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Monotonic convolution and monotonic Lévy-Hinčin formula

Abstract. Based on the notion of “monotonic independence” for random variables in a
C∗-probability space, the “monotonic convolution” for probability measures on the real
line is introduced. It describes the probability distribution for addition of monotonically
independent random variables. A monotonic analogue of Lévy-Hinčin formula is given
in terms of continuous one-parameter monotonic convolution semigroups of probability
measures. In particular, the class of infinitely divisible distributions with compact supports
is characterized. Also a monotonic analogue of compound Poisson distribution is given
with its limit theorem.

0. Introduction

In quantum probability theory (= noncommutative probability theory [Par], [Mey],
[AcO]), it is an interesting problem to find another notions of “independence” dif-
ferent from the classical notion of “independence” (= commutative independence)
and to develop another kind of probabilistic notions based on such non-classical
independences ([GvW], [vWa], [Voi], [Spe], [BLS], [AcB]).

The famous example is the “free independence” (=“freeness”) introduced by D.
Voiculescu [Voi]. It is a kind of “independence” for noncommutative random vari-
ables in a C∗-probability space. The free analogue of various classical probabilistic
notions such as convolution, Gaussian distribution, Brownian motion, Poisson pro-
cess, stochastic calculus, entropy and others have been developed in the setting
of “free probability theory” based on the free independence ([VDN], [HiP], [Spe],
[Maa], [KuS], [BiS]). Various generalizations and deformations of the notion of the
free independence are studied by several authors ([BoS], [BKS], [BLS], [Bia], [AHO],
[AcB], [BoW]).

In a recent paper [Mu3], the author introduced the notion of “monotonic inde-
pendence” for noncommutative random variables in a C∗-probability space. It is an
algebraic abstraction of the structure which must have been hidden in the discussion
in the previous works([Mu1], [Mu2], [Lu]). We proved in [Mu3] the “monotonic cen-
tral limit theorem” and the “monotonic law of small numbers,” where the monotonic
Gaussian distribution (= the arcsine law) and the monotonic Poisson distribution
(described by the product log function, a special function) were calculated, respec-
tively.

This paper is a continuation of the previous work [Mu3]. We introduce in this
paper a monotonic analogue of convolution for probability measures on the real line,
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which we call the “monotonic convolution.” It describes the probability distribution
for addition of monotonically independent random variables in a C∗-probability
space. We also prove a monotonic analogue of Lévy-Hinčin formula for continuous
one-parameter monotonic convolution semigroups of probability measures.

The contents of the paper is organized as follows. In Section 1, the definition of
the notion of “monotonic independence” for random variables in a C∗-probability
space is given. In Section 2, a construction of monotonically independent random
variables with prescribed probability distributions is given with the help of the
monotone product of C∗-probability spaces. In Section 3, the monotonic convolu-
tion for probability measures on the real line is introduced. It is shown that the
probability distribution for addition of monotonically independent random variables
in a C∗-probability space can be described by the monotonic convolution of proba-
bility measures. In Section 4, the infinite divisibility of probability measures in the
sense of monotonic convolution is investigated in terms of continuous one-parameter
monotonic convolution semigroups of probability measures. A monotonic Lévy-
Hinčin formula is proved for these continuous one-parameter semigroups. In Section
5, a monotonic Lévy-Hinčin formula in terms of infinitely divisible distributions is
discussed. The class of infinitely divisible distributions with compact supports is
characterized. Besides, a monotonic analogue of compound Poisson distribution is
given with its limit theorem. Section 6 is the Appendix where some auxiliary lemmas
needed in the preceding sections are collected.

Throughout the paper, we use the following notations:

N = the natural numbers (≥ 0); N∗ = N \ {0};
Q = the rational numbers; Q+ = {r ∈ Q|r ≥ 0}; Q∗

+ = {r ∈ Q|r > 0};
R = the real numbers; R+ = {x ∈ R|x ≥ 0}; R∗

+ = {x ∈ R|x > 0};
C = the complex numbers; C+ = {z ∈ C|�z > 0}; C− = {z ∈ C|�z < 0}.

Here �z (resp. �z) denotes the imaginary part (resp. real part) of a complex
number z. We use #A to denote the cardinality of a finite set A.

1. Monotonically independent random variables

Let (A, φ) be a C∗-probability space consisting of a unital C∗-algebra A and a state
φ over A. Each element X ∈ A is interpreted as a (bounded) random variable on a
C∗-probability space (A, φ). We often use 〈X〉 for short to denote the expectation
φ(X) of a random variable X ∈ A.

Definition 1.1. [Mu3] A family {Xi}i∈I ⊂ A of random variables on (A, φ) with
totally ordered index set I is said to be monotonically independent w.r.t. a state φ
if the following two conditions are satisfied.

(a) XiX
p
j Xk = φ(Xp

j )XiXk whenever i < j > k.

(b) φ(Xpm
im · · ·Xp2

i2 Xp1
i1 Xp

i Xq1
j1 Xq2

j2 · · ·Xqn
jn

)

= φ(Xpm
im ) · · ·φ(Xp2

i2 )φ(Xp1
i1 )φ(Xp

i )φ(Xq1
j1 )φ(Xq2

j2 ) · · ·φ(Xqn
jn

)

whenever im > · · · > i2 > i1 > i < j1 < j2 < · · · < jn.

Here p’s and q’s are arbitrary natural numbers in N. The notation i < j > k is
understood as i < j and j > k (there is no assumption on the order relation between
i and k). The notation im > · · · > i2 > i1 > i < j1 < j2 < · · · < jn is understood
as im > · · · > i2 > i1 > i and i < j1 < j2 < · · · < jn. Of course, the case of m = 0
(resp. n = 0) in the condition (b) is understood in the natural way.
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The above two conditions (a) and (b) can be viewed as the decomposition rules
for expectations φ(Xir · · ·Xi2Xi1) of monomials Xir · · ·Xi2Xi1 in X’s, as explained
below.

Assume that monotonically independent random variables {Xi}i∈I are given.
Let IΠr

∼= Map({r, r − 1, · · · , 2, 1}, I) be the set of all repeated permutations f =
(ir · · · i2i1) choosing r elements from I. Of course #(IΠr) = #IΠr (= the number of
all repeated permutations) if I is a finite set. The set {r, r−1, · · · , 2, 1} is interpreted
as a set of sites. Each element f = (ir · · · i2i1) ∈ IΠr is a configuration of indices
from I. A configuration f = (ir · · · i2i1) ∈ IΠr distribute indices (∈ I) to the sites
{r, r−1, · · · , 2, 1}. For each configuration f = (ir · · · i2i1) ∈ IΠr, let us associate to it
an operator Xip · · ·Xi2Xi1, and write its expectation 〈Xir · · ·Xi2Xi1〉 by 〈ir · · · i2i1〉
for short. Then the expectation 〈ir · · · i2i1〉 can be uniquely decomposed based
on the following procedure. We explain it by an example. Take a configuration
(3124245423) which distribute, to the sites {r, r− 1, · · · , 2, 1} (r = 10), indices from
the set I = {1, 2, 3, 4, 5}. At first, by the repeated use of rule (a), we have

〈 3124245423 〉 = 〈 4 〉〈 5 〉〈 31224423 〉
= 〈 4 〉〈 5 〉〈 44 〉〈 312223 〉.

This process can be visualized as
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We see that once use of rule (a) means to take a “top” off the “mountains.” After
the maximal use of rule (a), we get a factor 〈 312223 〉 which has a form of “valley.”
But this final factor can be decomposed further by the use of rule (b). After all we
obtain the final decomposition:

〈 3124245423 〉 = 〈4〉〈5〉〈44〉〈3〉〈1〉〈222〉〈3〉.
Of course this procedure works well for general configurations f = (ir · · · i2i1) ∈ IΠr,
and it uniquely defines the natural decomposition of 〈Xir · · ·Xi2Xi1〉.

Now, to each configuration f = (ir · · · i2i1) ∈ IΠr, let us associate a unique
partition P of the sites {r, r−1, · · · , 2, 1}. We put two sites q, q′ (∈ {r, · · · , 2, 1}) into
a same equivalence class if and only if both of the corresponding Xiq and Xiq′ appear

in the same factor in the final decomposition of 〈Xir · · ·Xi2Xi1〉. The resulting
equivalence classes defines a noncrossing partition P of the set {r, r − 1, · · · , 2, 1}.
An equivalence class v ∈ P is called a block. Each noncrossing partition P can be
visualized by a non crossing diagram g. For example,

f = (ir · · · i2i1)
= (3124245423)

→ � � � � � � � � � �
3 1 2 4 2 4 5 4 2 3

Here the corresponding noncrossing partition P consists of seven blocks v1 = {4},
v2 = {5, 3}, v3 = {7}, v4 = {8, 6, 2}, v5 = {1}, v6 = {9}, v7 = {10}. We denote by
|v| the number of points in a block v (for example |v4| = 3). The blocks v4, v5, v6,
v7 are the outer blocks of a diagram g. We denote by out(g) the number of all outer
blocks in a diagram g (hence out(g) = 4 in this example). A block v1 (and also v2
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and v3) is in the inner side of a block v4. A block v1 is in the inner side of a block
v2.

There is the natural bijective correspondence between the set NCP(r) of all
noncrossing partitions P over {r, · · · , 2, 1} and the set NCD(r) of all noncrossing
diagrams g with r points. We always identify a noncrossing partition P with a
noncrossing diagram g. So we write P = P(g) and g = g(P). After all, the
decomposition procedure of 〈ir · · · i2i1〉 based on the monotonic independence yields
the natural correspondence

πr,I : IΠr 
 f �→ g ∈ NCD(r)

from configurations f to diagrams g as described above. A configuration f ∈ IΠr is
said to be admissible w.r.t. g if πr,I(f) = g. The following fact is basic.

Lemma 1.2. Let g ∈ NCD(r), and let f = (ir · · · i2i1) ∈ IΠr
∼= Map({r, · · · , 2, 1}, I)

be an admissible configuration w.r.t. g. Then we have

(i) The function f : {r, · · · , 2, 1} → I takes a constant value on each block v ∈ P(g),
i.e. f(q) = f(q′) for q, q′ ∈ v. (We denote this value by f(v)).

(ii) f(v) > f(w) whenever a block v is in the inner side of a block w.

We identify a g-admissible configuration f = (ir · · · i2i1) with its associated func-
tion of a block variable: P(g) 
 v → f(v) ∈ I. We denote by IMg the set of all
g-admissible configurations to suggest that f distribute, to the blocks P(g), indices
from I so that the final decomposition of the configuration produces a diagram g
based on the monotonic independence. These admissible configurations will be used
in Section 3 to derivate the “monotonic convolution” for probability measures.

2. Realization

In this section, we give a construction of monotonically independent random vari-
ables with prescribed probability distributions. It is achieved based on the monotone
product of C∗-probability spaces which is defined as follows. The construction of
monotone product is analogous to that of the free product [Voi].

Let us start with the setting of Hilbert spaces with (fixed) unit vectors. Let
(Hi, ξi)i∈I be a family of (right linear) complex Hilbert spaces Hi with unit vectors
ξi ∈ Hi, which is indexed by some totally ordered set I. Then the monotone product
(H, ξ) of (Hi, ξi)i∈I is defined by

H ≡ Cξ ⊕⊕
r≥1

⊕
σ∈IMr

H◦
ir ⊗ · · · ⊗H◦

i1
,

and denoted by (H, ξ) = �i∈I(Hi, ξi)i∈I . Here ξ is a (formal) unit vector. IMr

denotes the set of all monotone sequences σ = (ir> · · · >i2>i1) of length r from I.
(Note that we must distinguish this notation IMr from the notation IMg in Section 1.
They are different objects.) H◦

i denotes the orthogonal complement H◦
i ≡ Hi�Cξi

of Cξi relative to Hi.
Let B(H) (resp. B(Hi)) be the *-algebra of all bounded linear operators on H

(resp. Hi). Let us define a natural (non-unital) *-representation λi : B(Hi)→ B(H)
of the algebra B(Hi) on the Hilbert space H as follows. For each index i ∈ I, we
put

H◦
(=i) ≡

⊕
r≥1

⊕
σ ∈ IMr

ir = i

H◦
ir ⊗ · · · ⊗H◦

i1
,
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H◦
(<i) ≡

⊕
r≥1

⊕
σ ∈ IMr

ir < i

H◦
ir ⊗ · · · ⊗H◦

i1
,

H◦
(>i) ≡

⊕
r≥1

⊕
σ ∈ IMr

ir > i

H◦
ir ⊗ · · · ⊗H◦

i1
.

Referring to the decomposition Hi = Cξi ⊕H◦
i , we write

H(=i) = Cξ(=i) ⊕H◦
(=i),

H(<i) = Cξ(<i) ⊕H◦
(<i),

H(>i) = Cξ(>i) ⊕H◦
(>i).

