϕ2k+1
n = {H∗

nHn}kH∗
n z,

we define σm
n , τm

n ∈ H2 by

σm
n = h(0)

m∑

k=0

ϕ2k
n , τm

n = −h(0)
m∑

k=0

ϕ2k+1
n .

In the case of Theorem 1, it follows that

Φn = lim
m→∞

[ h̄−1znσm
n + h−1zτm

n ] in L2(∂D, dµ).

In the case of Theorem 2, there are σn = limm→∞ σm
n and τn = limm→∞ τm

n in H2,

and we have

Φn = h̄−1znσn + h−1zτn,

as well as

(I −H∗
nHn) σn = h(0) (I −H∗

nHn) τn = −h(0) H∗
nz

(cf. [12]). Also, σ = σ0 and τ = τ0 hold for σ, τ ∈ H2 in Proposition 3.

The coefficients ϕk
n,j in ϕk

n(z) =
∑∞

j=0 ϕk
n,jz

j can be expressed in terms of

ϕj =
1

2π

∫

∂D

e−ijθ(h̄/h)dθ,

in view of the recursion ϕ0
n = 1, ϕk+1

n = H∗
nzϕk

n, whence

ϕ0
n,j = δ0j, ϕk+1

n,j =
∞∑

l=0

ϕn+j+l+1 ϕk
n,l, k = 0, 1, . . . .

The following representations of αn and ‖Φn‖µ are useful for studying their as-

ymptotic behavior as n →∞, see [3]–[7].

Theorem 4. If dµ = 1
2π
|h|2dθ and h2 is rigid, then

αn = −
∞∑

k=0

( ∞∑

l=0

ϕn+l+1 ϕ2k
n+1,l

)
= −

∞∑

k=0

ϕ2k+1
n,0

∞∑

k=0

ϕ2k
n,0

,

‖Φn‖2
µ = |h(0)|2

∞∑

k=0

ϕ2k
n,0, n = 0, 1, . . . .
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