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My research interests are focussed on the algebraic, geometric, and combinatorial properties of hyper-
plane arrangements. A hyperplane is a linear space whose dimension is one less than the dimension of
the ambient vector space V . A hyperplane arrangement A is just a finite collection of hyperplanes. We
can also define a multiarrangement (A,m) by assigning positive integer weights to each hyperplane with
a multiplicity function m : A → Z>0. When m ≡ 1 then (A,m) is just a hyperplane arrangement and
we will only write A. Most of my research is focussed around the module of derivations D(A,m) of a
multiarrangement, but I have also explored the existence of nets in CP2 and apolar algebras of hyperplane
arrangements.

Let S be the symmetric algebra of the vector space V . Then the module of derivations (also called
the module of logarithmic vector fields when m ≡ 1) is defined by D(A,m) = {θ ∈ Der(S, S)|θ(αH) ∈
Sα

m(H)
M for all H ∈ A} where αH is a linear form defining the hyperplane H. So, D(A,m) is a submodule

of the free module Der(S, S) ∼= S` where ` is the dimension of V . However, D(A,m) is rarely free because,
for example, it is known that for all generic arrangements (so m ≡ 1) D(A,m) is not free. We will say
an arrangement is free if D(A,m) is a free S-module. If an arrangement is free, then we can define the
exponents of (A,m), and write exp(A,m), as the polynomial degrees of the elements of a homogeneous
basis for D(A,m). The next theorem is the one of the most significant theorems in the theory of free
arrangements.

Theorem 1 (Terao) If A is free with exp(A) = (e1, . . . , e`), then π(A, t) =
∏̀
i=1

(1 + eit) where π(A, t)

is the Poincaré polynomial of the arrangement.

Then Terao made the following conjecture.

Conjecture 2 (Terao) For a fixed field, the freeness of A depends only on the intersection lattice.

This conjecture is the central theme of my research. If the dimension of V is two, then (A,m) is
always free. The main focus of my dissertation was to study the exponents of these multiarrangements
in dimension two. The following is the main theorem of my dissertation.

Theorem 3 There exists a Zariski open set in the moduli space of n weighted (with integer function m)
points in CP1 such that if A is in this open set then exp(A,m) =

(
b 1

2

∑
m(H)c, d 1

2

∑
m(H)e

)
. Further,

if the multiplicity function satisfies m(H) <
∑

H 6=H′∈A
m(H ′) for all H and

∑
H∈A

m(H) > 2n− 1, then the

Zariski open set is non-empty.

In a paper with S. Yuzvinsky we prove Theorem 3 and we also proved many cases where the exponents
do not depend on the position of the points. Then we used a main theorem of Yoshinaga that states
that an arrangement in dimension three is free if and only if it’s Poincaré polynomial factors and there is
a restriction multiarrangement such that it’s exponents are the coefficients of the Poincaré polynomial.
Thus, if there is a multiplicity function for points in CP1 such that the exponents do not depend on the
position of the points then any arrangement in dimension three that has a restriction with these same
multiplicities then this arrangement will satisfy Terao’s conjecture (i.e. all arrangements with isomorphic
intersection lattice to this arrangement are all free or not free). We combined these results and the
property of supersolvable lattices to prove the following theorem.

Theorem 4 If A is an arrangement in dimension three such that there is a hyperplane H where the
restriction to H gives a multiarrangement in dimension two where there is one multiplicity m(H ∩ H ′)
such that m(H ∩H ′) > 1

2 (|A| − 3) then Terao’s conjecture holds for A.

The following corollary is an immediate consequence of Theorem 4.

Corollary 5 Terao’s conjecture holds for arrangements of hyperplanes in dimension three of size less
than eleven.