Then, by the identification up to isomorphism, the Hilbert space H is rewritten as

H = Cξ ⊕⊕
r≥1

⊕
σ∈IMr

H◦
ir ⊗ · · · ⊗H◦

i1

= Cξ ⊕H◦
(=i) ⊕H◦

(<i) ⊕H◦
(>i)

= (Cξ ⊕H◦
i ⊕H◦

i ⊗H◦
(<i) ⊕H◦

(<i))⊕H◦
(>i)

= (Cξi ⊕H◦
i )⊗ (Cξ(<i) ⊕H◦

(<i))⊕H◦
(>i)

= Hi ⊗H(<i) ⊕H◦
(>i).

So we get the natural identification

H = Hi ⊗H(<i) ⊕H◦
(>i) and ξ = ξi ⊗ ξ(<i).

Based on this decomposition, let us define the (non-unital) *-representation λi :
B(Hi)→ B(H) of the algebra B(Hi) on the space H by

λi(A) ≡ A⊗ I ⊕O, A ∈ B(Hi).

Here I denotes the identity operator on H(<i) and O denotes the zero operator
on H◦

(>i). Note that this *-homomorphism λi is faithful but non-unital in general:

B(Hi) 
 I �→ λi(I) �= I ∈ B(H).
The monotone product of Hilbert spaces with unit vectors (H, ξ) = �i∈I(Hi, ξi)

has the following properties. In the following, the monotonic independence for (non-
unital) subalgebras is understood in the natural sense.

Theorem 2.1. Let (H, ξ) = �i∈I(Hi, ξi) be any monotone product of Hilbert spaces
with unit vectors, equipped with the natural *-homomorphisms λi : B(Hi)→ B(H).
Put φ(·) ≡ 〈ξ| · ξ〉 and φi(·) ≡ 〈ξi| · ξi〉. Then the followings hold.

(1) The family {λi(B(Hi))}i∈I of subalgebras of B(H) is monotonically indepen-
dent w.r.t. the state φ.

(2) λi preserves the expectation, i.e. φ(λi(A)) = φi(A) for all A ∈ B(Hi).

Proof. (1) We must show that the two conditions (a) and (b) of the monotonic
independence are satisfied.

(a) Let i, j, k be arbitrary indices from I such that i < j > k, and let Ai ∈ B(Hi),
Aj ∈ B(Hj), Ak ∈ B(Hk) be arbitrary operators. Put Xi ≡ λi(Ai), Xj ≡ λj(Aj),
Xk ≡ λk(Ak). We must show that

XiXjXk = φ(Xj)XiXk.
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For each vector of the form hir⊗· · ·⊗hi1 ∈ H◦ ≡ H�Cξ with σ = (ir> · · · >i2>i1) ∈
IMr, let us calculate the actions of two operators XiXjXk and φ(Xj)XiXk on them.
Consider the three cases : i) k < ir; ii) k = ir; iii) k > ir.

i) Case of k < ir. By the definition of the representation λk, we have Xk(hir ⊗· · · ⊗ hi1) = 0, and hence

XiXjXk(hir ⊗ · · · ⊗ hi1) = φ(Xj)XiXk(hir ⊗ · · · ⊗ hi1).

ii) Case of k = ir. We have

XiXjXk(hir ⊗ · · · ⊗ hi1) = XiXj((Akhir)⊗ (I(hir−1 ⊗ · · · ⊗ hi1)))

= XiXj(ξj ⊗ (Akhir)⊗ (hir−1 ⊗ · · · ⊗ hi1))

= Xi((Ajξj)⊗ I((Akhir)⊗ (hir−1 ⊗ · · · ⊗ hi1)).

Here the second equality comes from the identification H◦
(=k)
∼= Cξj ⊗ H◦

(=k). De-

compose Ajξj as Ajξj = ajξj ⊕ ηj (ajξj ∈ Cξj, ηj ∈ H◦
j ), and continue the above

calculation, then we have, from the definition of λj,

Xi((Ajξj)⊗ (Akhir)⊗ hir−1 ⊗ · · · ⊗ hi1)

= Xi((ajξj ⊕ ηj)⊗ (Akhir)⊗ hir−1 ⊗ · · · ⊗ hi1)

= Xi((ajξj)⊗ (Akhir)⊗ hir−1 ⊗ · · · ⊗ hi1)

= ajXi(ξj ⊗ (Akhir)⊗ hir−1 ⊗ · · · ⊗ hi1)

= ajXi((Akhir)⊗ hir−1 ⊗ · · · ⊗ hi1)

= ajXiXk(hir ⊗ hir−1 ⊗ · · · ⊗ hi1).

Here the fourth equality comes from the identification Cξj ⊗ H◦
(=k)
∼= H◦

(=k). The
last equality was obtained by reversing the procedure of calculation. By the way,
aj = 〈ξj |Ajξj〉 = 〈ξ|Xjξ〉 since Ajξj = ajξj ⊕ ηj. Therefore we obtain

XiXjXk(hir ⊗ · · · ⊗ hi1) = φ(Xj)XiXk(hir ⊗ · · · ⊗ hi1).

iii) Case of k > ir. Repeat the similar discussion as in the case ii).
After all, in any cases of i), ii) and iii), we get

XiXjXk(hir ⊗ · · · ⊗ hi1) = φ(Xj)XiXk(hir ⊗ · · · ⊗ hi1).

Besides we have XiXjXkξ = φ(Xj)XiXkξ for the “vacuum” ξ ∈ H through the simi-
lar calculation as above. Therefore the condition (a) of the monotonic independence
is satisfied.

(b) Let i1, · · · , im, i, j1, · · · , jn be arbitrary indices from I such that im > · · · >
i1 > i < j1 < · · · < jn, and let Ai1 ∈ B(Hi1), · · ·, Aim ∈ B(Him), Ai ∈ B(Hi),
Aj1 ∈ B(Hj1), · · ·, Ajn ∈ B(Hjn) be arbitrary operators. Put Xi1 = λi1(Ai1), · · ·,
Xim = λim(Aim), Xi = λi(Ai), Xj1 = λj1(Aj1), · · ·, Xjn = λjn(Ajn). We must show
that

〈Xim · · ·Xi1XiXj1 · · ·Xjn〉 = 〈Xim〉 · · · 〈Xi1〉〈Xi〉〈Xj1〉 · · · 〈Xjn〉.
At first we have

XiXj1 · · ·Xjnξ = XiXj1 · · ·Xjn(ξjn ⊗ ξ(<jn))

= XiXj1 · · ·Xjn−1((Ajnξjn)⊗ ξ(<jn))

= XiXj1 · · ·Xjn−1((ajnξjn ⊕ ηjn)⊗ ξ(<jn))

= XiXj1 · · ·Xjn−1((ajnξjn)⊗ ξ(<jn))

= ajn XiXj1 · · ·Xjn−1ξ.
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Here we used the decomposition Ajnξjn = ajnξjn ⊕ ηjn ( ajnξjn ∈ Cξjn , ηjn ∈ H◦
jn

)
and the definition of the representation λjn . Since i < j1 < · · · < jn, we get

XiXj1 · · ·Xjnξ = aj1aj2 · · · ajnXiξ.

by the repetition of the above calculation. Note that aj1 = 〈ξj1 |Aj1ξj1〉 = φ(Xj1), · · ·,
ajn = 〈ξjn |Ajnξjn〉 = φ(Xjn). Using the adjoints A∗’s of A’s, define the numbers b’s
by A∗

i1
ξi1 = bi1ξi1⊕ ζi1 (bi1ξi1 ∈ Cξi1 , ζi1 ∈ H◦

i1
), · · ·, A∗

imξim = bimξim⊕ ζim (bimξim ∈
Cξim , ζim ∈ H◦

im). Since i < i1 < i2 < · · · < im, we get, by the adjointness,

φ(Xim · · ·Xi1XiXj1 · · ·Xjn) = 〈ξ|Xim · · ·Xi1XiXj1 · · ·Xjnξ〉
= 〈ξ|Xim · · ·Xi1aj1 · · · ajnXiξ〉
= aj1 · · · ajn〈ξ|Xim · · ·Xi1Xiξ〉
= aj1 · · · ajn〈X∗

i X∗
i1
· · ·X∗

imξ|ξ〉
= aj1 · · · ajn〈bi1 · · · bimX∗

i ξ|ξ〉
= aj1 · · · ajnbi1 · · · bim〈X∗

i ξ|ξ〉
= φ(Xj1) · · ·φ(Xjn)φ(X∗

i1) · · ·φ(X∗
im)φ(X∗

i )

= φ(Xim) · · ·φ(Xi1)φ(Xi)φ(Xj1) · · ·φ(Xjn).

Therfore the second condition (b) of monotonic independence is satisfied.

(2) Using the decomposition H = Hi⊗H(<i)⊕H◦
(>i) and the definition of λi, we get

λi(A)ξ = λi(A)(ξi ⊗ ξ(<i)) = (Aξi)⊗ ξ(<i),

and hence

〈ξ|λi(A)ξ〉 = 〈ξi ⊗ ξ(<i)|(Aξi)⊗ ξ(<i)〉 = 〈ξi|Aξi〉〈ξ(<i)|ξ(<i)〉 = 〈ξi|Aξi〉. �

Using the monotone product of Hilbert spaces with unit vectors (H, ξ) =
�i∈I(Hi, ξi) equipped with the natural *-homomorphisms λi : B(Hi) → B(H),
i ∈ I, we can construct monotonically independent random variables with prescribed
probability distributions as follows.

Corollary 2.2. Let {µi}i∈I be a family of compactly supported probability measures
on R indexed by a totally ordered set I. Then there exists a Hilbert space with unit
vector (H, ξ) and a family of self-adjoint random variables {Xi}i∈I ⊂ B(H) such
that X’s are monotonically independent w.r.t. φ(·) ≡ 〈ξ| · ξ〉 and that the probability
distribution µXi

of Xi under φ coincides with µi.

Proof. Let (Hi, ξi) be a Hilbert space with unit vector defined by Hi ≡ L2(R, µi)
and ξi ≡ 1, and let Ai be the multiplication operator (Aif)(x) = xf(x). Since
µi is compactly supported, Ai is a bounded self-adjoint operator. The probability
distribution of Ai under 〈ξi| · ξi〉 coincides with µi. Make the monotone product
(H, ξ) = �i∈I(Hi, ξi) with the natural *-homomorphisms λi : B(Hi)→ B(H). Then
the random variables Xi ≡ λi(Ai), i ∈ I, are monotonically independent w.r.t. φ
and the probability distribution of Xi coincides with that of Ai because the both
moments coincide, i.e. φ(Xp

i ) = φi(A
p
i ) for all p ∈ N∗. �

Finally let us define the monotone product in the setting of C∗-probability spaces.
Let (Ai, ϕi)i∈I be a family of C∗-probability spaces with totally ordered index set
I, where Ai’s are assumed to be unital. Then the monotone product (A, ϕ) of
C∗-probability spaces (Ai, ϕi)i∈I is defined as follows.
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For each i ∈ I, let (πi, Hi, ξi) be the GNS representation of Ai associated to
the state ϕi. Construct the monotone product of Hilbert spaces with unit vectors
(H, ξ) = �i∈I(Hi, ξi) and its associated natural *-homomorphisms λi : B(Hi) →
B(H), i ∈ I, as above. Let ρi be the composition of the GNS representation πi and
the *-homomorphism λi :

ρi ≡ λi ◦ πi : Ai → H.

Denote by A the C∗-algebra generated by the family {ρi(Ai)}i∈I of subalgebras of
B(H) and the identity I ∈ B(H), and let ϕ be the state overA given by ϕ(·) = 〈ξ|·ξ〉.
The C∗-probability space (A, ϕ) defined in this way is called the monotone product
of C∗-probability spaces (Ai, ϕi)i∈I , and denoted by (A, ϕ) = �i∈I(Ai, ϕi). It is
naturally equipped with the family of (non-unital) *-homomorphisms ρi : Ai → A,
i ∈ I.

In this setting, Theorem 2.1 can be rewritten in the following form.

Theorem 2.3. Let (A, ϕ) = �i∈I(Ai, ϕi) be any monotone product of C∗-probability
spaces, equipped with the natural *-homomorphisms ρi : Ai → A. Then the follow-
ings hold.

(1) The family {ρi(Ai)}i∈I of subalgebras of A is monotonically independent
w.r.t. ϕ.

(2) ρi preserves the expectation, i.e. ϕ(ρi(x)) = ϕi(x) for all x ∈ Ai.

3. Monotonic Convolution

In this section, we introduce a kind of convolution (= “monotonic convolution”) for
probability measures on the real line. It describes the probability distribution for
addition of monotonically independent random variables on a C∗-probability space.

Let µ be a probability measure on the real line R. Then the Cauchy transform
Gµ(z) of µ is defined by

Gµ(z) =
∫ +∞

−∞
1

z − x
dµ(x), z ∈ C+.

The reciprocal Cauchy transform Hµ(z) of µ is defined by

Hµ(z) =
1

Gµ(z)
, z ∈ C+

(see [Maa]). Hµ(z) satisfies Hµ(C+) ⊂ C+.
The following theorem is the main result in this section. It saids that the re-

ciprocal Cauchy transform Hµ(z) plays in “monotonic probability” a role analogous
to that played by the Fourier transform in “classical probability” and also to that
played by the Voiculescu R-transform in “free probability” [VDN].

