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1. Definitions

Let Ω be a bounded (smooth) domain in Rn, n ≥ 2, and let δΩ(x) denote the
distance from x to the boundary ∂Ω of Ω. By B(x, r) and S(x, r) we denote the
open ball and the sphere of center x and radius r, respectively. A function h ∈ C2(Ω)
is called harmonic on Ω if ∆h = 0 in Ω, where ∆ = ∂2/∂x2

1 + · · · + ∂2/∂x2
n. It is

well known that the harmonicity is characterized in terms of the continuity and
the spherical mean value equality. The superharmonicity is defined as follows. A
function u : Ω → (−∞, +∞] is called superharmonic on Ω if u 6≡ +∞, u is lower
semicontinuous on Ω and u satisfies the spherical mean value inequality: for each
x ∈ Ω and 0 < r < δΩ(x),

u(x) ≥ 1

σ(S(x, r))

∫

S(x,r)

udσ,

where σ is the surface area measure on S(x, r). Note that if u ∈ C2(Ω) then u is
superharmonic on Ω if and only if −∆u ≥ 0 in Ω. It is well known that if u is
superharmonic on Ω, then there exists a unique (Radon) measure µu on Ω such that∫

Ω

φdµu = −
∫

Ω

u∆φdx for all φ ∈ C∞
0 (Ω).

The measure µu is called the Riesz measure associated with u. If µu is absolutely
continuous with respect to Lebesgue measure, then the density function is written
as −∆u. For each y ∈ Ω, a unique solution of{

−∆G(·, y) = δy in Ω (distributions),

G(·, y) = 0 on ∂Ω,

is called the Green function for Ω with pole at y. Let µ be a measure on Ω. The
function

∫
Ω

G(·, y)dµ(y) is called the Green potential of µ if it is superharmonic on
Ω. It is well known as the Riesz decomposition theorem that every nonnegative
superharmonic function u on Ω can be represented as

u(x) = h(x) +

∫

Ω

G(x, y)dµ(y) for x ∈ Ω,

where h is the greatest harmonic minorant of u on Ω and µ is the Riesz measure on
Ω associated with u.

In the talk, we shall state several classical results concerning the boundary be-
havior of harmonic functions and Green potentials.
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2. Results

Let p > 0 be a constant and let us consider positive superharmonic functions u
on Ω satisfying

0 ≤ −∆u ≤ up in Ω (1)

(assuming that its Riesz measure is absolutely continuous with respect to Lebesgue
measure). In what follows, we suppose that n ≥ 3 and that Ω is a bounded C1,1-
domain in Rn. We can obtain the following boundary growth estimate.

Theorem 1. If 0 < p ≤ (n+1)/(n−1), then every positive superharmonic function
on Ω satisfying (1) enjoys

u(x) ≤ AδΩ(x)1−n for x ∈ Ω,

where A is a constant depending only on u, p, Ω.

Corollary 1. Assumptions are same as in Theorem 1. Then u ∈ C1(Ω). Moreover,
there exists a constant A depending only on u, p, Ω such that

sup
B(x,r)

u ≤ A inf
B(x,r)

u

whenever B(x, 8r) ⊂ Ω.

Corollary 2. Assumptions are same as in Theorem 1. If, in addition, the greatest
harmonic minorant of u on Ω is the zero function, then u has nontangential limit
zero almost everywhere on ∂Ω.

The following shows the sharpness of p ≤ (n + 1)/(n− 1) in Theorem 1.

Theorem 2. Suppose that p > (n + 1)/(n− 1). Let ξ ∈ ∂Ω and let β satisfy

n− 1 < β <





2

n− (n− 2)p
if p <

n

n− 2
,

∞ if p ≥ n

n− 2
.

Then there exists a positive superharmonic function u ∈ C2(Ω) satisfying (1) such
that

lim sup
x→ξ

δΩ(x)βu(x) > 0 nontangentially.

The following shows the sharpness of the growth rate 1− n in Theorem 1.

Theorem 3. Let ξ ∈ ∂Ω. The following statements hold.

(i) If 0 < p < (n + 1)/(n− 1) 1, then the Lane-Emden equation

−∆u = up in Ω (2)

has positive solutions u ∈ C2(Ω) satisfying

u(x) ≈ δΩ(x)

|x− ξ|n for x ∈ Ω. (3)

(ii) If p ≥ (n + 1)/(n− 1), then there are no positive solutions of (2) satisfying
(3).

1in addition, the case p = 1 requires the smallness of the size of Ω.
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