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Let 0D be the unit circle {z; |z| = 1} in C, and D the open unit disc {z; |z] < 1}.
Let 1 be a probability measure on 0D which is not supported on a finite number

of points. Then, by applying the Gram-Schmidt method to 1, z,22,..., 2 = €%,

we can define monic orthogonal polynomials on the unit circle:
®,(z) = 2" + lower order, n=0,1,..., (D, @) =0, m#n.
These obey the Szego recursion formula

D,11(2) = 29, (2) — @, 2" P, (1/2), n=0,1,...,

with o, = —m € D. The parameters «,, are called the Verblusky coefficients
of du. See [13] for background.

A function g € H! is said to be rigid (or strongly outer) if it is determined by
its argument up to a positive constant factor: If k € H! satisfies k/|k| = g/|¢]|
a.e. on dD, then k = ag for some a > 0, see, e.g., [8, 9, 10, 11]. A rigid function
g is outer, and hence it may expressed as ¢ = h? with an outer function h € H?.
For ¢ € L™, we define the Toeplitz operator T, on H? by Tyf = P(¢f), where
P is the orthogonal projection operator of L? onto H2. The square of h € H? is
rigid if and only if h € the closure of T}, H* in L?, cf.[2].

Theorem 1 ([1, 7, 9]). We have
h®, € the closure of [2"(h/h)H? + zH?] in L?, n=0,1,...,
if and only if du = %|h|2d0 and h? is rigid.
Theorem 2. We have
hd, € 2"(h/h)H? + zH?, n=0,1,...,
if and only if du = 5=|h|*d0 and h € T, H?.

Proposition 3. Let h € H*. We have h € T, 5, H* and ||h|s < 1 if and only if
1

O — 2T

h=

for some o,7 € H? such that o is outer and |o|?> — |7|* =1 a.e. on OD.



For simplicity, we assume that h(0) > 0. For ¢ € L*>°, we define the Han-
kel operator Hy from H? to zH?2 by Hyf = Q(¢f), where Q is the orthogonal
projection operator of L? onto zH2. Let n = 0,1,... and write H,, = H o (nhy-
Putting

Qﬁik = {H:;Hn}k L, ‘P?zk-H = {H;Hn}kH:; Z,

we define o™, 7™ € H? by

nJ)»mn

o =h0)Y @, = —h(0) ) et
k=0 k=0
In the case of Theorem 1, it follows that

®, = lim [A~'2"0™ + h™'277] in L*(OD, dpu).

m—00
In the case of Theorem 2, there are o,, = lim,, .o, 0™ and 7,, = lim,, .o, 77 in H?,
and we have
7-1_n S —
b, =h""2"0,+h Z7,,

as well as
(I - H;Hn) On = h(O) ([ - H:Hn) Tn = —h(O) H:;E

(cf. [12]). Also, 0 = 0¢ and 7 = 75 hold for o, 7 € H? in Proposition 3.
The coefficients ¢} ; in @%(z) = > e @k ;27 can be expressed in terms of
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in view of the recursion ¢? =1, P! = H*20k whence

SO?L»J' - 50]’7 907]231 = Z Pr+j+i+1 QOIEL,Z, k=0,1,....
1=0
The following representations of «, and ||®,]|, are useful for studying their as-

ymptotic behavior as n — oo, see [3]-[7].

Theorem 4. If du = 5-|h|?df and h* is rigid, then
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