Let (A, φ) be a C∗-probability space consisting of a unital C∗-algebra A and a
state φ over A. For each self-adjoint random variable X ∈ A, denote by HX(z) the
reciprocal Cauchy transform of the probability distribution µX of X under φ.

Theorem 3.1. Let X1, X2, · · · , Xn ∈ A be monotonically independent self-adjoint
random variables on (A, φ), in the natural order of {1, 2, · · · , n}. Then

HX1+X2+···+Xn(z) = HX1(HX2(· · · (HXn(z)) · · ·)).
Proof. The pth moment of monotonically independent sum X1 + X2 + · · · + Xn is
given by

mp = 〈 (X1 + X2 + · · ·+ Xn)p 〉
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=
∑

i1, i2, · · · , ip
∈ {1, 2, · · · , n}

〈Xip · · ·Xi2Xi1 〉

=
∑

g∈NCD(p)

∑
f = (ip · · · i2i1)

∈ {1,2,···,n}Mg

〈Xip · · ·Xi2Xi1 〉

=
∑

g∈NCD(p)

∑
f = (ip · · · i2i1)

∈ {1,2,···,n}Mg

∏
v∈P(g)

〈X |v|
f(v) 〉.

That is
mp =

∑
g∈NCD(p)

VX1X2···Xn(g), (3.1)

where V (g) is defined by

VX1X2···Xn(g) =
∑

f = (ip · · · i2i1)
∈ {1,2,···,n}Mg

∏
v∈P(g)

〈X |v|
f(v) 〉. (3.2)

Let us obtain the recurrence relations for V (g). Let g ∈ NCD(p) be a fixed
arbitrary noncrossing diagram. Since any admissible configuration f = (ip · · · i2i1) ∈
{1,2,···,n}Mg takes constant value on each block v ∈ P(g), we identify it with a function
of a block variable: P(g) 
 v �→ f(v) ∈ I. Then there exists in P(g) a unique
block vmin such that vmin attains the minimal index b ≡ min{f(v)|v ∈ P(g)}. The
uniqueness of minimizer vmin of f(v) comes from the following reason. Let us suppose
that we have two minimizers vmin and v′

min with vmin �= v′
min. Take an arbitrary

q ∈ vmin and an arbitrary q′ ∈ v′
min.

�
�����

�� �
�
�����

�����
�
���

��
�

b

�
�� ���

�
����

�
�����

�
���

�
�
��

�

b

���
��

���
���

�
�����

Since both of q and q′ attain the “bottom” b = min{f(v)|v ∈ P(g)} of the config-
uration f = (ip · · · i2i1), two sites q and q′ must go into a same block v after the
repeated use of the rule (a) of the monotonic independence. This contradicts to the
assumption that vmin �= v′

min. Therefore the uniqueness of minimizer of f(v) must
hold. Note that this unique minimizer vmin is an outer block of a diagram g.

Now, let
g = h1h2 · · · hl

be the natural decomposition of a given diagram g ∈ NCD(p), as a concatenation,
so that h1, h2, · · · , hl ∈ NCD∗ ≡ ∪∞

r=1NCD(r) and out(h1) = · · · = out(hl) = 1.
Suppose that the minimizer vmin is given by the outer block ext(hm) of hm for some
unique m. Here ext(h) denotes the unique outer block of a diagram h ∈ NCD∗ with
out(h) = 1. For each f ∈ {1,2,···,n}Mg, this number m is uniquely determined. Let us
cut the diagram g at the both sides of hm, so we have

g = (h1 · · ·hm−1)hm(hm+1 · · · hl),

hm =
�
g1

�
g2

� · · · �
gk

�
.
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Here g1, g2, · · · , gk ∈ NCD ≡ ∪∞
r=0NCD(r) with NCD(0) ≡ {Λ = the empty diagram}.

We note that the restrictions f |h1···hm−1 , f |hm+1···hl
, f |g1 , f |g2 , · · ·, f |gk

of a given ad-
missible configuration f : P(g) 
 v �→ f(v) ∈ I to “subdiagrams” h1 · · · hm−1,
hm+1 · · · hl, g1, g2, · · ·, gk of g are always admissible configurations. That is

f |h1···hm−1 ∈ {b+1,···,n}Mh1···hm−1 ,
f |hm+1···hl

∈ {b+1,···,n}Mhm+1···hl
,

f |g1 ∈ {b+1,···,n}Mg1,
...

f |gk
∈ {b+1,···,n}Mgk

.

Conversely, when we choose arbitrary admissible configurations

ϕh1···hm−1 ∈ {b+1,···,n}Mh1···hm−1 ,
ϕhm+1···hl

∈ {b+1,···,n}Mhm+1···hl
,

ϕg1 ∈ {b+1,···,n}Mg1 ,
...

ϕgk
∈ {b+1,···,n}Mgk

from “subdiagrams” h1 · · ·hm−1, hm+1 · · · hl, g1, g2, · · ·, gk, respectively, and assign
the value b to the block ext(hm), then, by the natural composition, we get a “global”
admissible configuration ϕ in {1,2,···,n}Mg such that its minimal index min{ϕ(v)|v ∈
P(g)} is attained at the block ext(hm) and its value is b. Therefore all the admissible
configurations f ∈ {1,2,···,n}Mg can be classified by the pair (b, i) of a possible value b of
minimal index min{f(v)|v ∈ P(g)} and a possible position i (in the list {1, 2, · · · , l})
of minimizer vmin.

Since the quantity VX1X2···Xn(g) is defined by (3.2) as the “product sum” over all
admissible configurations f ∈ {1,2,···,n}Mg, it must satisfies the following recurrence
relations.

Recurrence relations:

i) VX1···Xn(
� � � · · · � �

r︷ ︸︸ ︷
) =

n∑
i=1

〈Xr
i 〉 (for a single block);

ii) VX1···Xn(g)

=
n∑

b=1

l∑
i=1

VXb+1···Xn(h1 · · ·hi−1) V ◦
Xb+1···Xn

(hi) 〈X |ext(hi)|
b 〉 VXb+1···Xn(hi+1 · · · hl)

(for g = h1h2 · · · hl with out(h1) = out(h2) = · · · = out(hl) = 1).

Here the quantity V ◦
Xb+1···Xn

(h) is defined for h ∈ {h ∈ NCD∗ |out(h) = 1} by

V ◦
Xb+1···Xn

(
�
g1

�
g2

� · · · �
gk

�
) = VXb+1···Xn(g1)VXb+1···Xn(g2) · · · VXb+1···Xn(gk).

Also we made a convention that VX1···Xn(Λ) ≡ 1 and V∅(g) ≡ 0 (if g �= Λ), ≡ 1 (if
g = Λ).

Let us calculate the moment generating function

fX1···Xn(s) =
∞∑

p=0

mp sp
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with mp = mp(X1, · · · , Xn) = 〈(X1 + · · ·+ Xn)p〉, in a formal way. Here we make a
convention that f∅(s) ≡ 1. Denote by p(g) the number #{points in g}. Using the
recurrence relation ii), we get

fX1···Xn(s) =
∑

g∈NCD

VX1···Xn(g) sp(g)

= 1 +
n∑

b=1

∞∑
l=1

∑
g ∈ NCD∗
out(g) = l

l∑
i=1

VXb+1···Xn(h1 · · ·hi−1) sp(h1···hi−1)

· V ◦
Xb+1···Xn

(hi) 〈X |ext(hi)|
b 〉 sp(hi) · VXb+1···Xn(hi+1 · · · hl)s

p(hi+1···hl)

= 1 +
n∑

b=1

fXb+1···Xn(s)
( ∑

h ∈ NCD∗
out(h) = 1

V ◦
Xb+1···Xn

(h) 〈X |ext(h)|
b 〉 sp(h)

)
fXb+1···Xn(s).

That is

fX1···Xn(s) = 1 +
n∑

b=1

fXb+1···Xn(s)2 gXb+1···Xn(s), (3.3)

where gXb+1···Xn(s) is defined by

gXb+1···Xn(s) =
∑

h ∈ NCD∗
out(h) = 1

V ◦
Xb+1···Xn

(h) 〈X |ext(h)|
b 〉 sp(h).

This gXb+1···Xn(s) is rewritten as

gXb+1···Xn(s) =
∑

h ∈ NCD∗
out(h) = 1

V ◦
Xb+1···Xn

(h) 〈X |ext(h)|
b 〉 sp(h)

(Put h =
�
g1

�
g2

� · · · �
gk

�
)

=
∞∑

k=0

∑
g1, g2, · · · , gk

∈ NCD

{
VXb+1···Xn(g1) sp(g1)

· · · VXb+1···Xn(gk) sp(gk)
}
〈Xk+1

b 〉 sk+1

=
∞∑

k=0

( ∑
g∈NCD

VXb+1···Xn(g) sp(g)
)k

〈Xk+1
b 〉 sk+1

=
∞∑

k=0

(
s fXb+1···Xn(s)

)k

〈Xk+1
b 〉 s,

that is

gXb+1···Xn(s) =
∞∑

k=0

〈Xk+1
b 〉

(
s fXb+1···Xn(s)

)k

s.

From this expression, we get

1 + fXb+1···Xn(s) gXb+1···Xn(s) = 1 +
∞∑

k=0

〈Xk+1
b 〉

(
s fXb+1···Xn(s)

)k+1
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=
∞∑
l=0

〈X l
b〉

(
s fXb+1···Xn(s)

)l

= fXb

(
s fXb+1···Xn(s)

)
,

that is

1 + fXb+1···Xn(s) gXb+1···Xn(s) = fXb

(
s fXb+1···Xn(s)

)
. (3.4)

Using (3.4), the expression (3.3) is rewritten as

fX1···Xn(s)　 = 1 +
n∑

b=1

fXb+1···Xn(s)2 gXb+1···Xn(s)

= 1 +
n∑

b=1

fXb+1···Xn(s)
((

1 + fXb+1···Xn(s) gXb+1···Xn(s)
)
− 1

)

= 1 +
n∑

b=1

fXb+1···Xn(s)
(
fXb

(s fXb+1···Xn(s))− 1
)

= 1 +
n∑

b=2

fXb+1···Xn(s)
(
fXb

(s fXb+1···Xn(s))− 1
)

+ fX2···Xn(s)
(
fX1(s fX2···Xn(s))− 1

)

= fX2···Xn(s) + fX2···Xn(s)
(
fX1(s fX2···Xn(s))− 1

)

= fX2···Xn(s) fX1(s fX2···Xn(s)).

Hence we get
fX1···Xn(s) = fX2···Xn(s) fX1(s fX2···Xn(s)). (3.5)

Multiply (3.5) by s, and put s := 1
z
, then we get

GX1+···+Xn(z) = GX2+···+Xn(z) fX1(GX2+···+Xn(z))

= GX1

(
1

GX2+···+Xn(z)

)
.

So we have
HX1+···+Xn(z) = HX1(HX2+···+Xn(z)).

Repeating this formula, we obtain

HX1+···+Xn(z) = HX1(HX2(· · · (HXn(z)) · · ·)). (3.6)

Although we get this equality (3.6) through a formal calculation, (3.6) hold for
all z ∈ C+ because of the boundedness of X’s and the uniqueness theorem for
holomorphic functions. �

This result motivates us to give the following definition.

Definition 3.2 (monotonic convolution). For a pair of probability measures µ,
ν on R, the unique probability measure λ satisfying Hλ(z) = Hµ(Hν(z)), z ∈ C+, is
called the monotonic convolution of µ and ν, and denoted by λ = µ � ν.

The unique existence of such measure λ for given (µ, ν) is shown below. Let
us remind of some facts from the theory of Pick-Nevanlinna functions [Bha]. A
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holomorphic function f(z) on C+ is said to be a Pick function if �f(z) ≥ 0 for all
z ∈ C+. The following integral representation formula for Pick functions plays a
crucial role throughout the paper. Here i is the imaginary unit.

Theorem 3.3 (Nevanlinna’s theorem). [Bha] Let f(z) be a function on C+.
Then the followings two conditions are equivalent.

(1) f(z) is a Pick function.
(2) There exist a real number α, a non-negative real number β ≥ 0 and a finite

positive measure γ on R such that

f(z) = α + βz +
∫ +∞

−∞
1 + xz

x− z
dγ(x), z ∈ C+.

If the above conditions hold, the triple (α, β, γ) is unique, and satisfies α = �f(i),
γ(R) = �f(i)− β and

β = lim
0<y→∞

�f(i y)

y
.

For any probability measure µ on R, the reciprocal Cauchy transform Hµ(z) is
a Pick function. Besides it satisfies �Hµ(z) ≥ �z for all z ∈ C+. In this case, the
following characterization is known.

Theorem 3.4. [Maa] Let f : C+ → C+ be a holomorphic function. Then the
following three conditions are equivalent.

(1) f(z) = Hµ(z), z ∈ C+, for some probability measure µ on R.
(2) There exist a real number a ∈ R and a finite positive measure τ on R such

that

f(z) = a + z +
∫ +∞

−∞
1 + xz

x− z
dτ(x), z ∈ C+.

(3)

inf
z∈C+

�f(z)

�z
= 1.

