BOUNDARY BEHAVIOR OF SUPERHARMONIC FUNCTIONS

KENTARO HIRATA

1. DEFINITIONS

Let © be a bounded (smooth) domain in R", n > 2, and let do(z) denote the
distance from z to the boundary 02 of 2. By B(z,r) and S(z,r) we denote the
open ball and the sphere of center x and radius 7, respectively. A function h € C%(Q)
is called harmonic on Q if Ah = 0 in Q, where A = 9?/02% + --- + 0*/9z2. Tt is
well known that the harmonicity is characterized in terms of the continuity and
the spherical mean value equality. The superharmonicity is defined as follows. A
function u : Q — (—o00, +00] is called superharmonic on Q if u # +oo, u is lower
semicontinuous on {2 and u satisfies the spherical mean value inequality: for each
r € Qand 0 <r < dg(x),

1
u(x) = m /S(x,r) Udo-,

where ¢ is the surface area measure on S(x,r). Note that if v € C?(Q) then w is
superharmonic on € if and only if —Awu > 0 in €. It is well known that if u is
superharmonic on €2, then there exists a unique (Radon) measure p, on € such that

/ ddp, = — / uldr  for all ¢ € C°(Q).
Q Q

The measure p,, is called the Riesz measure associated with u. If pu, is absolutely
continuous with respect to Lebesgue measure, then the density function is written
as —Au. For each y € 2, a unique solution of

—AG(-,y) =9, inQ (distributions),
G(,y)=0 on 012,

is called the Green function for () with pole at y. Let u be a measure on 2. The
function [, G(-,y)du(y) is called the Green potential of p if it is superharmonic on
Q. It is well known as the Riesz decomposition theorem that every nonnegative
superharmonic function v on €2 can be represented as

w(z) = h(z) + /QG(x,y)du(y) for x € Q,

where h is the greatest harmonic minorant of u on 2 and p is the Riesz measure on
Q) associated with u.

In the talk, we shall state several classical results concerning the boundary be-
havior of harmonic functions and Green potentials.
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2. RESULTS

Let p > 0 be a constant and let us consider positive superharmonic functions u
on ) satisfying
0<-Au<u? inQ (1)
(assuming that its Riesz measure is absolutely continuous with respect to Lebesgue
measure). In what follows, we suppose that n > 3 and that € is a bounded C*!-
domain in R". We can obtain the following boundary growth estimate.

Theorem 1. If0 < p < (n+1)/(n—1), then every positive superharmonic function
on  satisfying (1) enjoys

u(z) < Adg(x)'™™  forz € Q,
where A is a constant depending only on u,p, ().

Corollary 1. Assumptions are same as in Theorem 1. Then u € C*(S). Moreover,
there exists a constant A depending only on wu,p, ) such that

sup u < A inf u
B(z,r) B(z,r)

whenever B(z,8r) C Q.

Corollary 2. Assumptions are same as in Theorem 1. If, in addition, the greatest
harmonic minorant of u on ) is the zero function, then u has nontangential limit
zero almost everywhere on OS).

The following shows the sharpness of p < (n+1)/(n — 1) in Theorem 1.
Theorem 2. Suppose that p > (n+1)/(n—1). Let £ € 02 and let ( satisfy
2

n—1<p< n—(n—2)p n—2

s .
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Then there exists a positive superharmonic function u € C?(Q) satisfying (1) such
that
lim sup 0 () u(x) > 0 nontangentially.

z—E€
The following shows the sharpness of the growth rate 1 — n in Theorem 1.
Theorem 3. Let £ € 092. The following statements hold.
(i) fo<p<(n+1)/(n—1)" then the Lane-Emden equation

—Au=u" inQ (2)
has positive solutions u € C*(Y) satisfying
dq ()
u(x) ~ for x € Q. 3
@)~ 8 ®)

(ii) If p > (n+1)/(n — 1), then there are no positive solutions of (2) satisfying

(3).

lin addition, the case p = 1 requires the smallness of the size of €.