Now, we briefly discuss apolar algebras of hyperplane arrangements. Let S = C[x1, . . . , x`] be the
polynomial ring in the variables x1, . . . , x` and S̄ = C[∂1, . . . , ∂`] be a polynomial ring in the variables
∂1, . . . , ∂`. Then S is a S̄-module by the action of differentiation (i.e. ∂ixj = δij). For f ∈ S the apolar
algebra of f is S̄/I(f) where I(f) = AnnS̄(f). S̄/I(f) is a zero-dimensional Gorenstein ring and we say
A is a complete intersection when S̄/I(f) is a complete intersection algebra. It is known that S̄/I(f)
where f is the defining polynomial of a reflection arrangement is a complete intersection and that every
two dimensional arrangement is a complete intersection. So, it seems that maybe there is a connection
between complete intersection arrangements and free arrangements. It was known that free arrangements
were not necessarily complete intersections, but the converse was unknown. However, in my dissertation
I exhibited arrangements that are complete intersections and not free.

In the academic year of 2006 I have studied the freeness of higher dimensional multiarrangements, even
though they are more elusive. For example, in joint work with T. Abe and H. Terao we define the Poincaré
polynomial for any multiarrangement and denote it by π((A,m), t). Unlike the case for arrangements
the Poincaré polynomial of a multiarrangement is not necessarily invariant of the intersection lattice.
However, we are still able to prove the generalization of Theorem 1 to multiarrangements.

Theorem 6 If (A,m) is a free multiarrangement in dimension ` with exp(A,m) = (e1, . . . , e`), then

π((A,m), t) =
∏̀
i=1

(1 + eit).

The main result of the paper containing Theorem 6 with T. Abe and H. Terao shows that there is
a local to global relationship of the coefficients of the Poincaré polynomial of a multiarrangement. To
state this theorem we need a little more notation. Let L = L(A) be the intersection lattice of A where
the elements are intersections of hyperplanes with the order as reverse inclusion and the rank function
defined by codimension: r(X) = codimV (X). Let Lk = {X ∈ L | r(X) = k} be the elements in L
of rank k. For any X ∈ L let AX = {H ∈ A | X ⊆ H} and mX = m|AX

. Define Cp(X) ∈ Z by
π((AX ,mX), t) =

∑`
p Cp(X)tp. Now, we can state the main theorem.

Theorem 7 For all X ∈ L and p such that 0 ≤ p ≤ r(X), Cp(X) =
∑

Y ∈L(AX)p

Cp(Y ).

Theorems 6 and 7 provide a useful and quick method to check freeness of multiarrangements. Another
effective method which can also be used to prove freeness of an arrangement is the addition deletion
theorem for multiarrangements that is again joint work with T. Abe and H. Terao. Let (A,m) be a
multiarrangement in dimension ` ≥ 2 and fix a hyperplane H0 ∈ A. Then the deletion of (A,m) by H0

is (A′,m′) which is the same as (A,m) except the multiplicity of H0 is decreased one. The restriction
(A′′,m′′) allows for nearly any definition of m′′. For example, M. Yoshinaga’s Theorem described above
uses the sum of all the hyperplanes through each intersection on H0 as m′′. However, this multiplicity
does not yield itself well to addition deletion type theorems. Thus, with T. Abe and H. Terao, we created
the following definition.

Definition 8 For X ∈ A′′ the e-multiplicity m∗(X) of X is the exponent (i.e. degree of generator) of
the multiarrangement (AX ,mX) corresponding to the derivation such that under any change of basis this
derivation is never divisible by the defining form αH0 .

When m ≡ 1 then m∗(X) = 1 and hence this multiplicity generalizes the multiplicity used for
the addition deletion theorem for arrangements. Now, we can state the addition deletion theorem for
multiarrangements which is joint work with T. Abe and H. Terao.

Theorem 9 Let (A,m) be a nonempty multiarrangement in an `-dimensional vector space V , H0 ∈
A and let (A,m), (A′,m′), (A′′,m∗) be the triple with respect to H0. Then any two of the following
statements imply the third:

(i) (A,m) is free with exp(A,m) = (e1, . . . , e`).

(ii) (A′,m′) is free with exp(A′,m′) = (e1, . . . , e` − 1).

(iii) (A′′,m∗) is free with exp(A′′,m∗) = (e1, . . . , e`−1).

Theorem 9 can be used to prove large classes of multiarrangements are free. For example, if the
underlying arrangement A is supersolvable and the multiplicities m satisfy some inequalities then the
multiarrangement (A,m) is free. However, since the e-multiplicity is very delicate the freeness of multi-
arrangements for even simple cases can be very difficult.
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