Now let us show the well-definedness of the definition 3.2.

Theorem 3.5. For a pair of probability measures µ, ν on R, there exists a unique
probability measure λ on R such that

Hλ(z) = Hµ(Hν(z)), z ∈ C+.

Proof. From Theorem 3.4, there exists a real number a and a finite positive measure
τ on R such that

Hν(z) = a + z +
∫ +∞

−∞
1 + xz

x− z
dτ(x),

from which we have

Hν(z)− y = (a− y) + z +
∫ +∞

−∞
1 + xz

x− z
dτ(x).

Again from Theorem 3.4, there exists a unique probability measure νy such that

Hνy(z) = (a− y) + z +
∫ +∞

−∞
1 + xz

x− z
dτ(x).
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Note that Hνy(z) is continuous in y. So we have

Gµ(Hν(z)) =
∫ +∞

−∞
1

Hν(z)− y
dµ(y)

=
∫ +∞

−∞
Gνy(z) dµ(y)

=
∫ +∞

−∞

(∫ +∞

−∞
1

z − x
dνy(x)

)
dµ(y)

=
∫ +∞

−∞
1

z − x
d
(∫ +∞

−∞
νy(x)dµ(y)

)

= Gλ(z).

Here the measure λ is defined by λ(·) =
∫ +∞
−∞ νy(·)dµ(y). This implies Hλ(z) =

Hµ(Hν(z)). �

The monotonic convolution µ � ν satisfies the following properties. (Denote by
δ0 the point measure at the origin x = 0.)

(1) δ0 � µ = µ � δ0 = µ ;
(2) (λ � µ) � ν = λ � (µ � ν) ;
(3) the map µ �→ µ � ν is affine;
(4) the map µ �→ µ � ν (resp. ν �→ µ � ν) is weak* continuous.

Note that the monotonic convolution is not commutative in general: µ � ν �= ν � µ.

4. Monotonic Lévy-Hinčin formula in terms of semigroups

In this section, we investigate the “infinite divisibility” with respect to the mono-
tonic convolution, and prove a monotonic analogue of Lévy-Hinčin formula in terms
of continuous one-parameter monotonic convolution semigroups of probability mea-
sures.

In the setting of “monotonic probability,” we formulate, in an appropriate sense,
the following three objects:

(A) infinitely divisible distribution ;

(B) continuous one-parameter convolution semigroup ;

(C) (certain) integral representation (= “Lévy measure”).

We wish to establish the equivalence beteween among three objects (A), (B) and
(C). This should be the content of “monotonic Lévy-Hinčin formula.” The equiva-
lence between (B) and (C) will be established in this section in the general setting
(Theorem 4.7). On the other hand, the equivalence between (A) and (B) will be
established in the next section, but in the restricted class of compactly supported
probability measures (Theorem 5.1).

Let us give the definitions of notions concerning the “infinite divisibility.”

Definition 4.1. A probability measure µ on R is said to be �-infinitely divisible if,
for each n ∈ N∗, there exists some probability measure ν on R such that

µ =

n︷ ︸︸ ︷
ν � ν � · · ·� ν .

Definition 4.2. A real one-parameter family {µt}t≥0 of probability measures on
R is said to be a weak* continuous one-parameter �-semigroup if the following
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conditions are satisfied: (1) µ0 = δ0 ; (2) µs+t = µs � µt ; (3) the map t �→ µt is
weak* continuous.

Definition 4.3. A real one-parameter family {Ht(z)}t≥0 of reciprocal Cauchy trans-
forms of probability measures on R is said to be a continuous one-parameter semi-
group of reciprocal Cauchy transforms if the following conditions are satisfied: (1)
H0(z) = z ; (2) Hs+t(z) = Hs(Ht(z)) ; (3) the map t �→ Ht(z) is continuous for
each fixed z ∈ C+.

There is the natural bijective correspondence beteween the above two kinds of
continuous one-parameter semigroups {µt}t≥0 and {Ht(z)}t≥0 because a sequence
{µn}∞n=1 of probability measures on R converges in the weak* topology to a probabil-
ity measure µ if and only if Hµn(z)→ Hµ(z) as n→∞ for all z ∈ C+. Besides there
is the natural correspondence from the set of all weak* continuous one-parameter
�-semigroups {µt}t≥0 to the set of all �-infinitely divisible distributions µ given by
the specialization (t:=1) : {µt}t≥0 �→ µ1. (In the next section we will construct a
partial converse µ �→ {µt}t≥0 for the class of �-infinitely divisible distributions with
compact supports (Proposition 5.4).)

Let us give some examples of continuous one-parameter semigroups {Ht(z)}t≥0

and its associated �-infinitely divisible distributions µ = µ1. Denote by χ
I

the indi-
cator function of an interval I. Denote by µac (resp. µs) the absolutely continuous
part (resp. the singular part) of µ w.r.t. the Lebesgue measure dx. Denote by E−1

n
the nth branch of the product log function E−1 (= the inverse analytic function of an
entire function E(z) = z ez [Mu3]). E−1

∗ denotes an appropriate branch composed
from E−1

0 and E−1
−1 [Mu3]. Also we denote E−1

−1 by E−1 for short.

Example 4.4. (1) Point measure: Ht(z) = z − at, µ = δa.
(2) Arcsine distribution (= monotonic Gaussian distribution) [Mu1]:

Ht(z) =
√

z2 − 2t, dµ(x) = χ(−√
2,
√

2)(x) · 1

π
√

2− x2
dx.

(3) Monotonic Poisson distribution [Mu3]:

Ht(z) = −E−1
∗ (eλt E(−z)),

dµac(x) = χ(a,b)(x) · 1
π
� 1

E−1(eλE(−x))
dx, µs = c δ0,

a = −E−1
0 (− 1

e1+λ
), b = −E−1

−1(−
1

e1+λ
), c =

1

eλ
, (λ > 0).

(4) A deformation of arcsine distribution:

Ht(z) = c +
√

(z − c)2 − 2t,

dµac(x) = χ(c−√
2,c+

√
2)(x) · 1

π

√
2− (x− c)2

c2 + 2− (x− c)2
dx,

(
µac(R) = 1− |c|√

2 + c2

)
,

dµs(x) = Aδc−√
2+c2 + B δc+

√
2+c2, (A,B : the normalization constants).

(5) Cauchy distribution:

Ht(z) = z + ibt, dµ(x) =
1

π

b

x2 + b2
dx (b > 0).

From these examples, the following two features of “monotonic probability” can
be read out.
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• It is often that important probability distributions may have the reciprocal
form: 1

some function . (Of course this is an immediate effect of the reciprocal
Cauchy transform.) It can be said that, in a sense, “monotonic probability” is
a “reciprocal probability.”

• It is often that the reciprocal Cauchy transform Hµ(z) of �-infinitely divisi-
ble distribution µ includes a pair consisting of some function f and its inverse
function f−1. In fact, this is a general phenomenon as shown in the following
Theorem 4.5.

A continuous one-parameter semigroup {Ht(z)}t≥0 of reciprocal Cauchy trans-
forms is said to be trivial if Ht(z) ≡ z for all t ≥ 0 and all z ∈ C+.

Theorem 4.5. Let {Ht(z)}t≥0 be a continuous one-parameter semigroup of recip-
rocal Cauchy transforms of probability measures on R. Then the followings hold.

(1) For each fixed z ∈ C+, the map t �→ Ht(z) is of class C∞ (in fact, real
analytic). In particular, the limit

A(z) ≡ lim
0<δ→0

Hδ(z)− z

δ
, z ∈ C+

exists. The function A(z) is a Pick function, and there exists a unique pair (α, γ)
of a real number α and a finite positive measure γ on R such that

A(z) = α +
∫ +∞

−∞
1 + xz

x− z
dγ(x), z ∈ C+.

(2) Assume further that the semigroup {Ht(z)}t≥0 is not trivial. Then,

i) The reciprocal
1

A(z)
exists for all z ∈ C+.

ii) Put F (z) =
∫ z

i

1

A(z)
dz. Then, for any z ∈ C+ and any t ≥ 0, there exists

a unique w ∈ C+ such that F (w) − F (z) = t. Besides, Ht(z) has the following
representation:

Ht(z) = F−1(F (z) + t), t ≥ 0, z ∈ C+.

Proof. Step 1 (right differentiability at t = 0). By Theorem 3.4, there exists a unique
pair (at, τt) of a real number at ∈ R and a finite positive measure τt on R such that

Ht(z) = at + z +
∫ +∞

−∞
1 + xz

x− z
dτt(x), z ∈ C+.

Hence τt(R) = �Ht(i)− 1 is continuous in t. By the way, the difference Ht+ε(z)−
Ht(z) is given by

Ht(Hε(z))−Ht(z) = Hε(z)−z+(Hε(z)−z)
∫ +∞

−∞
1 + x2

(x−Hε(z))(x− z)
dτt(x). (4.1)

Put ε := δ
n

and t := k
n
δ with δ > 0, and take the sum of (4.1) over all k =

0, 1, 2, · · · , n− 1, then we get

Hδ(z)−H0(z) = n(H δ
n
(z)− z)+ (H δ

n
(z)− z)

n−1∑
k=0

∫ +∞

−∞
1 + x2

(x−H δ
n
(z))(x− z)

dτ k
n

δ(x).
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That is

Hδ(z)−z = δ·
(H δ

n
(z)− z)

δ
n

·+δ·
(H δ

n
(z)− z)

δ
n

·1
n

n−1∑
k=0

∫ +∞

−∞
1 + x2

(x−H δ
n
(z))(x− z)

dτ k
n

δ(x).

Let us calculate the limit of this equality for n→∞. At first we have the convergence
to the Riemann integral:

lim
n→∞

1

n

n−1∑
k=0

∫ +∞

−∞
1 + x2

(x−H δ
n
(z))(x− z)

dτ k
n

δ(x) =
1

δ

∫ δ

0

(∫ +∞

−∞
1 + x2

(x− z)2
dτt(x)

)
dt

from Lemma 6.1. This integral can be made arbitrarily small when δ is taken to
be sufficiently small. This is because of τt(R) = �(Ht(i)) − 1 → 0 (t → 0). Hence
there exists δ0 > 0 such that, for any δ with 0 < δ < δ0, the limit

Aδ(z) ≡ lim
n→∞

H δ
n
(z)− z

δ
n

=
(Hδ(z)− z)/δ

1 +
1

δ

∫ δ

0

(∫ +∞

−∞
1 + x2

(x− z)2
dτt(x)

)
dt

exists. (Note that “the denominator �= 0” because δ > 0 is sufficiently small.)
Now let us show that the limit Aδ(z) is not dependent on δ. Let r be a fixed

arbitrary rational number with 0 < r < 1. Let p and q be natural numbers ≥ 1 such
that r = p

q
. Then we have

lim
n→∞

H rδ
n
(z)− z
rδ
n

= Arδ(z)

because of 0 < rδ < δ0. Let {(H rδ
n(k)

(z) − z)/ rδ
n(k)
}∞k=1 be the subsequence of the

above convergent sequence defined by n(k) = kp (k = 1, 2, 3, · · ·). Then we have

lim
k→∞

H rδ
n(k)

(z)− z

rδ
n(k)

= Arδ(z).

By the way, since rδ
n(k)

= δ
kq

, the sequence {(H rδ
n(k)

(z)− z)/ rδ
n(k)
}∞k=1 can be viewed as

a subsequence of another convergent sequence

lim
n→∞

H δ
n
(z)− z

δ
n

= Aδ(z),

and hence

lim
k→∞

H rδ
n(k)

(z)− z

rδ
n(k)

= Aδ(z).

The above two limits of the same sequence {(H rδ
n(k)

(z)− z)/ rδ
n(k)
}∞k=1 must coincide.

So we have Arδ(z) = Aδ(z) for all rational numbers r with 0 < r < 1. By the way,
for each fixed z ∈ C+, Aδ(z) is a continuous function of δ because of the expression

Aδ(z) =
(Hδ(z)− z)/δ

1 +
1

δ

∫ δ

0

(∫ +∞

−∞
1 + x2

(x− z)2
dτt(x)

)
dt

. (4.2)
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This implies that Arδ(z) = Aδ(z) for all real numbers r with 0 < r < 1. Furthermore
this means that Aδ(z) is not dependent on δ when δ is sufficiently small (0 < δ < δ0).
So we write A(z) ≡ Aδ(z). From the expression (4.2), we have

A(z)
(
1 +

1

δ

∫ δ

0

(∫ +∞

−∞
1 + x2

(x− z)2
dτt(x)

)
dt

)
=

Hδ(z)− z

δ
.

Taking the limit δ → 0, we get

A(z) = lim
0<δ→0

Hδ(z)− z

δ
. (4.3)

The expression (4.2) also implies that A(z) (= Aδ(z)) is holomorphic on C+.

Step 2 (differentiability). The substitution z := Ht(z) for the expression (4.3) yields
the right differentiability of the map t �→ Ht(z) for each fixed z ∈ C+, and hence we
get the right derivative

D+
t Ht(z) = A(Ht(z)).

