BOUNDARY BEHAVIOR OF SUPERHARMONIC FUNCTIONS

KENTARO HIRATA

1. Definitions

Let Ω be a bounded (smooth) domain in \mathbb{R}^n , $n \geq 2$, and let $\delta_{\Omega}(x)$ denote the distance from x to the boundary $\partial\Omega$ of Ω . By B(x,r) and S(x,r) we denote the open ball and the sphere of center x and radius r, respectively. A function $h \in C^2(\Omega)$ is called harmonic on Ω if $\Delta h = 0$ in Ω , where $\Delta = \partial^2/\partial x_1^2 + \cdots + \partial^2/\partial x_n^2$. It is well known that the harmonicity is characterized in terms of the continuity and the spherical mean value equality. The superharmonicity is defined as follows. A function $u: \Omega \to (-\infty, +\infty]$ is called superharmonic on Ω if $u \not\equiv +\infty$, u is lower semicontinuous on Ω and u satisfies the spherical mean value inequality: for each $x \in \Omega$ and $0 < r < \delta_{\Omega}(x)$,

$$u(x) \ge \frac{1}{\sigma(S(x,r))} \int_{S(x,r)} u d\sigma,$$

where σ is the surface area measure on S(x,r). Note that if $u \in C^2(\Omega)$ then u is superharmonic on Ω if and only if $-\Delta u \geq 0$ in Ω . It is well known that if u is superharmonic on Ω , then there exists a unique (Radon) measure μ_u on Ω such that

$$\int_{\Omega} \phi d\mu_u = -\int_{\Omega} u \Delta \phi dx \quad \text{for all } \phi \in C_0^{\infty}(\Omega).$$

The measure μ_u is called the Riesz measure associated with u. If μ_u is absolutely continuous with respect to Lebesgue measure, then the density function is written as $-\Delta u$. For each $y \in \Omega$, a unique solution of

$$\begin{cases} -\Delta G(\cdot, y) = \delta_y & \text{in } \Omega \text{ (distributions),} \\ G(\cdot, y) = 0 & \text{on } \partial\Omega, \end{cases}$$

is called the *Green function* for Ω with pole at y. Let μ be a measure on Ω . The function $\int_{\Omega} G(\cdot, y) d\mu(y)$ is called the *Green potential* of μ if it is superharmonic on Ω . It is well known as the Riesz decomposition theorem that every nonnegative superharmonic function u on Ω can be represented as

$$u(x) = h(x) + \int_{\Omega} G(x, y) d\mu(y)$$
 for $x \in \Omega$,

where h is the greatest harmonic minorant of u on Ω and μ is the Riesz measure on Ω associated with u.

In the talk, we shall state several classical results concerning the boundary behavior of harmonic functions and Green potentials.

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan *E-mail address*: hirata@math.sci.hokudai.ac.jp.

2. Results

Let p > 0 be a constant and let us consider positive superharmonic functions u on Ω satisfying

$$0 \le -\Delta u \le u^p \quad \text{in } \Omega \tag{1}$$

(assuming that its Riesz measure is absolutely continuous with respect to Lebesgue measure). In what follows, we suppose that $n \geq 3$ and that Ω is a bounded $C^{1,1}$ -domain in \mathbb{R}^n . We can obtain the following boundary growth estimate.

Theorem 1. If $0 , then every positive superharmonic function on <math>\Omega$ satisfying (1) enjoys

$$u(x) \le A\delta_{\Omega}(x)^{1-n}$$
 for $x \in \Omega$,

where A is a constant depending only on u, p, Ω .

Corollary 1. Assumptions are same as in Theorem 1. Then $u \in C^1(\Omega)$. Moreover, there exists a constant A depending only on u, p, Ω such that

$$\sup_{B(x,r)} u \le A \inf_{B(x,r)} u$$

whenever $B(x, 8r) \subset \Omega$.

Corollary 2. Assumptions are same as in Theorem 1. If, in addition, the greatest harmonic minorant of u on Ω is the zero function, then u has nontangential limit zero almost everywhere on $\partial\Omega$.

The following shows the sharpness of $p \leq (n+1)/(n-1)$ in Theorem 1.

Theorem 2. Suppose that p > (n+1)/(n-1). Let $\xi \in \partial \Omega$ and let β satisfy

$$n-1 < \beta < \begin{cases} \frac{2}{n-(n-2)p} & \text{if } p < \frac{n}{n-2}, \\ \infty & \text{if } p \ge \frac{n}{n-2}. \end{cases}$$

Then there exists a positive superharmonic function $u \in C^2(\Omega)$ satisfying (1) such that

$$\limsup_{x \to \xi} \delta_{\Omega}(x)^{\beta} u(x) > 0 \quad nontangentially.$$

The following shows the sharpness of the growth rate 1 - n in Theorem 1.

Theorem 3. Let $\xi \in \partial \Omega$. The following statements hold.

(i) If 0 , then the Lane-Emden equation

$$-\Delta u = u^p \quad in \ \Omega \tag{2}$$

has positive solutions $u \in C^2(\Omega)$ satisfying

$$u(x) \approx \frac{\delta_{\Omega}(x)}{|x - \xi|^n} \quad \text{for } x \in \Omega.$$
 (3)

(ii) If $p \ge (n+1)/(n-1)$, then there are no positive solutions of (2) satisfying (3).

¹in addition, the case p=1 requires the smallness of the size of Ω .