Let T > 0 and δ > 0 be arbitrary positive real numbers with 0 < T − δ < T . Put
ε := δ

n
and t := T − k

n
δ with k = 1, 2, 3, · · · , n, and take the sum of diferrences

Ht(Hε(z))−Ht(z) over all k = 1, 2, 3, · · · , n, then we have

HT (z)−HT−δ(z) = n(H δ
n
(z)−z)+(H δ

n
(z)−z)

n∑
k=1

∫ +∞

−∞
1 + x2

(x−H δ
n
(z))(x− z)

dτT− k
n

δ(x).

Devide this equality with δ and take the limit n→∞, then we get

HT (z)−HT−δ(z)

δ
= A(z)

(
1 +

1

δ

∫ T

T−δ

(∫ +∞

−∞
1 + x2

(x− z)2
dτt(x)

)
dt

)
. (4.4)

Here we used the convergence to Riemann integral :

lim
n→∞

1

n

n∑
k=1

∫ +∞

−∞
1 + x2

(x−H δ
n
(z))(x− z)

dτT− k
n

δ(x) =
1

δ

∫ T

T−δ

(∫ +∞

−∞
1 + x2

(x− z)2
dτt(x)

)
dt.

Furthermore take the limit of (4.4) for 0 < δ → 0 and replace the letter T with t,
then we get the left differentiability and the left derivative

D−
t Ht(z) = A(z)

(
1 +

∫ +∞

−∞
1 + x2

(x− z)2
dτt(x)

)
.

Since the second factor of the r.h.s. of this equality equals ∂
∂z

Ht(z), we get

D+
t Ht(z) = lim

0<δ→0

Ht+δ(z)−Ht(z)

δ
= A(Ht(z)), (t ≥ 0),

D−
t Ht(z) = lim

0<δ→0

Ht−δ(z)−Ht(z)

−δ
=

(
∂

∂z
Ht(z)

)
A(z), (t > 0).

The differentiability of Ht(z) can be concluded from

D+
t Ht(z) = lim

0<δ→0

Ht+δ(z)−Ht(z)

δ

= lim
0<δ→0

Ht(Hδ(z))−Ht(z)

Hδ(z)− z
· Hδ(z)− z

δ

=
(

∂

∂z
Ht(z)

)
A(z) = D−

t Ht(z)

18



whenever the semigroup {Ht(z)}t≥0 is not trivial. Here the denominator Hδ(z)− z
is not zero because of Lemma 6.2. On the other hand, the differentiability of Ht(z)
is obvious when {Ht(z)}t≥0 is trivial. After all the differential coefficient of Ht(z) is
given by DtHt(z) = A(Ht(z)). This yields that the map t �→ Ht(z) is of class C∞
for each fixed z ∈ C+. (The analyticity of the map t �→ Ht(z) will become clear
from the representation formula for Ht(z) at Step 7 in the later.)

Step 3 (integral representation of a “generator” A(z)). The function A(z) con-
structed above is a Pick function since

�A(z) = lim
n→∞� (n(H 1

n
(z)− z)) = n lim

n→∞(�(H 1
n
(z))−� z) ≥ 0, z ∈ C+.

So there exist real numbers α, β ∈ R, β ≥ 0 and a finite positive measure γ on R
such that

A(z) = α + β z +
∫ +∞

−∞
1 + xz

x− z
dγ(x), z ∈ C+

from Theorem 3.3. Let us show that β = 0. Let us remind of the expression

A(z) =
(Hδ(z)− z)/δ

1 +
1

δ

∫ δ

0

(∫ +∞

−∞
1 + x2

(x− z)2
dτt(x)

)
dt

. (4.5)

From the representation

Hδ(z) = aδ + z +
∫ +∞

−∞
1 + xz

x− z
dτδ(x),

we get

�(Hδ(z)− z) =
(∫ +∞

−∞
1 + x2

|x− z|2 dτδ(x)
)
· � z,

and hence

lim
0<y→∞

�(Hδ(iy)− iy)

y
= 0.

Put Iδ(z) ≡ 1

δ

∫ δ

0

(∫ +∞

−∞
1 + x2

(x− z)2
dτt(x)

)
dt and let δ > 0 be sufficiently small arbi-

trary positive real number such that sup
y≥1
|Iδ(iy)| < ε. This is possible since we have,

for any y ≥ 1,

|Iδ(iy)| ≤ 1

δ

∫ δ

0

(∫ +∞

−∞
1 · dτt(x)

)
dt =

1

δ

∫ δ

0
τt(R)dt −→ 0 (δ → 0)

because of the inequality | 1+x2

(x−iy)2
| ≤ 1 and the continuity of t �→ τt(R). Now the

imaginary part of (4.5) with z := iy is given by

�A(iy) = �(Hδ(iy)− iy)/δ

1 + Iδ(iy)

=
1

δ|1 + Iδ(iy)|2
{
�(Hδ(iy)− iy) + �((Hδ(iy)− iy)Iδ(iy))

}
.

Since, in the last equality, Iδ(iy) can be made arbitrarily small (≤ ε), we get

lim
0<y→∞

�A(iy)

y
= 0
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and hence the desired result β = 0.

Step 4 (existence of the reciprocal 1
A(z)

). The existence of the reciprocal 1
A(z)

, z ∈ C+,

follows from the expression (4.5) of A(z) and Lemma 6.2.

Step 5 (uniqueness of w). Let us show that, for each t ≥ 0 and each z ∈ C+, the
complex number w ∈ C+ satisfying F (w) − F (z) = t must be unique (if exists).
From the integral representation

A(z) = α +
∫ +∞

−∞
1 + xz

x− z
dγ(x), z ∈ C+,

we get

�A(z) =
(∫ +∞

−∞
1 + x2

|x− z|2 dγ(x)
)
· � z.

For each fixed z ∈ C+, the integrand ϕ(x) ≡ 1+x2

|x−z|2 is a bounded continuous function

satisfying ϕ(x) > 0 for all x ∈ R. Hence A(z) is Pick function satisfying �A(z) > 0
for all z ∈ C+, whenever γ(R) �= 0. Note that (α, γ) �= (0, 0) because of the non
triviality of {Ht(z)}t≥0.

So let us first consider the case of γ(R) �= 0. Let w1 and w2 be arbitrary complex
numbers from the upper half plane C+ such that w1 �= w2. Consider the segment
z = z(t) = w1 + t(w2 − w1), 0 ≤ t ≤ 1, then we have dz = (w2 − w1)dt, and hence

∫ w2

w1

1

A(z)
dz =

(∫ 1

0

1

A(z(t))
dt

)
· (w2 − w1).

Using the continuity of A(z(t)) and the strict positivity �A(z) > 0, we have

�
(∫ 1

0

1

A(z(t))
dt

)
= −

∫ 1

0

�A(z(t))

|A(z(t))|2 dt < 0.

This means
∫ w2
w1

1
A(z)

dz �= 0. Therfore we have F (w1) �= F (w2) from Cauchy’s integral

theorem. Hence, for a given z ∈ C+ and a given t ≥ 0, the complex number w ∈ C+

satisfying F (w) = F (z) + t must be unique (if exists).
Next consider the case of γ(R) = 0 and α �= 0. In this case, we have A(z) =

α(�= 0), and hence 1
A(z)

= 1
α
. So we have

F (z) =
∫ z

i

dz

A(z)
=

1

α
(z − i),

from which the uniquness of w ∈ C+ satisfying F (w) = F (z) + t follows.
Therefore, in any cases, the uniqueness of w holds.

Step 6 (existence of w). Let us show that, for any t ≥ 0 and any z0 ∈ C+, there
exists a complex number w ∈ C+ such that F (w)−F (z0) = t. Choose a real number
β > 0 such that � z0 > β > 0 and fix it. Put C+

β = {z ∈ C+|� z > β}. From the
expression

A(z) = α +
∫ +∞

−∞
1 + xz

x− z
dγ(x), z ∈ C+,

we have

|A(z)| ≤ |α| +
∫ +∞

−∞
1

|x− z|dγ(x) +
(∫ +∞

−∞

∣∣∣∣ x

x− z

∣∣∣∣dγ(x)
)
|z|. (4.6)
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Put ϕ(x) ≡ | x
x−z
|. Then we see

sup
x∈R

ϕ(x) ≤ 1 (for all z ∈ C+) (4.7)

from differential calculus. From (4.6) and (4.7), we get an inequality in the domain
C+

β :

|A(z)| ≤ |α|+ γ(R)

β
+ γ(R) · |z|

= C |z|+ D (z ∈ C+
β ).

Here the constants C and D are given by C ≡ γ(R) and D ≡ |α|+ γ(R)
β

, respectively.

So, in the domain C+
β , |A(z)| is domiated from above by a linear function of |z|.

From this inequality, we can show that the initial value problem of ordinary
differential equation defined by

dz

dt
= A(z), z(0) = z0 (4.8)

has a global solution z(t), 0 ≤ t < +∞, in the domain C+
β , as follows.

Let z = z(t) (0 ≤ t < t∗) be the non-extendable solution of the initial value
problem (4.8). Here t∗ ∈ R∗

+ ∪ {+∞}. Then we have

z(t) = z0 +
∫ t

0
A(z(s))ds, 0 ≤ t < t∗

from which we obtain

|z(t)| ≤ |z0|+
∫ t

0
(C|z(s)|+ D)ds = g(t) + C

∫ t

0
|z(s)|ds.

Here g(t) is defined by g(t) ≡ |z0|+ D t. From Gronwall’s Lemma, we get

|z(t)| ≤ g(t) + C
∫ t

0
eC(t−s) g(s) ds. (4.9)

Put ϕ(t) ≡ g(t)+C
∫ t
0 eC(t−s) g(s) ds. The non triviality of the semigroup {Ht(z)}t≥0

implies that either α �= 0 or γ(R) �= 0, and hence D > 0. Furthermore this implies
lim
t→∞ϕ(t) = +∞, and hence the function ϕ(t) is a strictly increasing homeomorphism

from the interval [0, +∞) on to the interval [|z0|,+∞).
Let z(t) be any solution of (4.8), and let K ⊂ C+

β be any compact set containing
the point z0. By the extension theorem for solution of ordinary differential equation
[Arn], it is hold that z(t) can be extended forward either indefinitely (t∗ = +∞) or
up to the boundary ∂K of K. As a compact set K containing z0, take the following
set

KR ≡ {z ∈ C | |z| ≤ R and � z ≥ β1}.
Here β1 is a real number such that �z0 > β1 > β, and R > 0 is a sufficiently large,
arbitrary real number so that R > |z0|.

If z(t) can be extended forward up to the boundary ∂K of K, then there exists
some T ∈ [0, t∗) such that z(T ) ∈ ∂K. This number T is strictly positive (> 0)
because of z0 /∈ ∂K. Note that

� z(T ) = � z0 +
∫ T

0
�A(z(s)) ds ≥ � z0
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since A(z) is a Pick function. Because of this inequality, the point z(T ) must belong
to the semi-circle part of the figure ∂K. So we have |z(T )| = R.

Therefore the inequality (4.9) yields

R = |z(T )| ≤ ϕ(T ).

Since ϕ(t) is an isomorphism from the interval [0, +∞) onto the interval [|z0|,+∞)
in the sense of ordered sets, we have T ≥ ϕ−1(R). Now the number T can be made
arbitrarily large when R is prepared to be sufficiently large. This means that the
non-extendable solution z(t) is always a global solution (t∗ = +∞).

Along with the global solution z(t) of (4.8), let us integrate the equality
1

A(z(t))
dz(t)

dt
= 1 from 0 to t with dt, then we get

∫ t

0

1

A(z(t))

dz(t)

dt
dt =

∫ t

0
dt = t, 0 ≤ t < +∞.

That is ∫ z(t)

z(0)

dz

A(z)
= t, 0 ≤ t < +∞.

This means that, for a given z0 ∈ C+ and a given t ≥ 0, there exists w ∈ C+ such
that F (w) = F (z0) + t.

Step 7 (representation of Ht(z)). For each t ≥ 0, the function z �→ F−1(F (z) + t) :
C+ → C+ is well-defined. Let z be fixed, then the derivative of the function
t �→ Kt(z) ≡ F−1(F (z) + t) with variable t is given by

d

dt
Kt(z) =

1

F ′(F−1(F (z) + t))

d

dt
(F (z) + t) = A(F−1(F (z) + t)).

Here F ′(z) denotes the derivative of the function F (z). Hence the function Kt(z)
satisfies

d

dt
Kt(z) = A(Kt(z)), K0(z) = z.

On the other hand, also the function Ht(z) satisfies the same differential equation

d

dt
Ht(z) = A(Ht(z)), H0(z) = z.

Therefore we obtain Ht(z) = Kt(z) by the uniqueness of solution for initial value
problem of ordinary differential equation. �

Next, let us prove the converse to Theorem 4.5. We say that the function A(z),
z ∈ C+, is trivial if A(z) ≡ 0 for all z ∈ C+.

Theorem 4.6. Let (α, γ) be a pair of a real number α and a finite positive measure
γ on R, and let A(z) be a Pick function given by

A(z) = α +
∫ +∞

−∞
1 + xz

x− z
dγ(x), z ∈ C+.

Assume further that A(z) is not trivial. Then the followings hold.

(1) The reciprocal
1

A(z)
exists for all z ∈ C+.

22



(2) Put F (z) =
∫ z

i

1

A(z)
dz. Then, for each z ∈ C+ and each t ≥ 0, there exists

a unique w ∈ C+ such that F (w)− F (z) = t.
(3) Put

Kt(z) = F−1(F (z) + t), t ≥ 0, z ∈ C+.

Then {Kt(z)}t≥0 is a continuous one-parameter semigroup of reciprocal Cauchy
transforms of probability measures on R.

(4) For each fixed z ∈ C+, the map t �→ Kt(z) is differentiable, and its right
derivative at t = 0 coincides with the Pick function A(z) given above.

Proof. (1) and (2) can be shown by the same discussion as in the proof of Theorem
4.5.
(3) At first it is obvious that {Kt(z)}t≥0 satisfies the semigroup property:
Ks(Kt(z)) = Ks+t(z), K0(z) = z. Let us show that Kt(z) is a Pick function. The
range Ran(F ) ≡ {F (z) | z ∈ C+} of F is an open set. From the definition of
w = Kt(z) :

w = Kt(z) ⇐⇒ unique w ∈ C+ s.t. F (w) = F (z) + t,

we have the inclusion

{F (z) + t | z ∈ C+, t ≥ 0} ⊂ Ran(F ) = {F (z) | z ∈ C+}.
Since the converse inclusion “⊃” is obvious, we get the equality

{F (z) + t | z ∈ C+, t ≥ 0} = Ran(F ).

Since F ′(z) = 1
A(z)
�= 0, the inverse function Ran(F ) 
 ζ �→ F−1(ζ) ∈ C+ is holo-

morphic. Hence also the composed funcion Kt(z) = F−1(F (z) + t) is holomorphic.
It is obvious that Kt(C

+) ⊂ C+, and hence Kt(z) is a Pick function. For each
z ∈ C+, the map t �→ Kt(z) = F−1(F (z) + t) is continuous. Therefore {Kt(z)}t≥0

is a continuous one-parameter semigroup consisting of of Pick functions.
Now the only thing we must do is to show that Kt(z) is the reciprocal Cauchy

transform of some probability measure µt on R. For this purpose, we only have to
show that

inf
z∈C+

�Kt(z)

� z
= 1,

because of Theorem 3.4. It is easy to see that Kt(z) satisfies the differential equation
d
dt

Kt(z) = A(Kt(z)), and hence

Kt(z)− z =
∫ t

0
A(Kt(z))dt. (4.10)

Taking the imaginary part of (4.10), we get

�Kt(z) ≥ � z (4.11)

because A(z) is a Pick function. Take the imaginary part of (4.10) again, but in this
time, after the replacement of A(ζ) in (4.10) with its integral representation. Then
we get

�Kt(z)−� z =
∫ t

0

(∫ +∞

−∞
1 + x2

|x−Kt(z)|2dγ(x)
)
dt. (4.12)
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By the way, the inner integrand in this equality is dominated from above as

1 + x2

|x−Kt(z)|2 =
1 + x2

(x−�Kt(z))2 + (�Kt(z))2
≤ 1 + x2

(�z)2

because of �Kt(z) ≥ �z > 0. Hence we get the pointwise convergence :

lim
0<y→∞

1 + x2

|x−Kt(iy)|2 = 0 (∀x ∈ R, ∀t ≥ 0).

with y a real variable. Let us rewrite (4.12) with z := iy, as

�Kt(iy)− y =
∫ t

0

(∫ +∞

−∞
dγ(x)

|x−Kt(iy)|2
)
dt +

∫ t

0

(∫ +∞

−∞
x2

|x−Kt(iy)|2 dγ(x)
)
dt.

(4.13)
Let yn > 0 be a sequence such that lim

n→∞ yn = +∞. Then the second term of the

r.h.s. of (4.13) vanishes in the limit n→∞ :

lim
n→∞

∫ t

0

(∫ +∞

−∞
x2

|x−Kt(iyn)|2 dγ(x)
)
dt = 0

because of the dominated convergence theorem and an inequality

x2

|x−Kt(z)|2 ≤ 1 (∀x ∈ R, ∀t ≥ 0, ∀z ∈ C+).

Here we applied the dominated convergence theorem to the double integral w.r.t.
the product measure dγ(x)⊗ dt on R× [0, t]. After all we get

0 ≤ �Kt(iyn)− yn

=
∫ t

0

(∫ +∞

−∞
dγ(x)

|x−Kt(iyn)|2
)
dt +

∫ t

0

(∫ +∞

−∞
x2

|x−Kt(iyn)|2 dγ(x)
)
dt

≤ γ(R) · t
|yn|2 +

∫ t

0

(∫ +∞

−∞
x2

|x−Kt(iyn)|2 dγ(x)
)
dt

−→ 0 (n→ +∞).

That is

lim
n→∞

�Kt(iyn)

yn

= 1.

With (4.11), we get the desired result

inf
z∈C+

�Kt(z)

�z
= 1.

(4) It is easily checked. �

From Theorem 4.5 and Theorem 4.6, we see that there is the natural bijec-
tive correspondence between the set H of all continuous one-parameter semigroups
{Ht(z)}t≥0 of reciprocal Cauchy transforms of probability measures on R and the
set L of all pairs (α, γ) consisting of real numbers α and finite positive measures γ
on R :

H 
 {Ht(z)}t≥0 ←→ (α, γ) ∈ L
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We summarize this conclusion in the following Theorem. It is a monotonic analogue
of Lévy-Hinčin formula in terms of continuous one-parameter semigroups. Note
that, for any weak* continuous one-parameter �-semigroup {µt}t≥0 of probability
measures, it is hold that either (1) µt �= δ0 for all t > 0, or, (2) µt = δ0 for all t ≥ 0.
The case (2) occurs if and only if (α, γ) = (0, 0).

Theorem 4.7 (monotonic Lévy-Hinčin formula in terms of semigroups).
Let {µt}t≥0 be a one-parameter familiy of probability measures on R. Assume that
µt �= δ0 for all t > 0. Then the following two conditions are equivalent.

(1) {µt}t≥0 is a weak* continuous one-parameter �-semigroup.
(2) There exists a pair (α, γ) (�= (0, 0)) of a real number α and a finite positive

measure γ on R such that the reciprocal Cauchy transform Ht(z) of µt is given
by

w = Ht(z) ⇐⇒ ∃1w ∈ C+ s.t.
∫ w

z

dz

A(z)
= t,

where the function A(z) is defined by

A(z) = α +
∫ +∞

−∞
1 + xz

x− z
dγ(x). (4.14)

If the above conditions hold, (α, γ) and A(z) are unique.

The Pick function A(z) given in Theorem 4.7 is called the generator of the
semigroup {Ht(z)}t≥0. The pair (α, γ) is called the Lévy measure for short although
it is not a measure but a pair of a number and a measure. For each semigroup
{Ht(z)}t≥0 in Example 4.4, let us give its generator A(z) and the Lévy measure
(α, γ) in the standard form (4.14).

Example 4.8. (1) Point measure : A(z) = −a, (α, γ) = (−a, 0).

(2) Arcsine distribution : A(z) = −1

z
, (α, γ) = (0, δ0).

(3) Monotonic Poisson distribution: A(z) =
λ z

1− z
, (α, γ) =

(
−λ

2
,
λ

2
δ1

)
.

(4) A deformation of arcsine distribution:

A(z) = − 1

z − c
, (α, γ) =

(
c

1 + c2
,

δc

1 + c2

)
.

(5) Cauchy distribution:

A(z) = ib =
b

π

∫ +∞

−∞
1 + xz

x− z

dx

1 + x2
, α = 0, dγ(x) =

b

π

dx

1 + x2
.

Finally, let us give another standard form (different from (4.14)) for the generator
A(z) of the semigroup {Ht(z)}t≥0. This standard form which we give below can be
defined for the class of weak* continuous one-parameter �-semigroups {µt}t≥0 such
that each µt is of finite variance. Denote by P the set of all probability measures
µ on R, by P2 the set of all µ (∈ P) with finite variance, and by P2

0 the set of
all µ (∈ P) with finite variance and zero mean. Note that, for a weak* continuous
one-parameter �-semigroup {µt}t≥0 ⊂ P, the existence of t0 > 0 such that µt0 ∈ P2

implies that µt ∈ P2 for all t ≥ 0, because of Lemma 6.3.

Theorem 4.9. Let {µt}t≥0 be a weak* continuous one parameter �-semigroup
of probability measures on R, and let {Ht(z)}t≥0 its associated reciprocal Cauchy
transforms. Then the following two conditions are equivalent.
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(1) µt ∈ P2 for all t ≥ 0.
(2) There exists a pair (a, τ) of a real number a and a finite positive measure τ

on R such that the generator A(z) of {Ht(z)}t≥0 has a representation

A(z) = a +
∫ +∞

−∞
1

x− z
dτ(x), z ∈ C+. (4.15)

If the above conditions hold, then the pair (a, τ) is unique.

Proof. Step 1 ((1)⇒(2)). Using the characterization theorem for reciprocal Cauchy
transforms of the class P2

0 (Proposition 2.2 in [Maa]), we get

Ht(z) = at + z +
∫ +∞

−∞
1

x− z
dρt(x), z ∈ C+,

for some real number at and some finite positive measure ρt on R. Here we have
−at = m(µt) (= the mean of µt) and ρt(R) = σ2(µt) (= the variance of µt). Hence
the generator A(z) is given by

A(z) = lim
n→∞n(H 1

n
(z)− z) = lim

n→∞

(
na 1

n
+

∫ +∞

−∞
1

x− z
dnρ 1

n
(x)

)
.

Again by the Proposition 2.2 in [Maa], there exists some probability measure νn ∈ P2
0

such that

Hνn(z) = z +
∫ +∞

−∞
1

x− z
dnρ 1

n
(x)

and it satisfies

|Hνn(z)− z| ≤ σ2(νn)

� z
. (4.16)

By the way, from Lemma 6.3, we have

na 1
n

= −nm(µ 1
n
) = −m(µ1),

σ2(νn) = nρ 1
n
(R) = nσ2(µ 1

n
) = σ2(µ1).

Therefore, taking the limit of (4.16) with n→∞, we get

|A(z)− a1| ≤ σ2(µ1)

� z
.

Applying Proposition 2.2 in [Maa] again to the Pick function A(z) − a1 + z, we
obtain the existence of probability measure ν ∈ P2

0 such that

A(z)− a1 + z = Hν(z) = z +
∫ +∞

−∞
1

x− z
dτ(x)

with some finite positive measure τ on R. This means that

A(z) = a1 +
∫ +∞

−∞
1

x− z
dτ(x).

Step 2 ((2)⇒(1)). Since Ht(z) satisfies the differential equation d
dt

Ht(z) = A(Ht(z))
with H0(z) = z, as shown in the proof of Theorem 4.5, we have

Ht(z)− z =
∫ t

0
A(Hs(z))ds =

∫ t

0

(
a +

∫ +∞

−∞
1

x−Hs(z)
dτ(x)

)
ds
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from which we get

|Ht(z)− a t− z| ≤
∫ t

0

(∫ +∞

−∞
1

|x−Hs(z)|dτ(x)
)
ds ≤ τ(R) t

�z

for all z ∈ C+. This implies that Kt(z) − at determines a probability measure in
P2

0 because of Proposition 2.2 in [Maa], and hence Ht(z) determines a probability
measure in P2. �

This standard form (4.15) for A(z) given in Theorem 4.9 will be used in the next
section.

5. Infinitely divisible distributions with compact supports

In this section, we give a monotonic Lévy-Hinčin formula in terms of infinitely
divisible distributions, but our treatment is restricted to the class of compactly
supported probability measures.

Let Pc be the set of all probability meassures on R which are compactly sup-
ported. We will show

Theorem 5.1 (monotonic Lévy-Hinčin formula for class Pc ). Let µ be a
probability measure on R. Assume that µ �= δ0. Then the following three conditions
are equivalent.

(1) µ is �-infinitely divisible and µ ∈ Pc.
(2) There exists a weak* continuous one-parameter �-semigroup {µt}t≥0 of prob-

ability measures on R such that µ1 = µ and µ ∈ Pc.
(3) There exists a pair (a, ρ) (�= (0, 0)) of a real number a and a compactly sup-

ported finite positive measure ρ on R such that the Pick function

A(z) = a +
∫ +∞

−∞
1

x− z
dρ(x) (5.1)

generates Hµ(z) as

w = Hµ(z) ⇐⇒ ∃1w ∈ C+ s.t.
∫ w

z

dz

A(z)
= 1.

If the above conditions hold, then {µt}t≥0, (a, ρ) and A(z) are unique, and µt ∈ Pc

for all t ≥ 0.

For the proof of Theorem 5.1, let us prepare some Lemmas below. A family
{µr|r ∈ Q+} of probability measures on R is said to be a Q+-parameter �-semigroup
if it satisfies (1) µ0 = δ0; (2) µr+s = µr � µs. It naturally corresponds to a Q+-
parameter semigroup {Hr(z)|r ∈ Q+} of reciprocal Cauchy transforms. Here we
made no continuity assumption. They are algebraic objects. Throughout the re-
mainder of this section, we use the term R+-parameter �-semigroup to mean a real
one-parameter semigroup {µt}t≥0.

Lemma 5.2 (extension). Let {µr|r ∈ Q+} be a Q+-parameter �-semigroup
of probability measures on R such that lim

0<r→0
µr = δ0 in the weak* topology. Put

Hr(z) = Hµr(z). Then
(1) lim

0<r→0
Hr(z) = z, in the compact uniform topology.

(2) The family {µr| r ∈ Q+} can be uniquely extended to a weak* continuous
R+-parameter �-semigroup {µt}t≥0 of probability measures.
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Proof. (1) At first we get the pointwise convergence Hr(z)→ z (Q∗
+ 
 r → 0) from

the weak* convergence µr → δ0 (Q∗
+ 
 r → 0). The integral representation of Hr(z)

is given by

Hr(z) = ar + z +
∫ +∞

−∞
1 + xz

x− z
dτr(x), z ∈ C+

with some at ∈ R and some τr. Here ar = �Hr(i) and τr(R) = �Hr(i) − 1. We
have

|Hr(z)− z| ≤ |ar|+
∫ +∞

−∞

∣∣∣∣1 + xz

x− z

∣∣∣∣dτr(x).

For each compact subset K ⊂ C+ (K �= ∅), the function (x, z) �→ |1+xz
x−z
| is bounded

on R×K by an upper bound M > 0, and hence we have

sup
z∈K
|Hr(z)− z| ≤ |ar|+ M τr(R).

By the way, since ar = �Hr(i) and τr(R) = �Hr(i)−1, the convergence lim
0<r→0

Hr(z) =

z yields lim
0<r→0

ar = 0 and lim
0<r→0

τr(R) = 0. Hence we get the compact unform con-

vergence: sup
z∈K
|Hr(z)− z| → 0 (0 < r → 0) for each compact subset K.

(2) Let δ > 0 be a positive number, and let r, s ∈ Q∗
+ be positive rational numbers

such that |r − s| < δ and r > s > 0. Put r = s + h, then we have

Hr(z)−Hs(z) = Hs(Hh(z))−Hs(z)

= (Hh(z)− z)
{
1 +

∫ +∞

−∞
dρs(x)

(x−Hh(z))(x− z)

}

from which we get

|Hr(z)−Hs(z)| ≤ |Hh(z)− z|
{
1 +

∫ +∞

−∞

∣∣∣∣ 1

(x−Hh(z))(x− z)

∣∣∣∣dρs(x)
}
. (5.2)

Since (1), for each compact subset K ⊂ C+ and any ε > 0, there exists δ0 > 0 such
that, for each δ with 0 < δ ≤ δ0, the r.h.s. of (5.2) is uniformly dominated on K by
ε. So we have

sup
z∈K
|Hr(z)−Hs(z)| < ε (5.3)

for each r, s ∈ Q∗
+ with |r − s| < δ. Let t0 be an arbitrary fixed real number. The

inequality (5.3) implies that, for any sequence {rn} (⊂ Q+) converging to t0, the
restriction H(K)

rn
(z) of Hrn(z) to K is a Cauchy sequence w.r.t. the uniform norm over

K, and hence it converges uniformly to a function H
(K)
t0 (z) which is not depend on the

choice of approximate sequence {rn} (⊂ Q∗
+). The system {H(K)

t0 (z) | K : compact}
uniquely defines a holomorphic function Ht0(z) on C+. Besides it is easy to see that
the map R+ 
 t �→ Ht(z) is continuous for each fixed z and that Ht0(z) is a Pick
function with �Ht0(z) ≥ �z.

Let us show that Ht0(z) is the reciprocal Cauchy transform of some probability
measure. Let {rn} ⊂ Q+ be a decreasing approximate sequence to t0 (rn ↓ t0), then
we have

�Hrn(z) = �Hrn−rn+1(Hrn+1(z)) ≥ �Hrn+1(z)

from which we get �Ht0(z) = lim
n→∞�Hrn(z) ≤ �Hr1(z). So we have

1 ≤ inf
z∈C+

�Ht0(z)

�z
≤ inf

z∈C+

�Hr1(z)

�z
= 1.

28



Here the last equality comes from Theorem 3.4. After all we have inf
z∈C+

�Ht0(z)

�z
=

1. Therefore Ht0(z) must be the reciprocal Cauchy transform of some probability
measure because of Theorem 3.4 again.

Let us show the semigroup property: Hs(Ht(z)) = Hs+t(z). Let s, t be non
negative real numbers, and let {sn}, {tn} ⊂ Q+ be approximate sequences to s, t,
respectively. Let z ∈ C+ be fixed. By the continuity of the w �→ Hs(w), for each
ε > 0, there exists δ > 0 such that

|Hs(w)−Hs(Ht(z))| < ε ( w ∈ Bδ(Ht(z)) ).

Here Bδ(Ht(z)) denotes the δ-disk of center Ht(z). Since {tn} is an approximate
sequence to t, there exists n0 = n0(δ) such that Htn(z) ∈ Bδ(Ht(z)) for all n ≥ n0,
and hence

|Hs(Htn(z))−Hs(Ht(z))| < ε (n ≥ n0).

By the way, the compact uniform convergence lim
n→∞Hsn(z) = Hs(z) yields the exis-

tence of n1 = n1(δ) such that

|Hsn(w)−Hs(w)| < ε.

for all w ∈ Bδ(Ht(z)) and all n ≥ n1. After all we have

|Hsn(Htn(z))−Hs(Ht(z))|
≤ |Hsn(Htn(z))−Hs(Htn(z))|+ |Hs(Htn(z))−Hs(Ht(z))| ≤ 2 ε.

for all n ≥ max{n0, n1}. This implies lim
n→∞Hsn(Htn(z)) = Hs(Ht(z)). Therefore we

get the semigroup property as

Hs+t(z) = lim
n→∞ Hsn+tn(z) = lim

n→∞Hsn(Htn(z)) = Hs(Ht(z)). �

Corollary 5.3. Let {µr|r ∈ Q+} be a Q+-parameter �-semigroup of probability
measures such that µt ∈ P2 for all t ≥ 0. Then {µr| r ∈ Q+} can be uniquely
extended to a weak* continuous R+-parameter �-semigroup {µt}t≥0 of probability
measures.

Proof. Let Hr(z) be the reciprocal Cauchy transform of µr. Since µr ∈ P2, there
exists a real number ar ∈ R and a finite positive mesure ρr on R such that

Hr(z) = ar + z +
∫ +∞

−∞
1

x− z
dρr(x).

Here ar = −m(µr) and ρr(R) = σ2(µr) ([Maa] Prop. 2.2). By the semigroup
property of {Hr(z)| r ∈ Q+} and Lemma 6.3, we have m(µr) = r m(µ1) and
σ2(µr) = r σ2(µ1) for all r ∈ Q+. Hence we get

|Hr(z)− z| ≤ |ar|+
∫ +∞

−∞

∣∣∣∣ 1

x− z

∣∣∣∣ dρr(x)

≤ |m(µr)|+ ρr(R)

�z

=
∣∣∣∣m(µ1) +

σ2(µ1)

�z

∣∣∣∣ · r −→ 0 (r → 0).
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for all r ∈ Q+ and all z ∈ C+. This means the weak* convergence µr → δ0

(Q∗
+ 
 r → 0). So we get the desired result because of Lemma 5.2. �

Let µ, ν ∈ P. We say that ν is an nth root of µ if µ =

n︷ ︸︸ ︷
ν � ν � · · ·� ν.

Proposition 5.4. Let µ be a �-infinitely divisible probability measure on R which
is compactly supported. Then

(1) The nth root of µ is unique. (We denote it by µ 1
n
.)

(2) The family {µr | r = 1
n
, n ∈ N∗} can be uniquely extended to a weak*

continuous R+-parameter �-semigroup {µt}t≥0 of probability measures.
(3) µt ∈ Pc for all t ∈ R+.

Proof. (1) Let n be fixed, and let ν ∈ P be an n th root of µ. From Lemma
6.4, ν must be compactly supported. From Corollary 2.2, there exist monotonically
independent self-adjoint random variables X1, X2, · · · , Xn ∈ B(H) on some Hilbert
space with unit vector (H, ξ) such that the probability distribution µXi

of Xi co-
incides with ν for each i = 1, 2, · · · , n. Put X = X1 + X2 + · · · + Xn. Then we
get

HX(z) = HX1(HX2(· · · (HXn(z)) · · ·))
from Theorem 3.1. That is, the probability distribution µX of X under 〈ξ| · ξ〉 is
given by the monotonic convolution µX = ν �ν � · · ·�ν. Hence µX = µ. Therefore,
for the proof of the uniqueness of n th root of µ, we have only to show that the
measure ν can be uniquely dertermined from the measure µX . Let mp (resp. λp) be
the pth moment of X (resp. Xi). Then, from the formula (3.1) and the recurrence
relations for V (g) given in the proof of Theorem 3.1, we see that λp is a polynomial
in p variables m1,m2, · · · ,mp. Hence ν is uniquely determined by µX .

(2) By the uniqueness of nth root µ 1
n

of µ, the family {µr| r = 1
n
, n ∈ N∗}

can be uniquely extended to a Q+-parameter �-semigroup {µr| r ∈ Q+} by µr ≡
µ 1

q
� µ 1

q
� · · · � µ 1

q
(convolution of p µ 1

q
’s) for r = p

q
, p, q ∈ N∗. Since µ ∈ P2,

the Q+-parameter �-semigroup {µr| r ∈ Q+} can be uniquely extended to a weak*
continuous R+-parameter �-semigroup {µt}t≥0 in virtue of Corollary 5.3.

(3) By Lemma 6.4, for each n ∈ N∗, µn = µ1 � µ1 � · · · � µ1 (n µ1’s) is compactly
supported. Again by Lemma 6.4, for any t ∈ R+ with 0 < t < n, the probability
measure µt is compactly supported because of µn = µ1−t � µt. �

Now we can give the proof of the main theorem in this section.

Proof of Theorem 5.1. Step 1 ((1)⇔(2)). It is clear from Proposition 5.4.

Step 2 ((2)⇒(3)). Note that µt ∈ Pc for all t ∈ R+ by the same reason as in
the proof of Proposition 5.4 (3). Let Ht(z) be the reciprocal Cauchy transform of
µt. In virtue of Theorem 4.7 and Theorem 4.9, we have only to show that, in the
representation with the standard form (4.15)

A(z) = a +
∫ +∞

−∞
1

x− z
dτ(x)

of the generator A(z) of {Ht(z)}t≥0, the measure τ is compactly supported.
Since µt ∈ Pc ⊂ P2, Ht(z) has the representation

Ht(z) = at + z +
∫ +∞

−∞
1

x− z
dρt(x)
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with at ∈ R and ρt a finite positive measure on R from Prop. 2.2 in [Maa]. Since µt

is compactly supported, also ρt is compactly supported from Lemma 6.5. Let µ 1
n

,y

be the probability measure defined by Hµ 1
n ,y

= H 1
n
(z)− y, then we have

H1(z) = Hn−1
n

(H 1
n
(z))

= an−1
n

+ H 1
n
(z) +

∫ +∞

−∞
1

y −H 1
n
(z)

dρn−1
n

(y)

= an−1
n

+
(
a 1

n
+ z +

∫ +∞

−∞
1

x− z
dρ 1

n
(x)

)
−

∫ +∞

−∞
1

Hµ 1
n ,y

(z)
dρn−1

n
(y)

= (an−1
n

+ a 1
n
) + z +

∫ +∞

−∞
1

x− z
d
(
ρ 1

n
(x) +

∫ +∞

−∞
µ 1

n
,y(x)dρn−1

n
(y)

)

from which we obtain

ρ1(·) = ρ 1
n
(·) +

∫ +∞

−∞
µ 1

n
,y(·)dρn−1

n
(y).

This implies that the compact support of ρ 1
n

is contained in the compact support

K of ρ1 for all n ∈ N∗. Since
∫ +∞
−∞

1
x−z

dnρ 1
n
(x)→ ∫ +∞

−∞
1

x−z
dτ(x), τ is also supported

in K.

Step 3 ((3)⇒(2)). By Theorem 4.6, the Pick function A(z) generates a semigroup
{Ht(z)}t≥0 of reciprocal Cauchy transforms of some probability measures µt. We
must show that µ1(= µ) ∈ Pc and furthermore that µt ∈ Pc for all t ≥ 0. We can
assume that ρ(R) �= 0 because ρ(R) = 0 imples µt = δa t for some a ∈ R. Since ρ is
supported in some compact interval [a, b], the reciprocal 1

A(z)
exists in the domain

C \ [−M,M ] for sufficiently large any M > 0 because of

�A(z) =
(∫ +∞

−∞
dρ(ξ)

|ξ − z|2
)
· �z �= 0, z ∈ C+ ∪C−

and A(x) �= 0 for x ∈ R \ [−M,M ]. Consider the initial value problem of ordinary
differential equation:

dz(t)

dt
= A(z(t)), z(0) = z0 (5.4)

If z0 ∈ C+ then (5.4) has the global solution by the same reason as that in the step
6 of Proof of Theoreom 4.5. In the same way, if z0 ∈ C−, then (5.4) also has the
global solution. So let us consider the case that z0 is real (z0 = x0 ∈ R \ [−M,M ]).
Consider the ordinary differential equation in the real domain:

dx(t)

dt
= A(x(t)) x(0) = x0 (5.5)

Fix a constatn c > 0, and let M1 (≥M) be such that −M1 < a− c and a + c < M1.
Then, for any x, y ∈ Ω ≡ R \ [−M1,M1], we have

|A(x)− A(y)| ≤
(∫ +∞

−∞
dρ(ξ)

|ξ − x||ξ − y|
)
· |x− y| ≤ ρ(R)

c2
· |x− y|,
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that is, A(z) satisfies a Lipschitz condition in Ω with Lipschitz constant L ≡
ρ(R)/c2 �= 0. Hence, given r > 0, the solution x(t) of (5.5) uniquely exists in
the interval {t ∈ R| |t| ≤ R} whenever the interval {x ∈ R| |x−x0| ≤ r} is included
in Ω. Here R is given by

R ≡ 1

L
log

(
1 +

L r

N

)
, N ≡ sup

x∈Ω
|A(x)|.

By the way, r can be made arbitrarily small when |x0| is prepared to be sufficiently
large. This means that, for each T > 0, there exists MT (≥ M1) such that, for
any initial value x0 ∈ R \ [−MT ,MT ], the solution x(t) of (5.5) uniquely exists in
0 ≤ t ≤ T . After all, the solution z(t) of (5.4) uniquely exists in 0 ≤ t ≤ T for
every initial value z0 ∈ C \ [−MT ,MT ]. We denote it by z(t) = ϕt(z0), 0 ≤ t ≤ T .
Note that ϕt(z) = Ht(z) for all z ∈ C+. By the way, the theorem on continuous
dependence [Arn] yields

lim
0<y→0

�Ht(x + iy) = lim
0<y→0

�ϕt(x + iy) = �ϕt(x) = 0

for x ∈ R \ [−MT ,MT ] and 0 < t < T . Hence we get

lim
0<y→0

�Gt(x + iy) = − lim
0<y→0

�Ht(x + iy)

|Ht(x + iy)|2 = 0.

Let [c, d] ⊂ R\[−MT ,MT ] be an arbitrary compact interval, then �Gt(x+iy) is uni-
formly continuous on the compact rectangle K = {z ∈ C| c ≤ x ≤ d; −1 ≤ y ≤ 1},
and hence,

lim
0<y→0

∫ d

c
�Gt(x + iy) dx = 0.

This means µt(R \ [−MT ,MT ]) = 0 because of the Stieltjes inversion formula for
Cauchy transforms. Therefore µt ∈ Pc. �

Remark. In the statement of Theorem 5.1, we made the assumption of compact
support. This assumption was made to assure the unique existence of nth root
µ 1

n
for a �-infinitely divisible distribution µ. Up to now, we do not know if this

assumption can be removed or not when, in Theorem 5.1, we replace the standard
form (5.1) for A(z) with another standard form (4.14) given in Theorem 4.7.

Finally, let us give a limit theorem. The following theorem is a generalization
of monotonic law of small numbers given in [Mu3]. The limit distribution µτ is a
monotonic analogue of compound Poisson distribution (of restricted class so that
the mixing measure τ is compactly supported).

Theorem 5.5 (limit theorem). Let τ be a compactly supported finite positive
measure on R and let {λp}∞p=1 be the sequence defined by λp =

∫ +∞
−∞ xpdτ(x). Fur-

thermore let {X(n)
i | 1 ≤ i ≤ n; n ∈ N∗} ⊂ A be self-adjoint random variables on a

C∗-probability space (A, φ) satisfying

i) X
(n)
1 , X

(n)
2 , · · · , X(n)

n are monotonically independent and identically distributed
w.r.t. φ for each n ∈ N∗;

ii) lim
n→∞nφ((X

(n)
i )p) = λp for each p ∈ N∗.
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Then the probability distribution of X
(n)
1 + X

(n)
2 + · · · + X(n)

n under φ converges
in the weak* topology as n → ∞ to a unique probability measure µτ . This µτ is a
compactly supported �-infinitely divisible distribution with the generator

A(z) =
∫ +∞

−∞
xz

x− z
dτ(x). (5.6)

Proof. The unique existence of the limit distribution µτ can be easily verified. The

limit of pth moments m(∞)
p ≡ lim

n→∞〈(X
(n)
1 +X

(n)
2 + · · ·+X(n)

n )p〉 exists and it is given

by
m(∞)

p =
∑

g∈NCD(p)

V (g),

where V (g) is defined by

V (g) = lim
n→∞

∑
(ip · · · i2i1)

∈ {1,2,···,n}Mg

∏
v∈P(g)

〈 (X(n)
1 )|v| 〉.

From the scaling condition ii) and the monotonic property (ii) in Lemma 1.2, we see
that V (g) satisfies the following relations.

Recurrence relations:

i) V (
� � � · · · � �

l︷ ︸︸ ︷
) = λl,

ii) V (
�
g1

�
g2

�

· · ·
�
gl

�

)

=
λl+1

#{blocks in g1}+ · · ·+ #{blocks in gl}+ 1
V (g1)V (g2) · · · V (gl),

iii) V (g1g2 · · · gl) = V (g1)V (g2) · · · V (gl).

Here we made a convention that V (Λ) ≡ 1 for the empty diagram Λ.

Denote by f(s) =
∞∑

p=0
m(∞)

p sp be the moment generating function of µτ , by G(z)

the Cauchy transform of µτ and by H(z) the reciprocal Cauchy transform of µτ .
Let us obtain the integral representation for w = H(z) in a formal way.

For each noncrossing diagram g ∈ NCD = ∪∞
r=0NCD(r), put p(g) = #{points in g}

and n(g) = #{blocks in g}. Of course p(Λ) ≡ 0 and n(Λ) ≡ 0. Let f(s, t) be the
(formal) generating function for V (g) defined by

f(s, t) =
∑

g∈NCD

V (g) sp(g) tn(g).

Then, in the same way as in [Mu3], we get

f(s, t) =
1

1− g(s, t)
.

where
g(s, t) =

∑
h ∈ NCD∗
out(h) = 1

V (h) sp(h) tn(h).
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By the way, this g(s, t) can be rewritten as

g(s, t) =
∑

h ∈ NCD∗
out(h) = 1

V (h) sp(h) tn(h)

=
∞∑
l=0

∑
g1,g2,···,gl∈NCD

V (
�
g1

�
g2

� · · · �
gl

�
)

× sp(g1)+···+p(gl)+l+1 tn(g1)+···+n(gl)+1

= λ1 s t +
∞∑
l=1

∑
g1,g2,···,gl∈NCD

λl+1

n(g1) + n(g2) + · · ·+ n(gl) + 1

× V (g1) sp(g1) tn(g1) V (g2) sp(g2) tn(g2) · · · V (gl) sp(gl) tn(gl) sl+1 t1

= λ1 s t +
∞∑
l=1

λl+1

t∫
0

dt

⎧⎨
⎩

∑
g∈NCD

V (g) sp(g) tn(g)

⎫⎬
⎭

l

sl+1

=
∫ t

0
dt

∞∑
l=0

λl+1 f(s, t)l sl+1

=
∫ t

0
dt

{ ∞∑
l=0

λl+1 (s f(s, t))l s
}
.

Put h(t) =
∞∑
l=1

λl t
l, then we get

g(s, t) =
∫ t

0
dt

h(s f(s, t))

f(s, t)
. (5.7)

Since f = 1
1−g

, (5.7) yields the differential equation

f ′

f
= h(s f(s, t)), (5.8)

where ′ = d
dt

. Put y = f(s, t), then (5.8) can be rewritten as

y′

y
= h(s y),

and hence we get ∫ y

1

dy

y h(s y)
=

∫ t

0
dt = t.

By the specialization t := 1 and the change of variables u = s y, we get the functional
equation for the generating function y = f(s):

∫ s y

s

du

uh(u)
= 1.

By the change of variables s = 1
z
, we get the functional equation for the Cauchy

transform ω = G(z) = 1
z
f(1

z
) :

∫ ω

1/z

du

uh(u)
= 1.
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Furthermore, by the change of variables u = 1
ζ
, we get the functional equaion for

the reciprocal Cauchy transform w = H(z) = 1
G(z)

:

∫ w

z
− dζ

ζ h(1
ζ
)

= 1. (5.9)

Since the denominator −ζ h(1
ζ
) in (5.9) can be rewritten as−ζ h(1

ζ
) =

∫ +∞
−∞

xζ
x−ζ

dτ(x),

we define

A(z) ≡
∫ +∞

−∞
xz

x− z
dτ(x), z ∈ C+. (5.10)

Then A(z) is a Pick function, and (5.9) can be rewritten as

∫ w

z

dz

A(z)
= 1. (5.11)

Although we get this expression (5.11) through a formal calculation, we see that
(5.11) hold for all z ∈ C+ because of the assumption of compact support for τ and
the uniqueness theorem for holomorphic functions. From Theorem 4.7, the Pick
function A(z) determines a weak* continuous �-semigroup {µt}t≥0 of probability
measures and hence a �-infinitely divisible distribution µ1. Therefore µτ (= µ1) is
�-infinitely divisible. Since (5.10) can be rewrittren as

A(z) = a +
∫ +∞

−∞
1

x− z
dσ(x).

with a = − ∫ +∞
−∞ xdτ(x) and dσ(x) = x2dτ(x) (σ is compactly supported), we con-

clude, from Theorem 5.1, that µτ is compactly supported. �

Note that the case τ = λ δ1 (hence λp = λ for all p ∈ N∗) corresponds to the
monotonic law of small numbers [Mu3].

6. Appendix

In this Appendix, we collected some Lemmas needed in the preceding sections.
Let {Ht(z)}t≥0 be a continuous one-parameter semigroup of reciprocal Cauchy

transforms of probability measures on R, and let Ht(z) = at + z +
∫ +∞
−∞

1+xz
x−z

dτt(x)
be its integral representation due to Theorem 3.4. Then the followings hold.

Lemma 6.1.
(1) For each z ∈ C+, the function t �→ ∫ +∞

−∞
1+x2

(x−z)2
dτt(x) is continuous.

(2) For any δ > 0 and any z ∈ C+,

lim
n→∞

1

n

n−1∑
k=0

∫ +∞

−∞
1 + x2

(x−H δ
n
(z))(x− z)

dτ k
n

δ(x) =
1

δ

∫ δ

0

(∫ +∞

−∞
1 + x2

(x− z)2
dτt(x)

)
dt.

Proof. (1) Let z ∈ C+ be fixed, and let {zn}∞n=1 ⊂ C+ be a sequence such that
zn �= z and lim

n→∞ zn = z. Put

fn(t) =
∫ +∞

−∞
1 + x2

(x− zn)(x− z)
dτt(x), f(t) =

∫ +∞

−∞
1 + x2

(x− z)2
dτt(x),
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then we have

|fn(t)− f(t)| ≤
∫ +∞

−∞
1 + x2

|x− z|2
|zn − z|

� z − |zn − z|dτt(x). (6.1)

Since 1+x2

|x−z|2 is a bounded function of x, we put M ≡ sup
x∈R

1+x2

|x−z|2 (< ∞). From (6.1)

we have

sup
a≤t≤b

|fn(t)− f(t)| ≤ M · |zn − z|
� z − |zn − z| · sup

a≤t≤b
τt(R)

for each compact interval [a, b] with 0 ≤ a ≤ b < ∞. By the way, we have
sup

a≤t≤b
τt(R) < ∞ because of the continuity of t �→ τt(R) = �(Ht(i)) − 1. So we

get the uniform convergence sup
a≤t≤b

|fn(t)− f(t)| → 0 (n→∞) for each [a, b]. Since

fn(t) =
1

zn − z

{
Ht(zn)−Ht(z) + (z − zn)

}

is a continuous function of t for each n, we conclude that f(t) is a continuous
function.

(2) Let z ∈ C+ be fixed. Since (1), the function t �→ ∫ +∞
−∞

1+x2

(x−z)2
dτt(x) is integrable

on 0 ≤ t ≤ δ in the sense of Riemann integral. Put

I =
∫ δ

0

(∫ +∞

−∞
1 + x2

(x− z)2
dτt(x)

)
dt, In =

δ

n

n−1∑
k=0

∫ +∞

−∞
1 + x2

(x− z)2
dτ k

n
δ(x).

Here In is the nth approximation to the Riemann integral I. Put

Jn =
1

n

n−1∑
k=0

∫ +∞

−∞
1 + x2

(x−H δ
n
(z))(x− z)

dτ k
n
(x),

then we have

|In − Jn| ≤ 1

n

n−1∑
k=0

∫ +∞

−∞
1 + x2

|x− z|2
|H δ

n
(z)− z|

� z − |H δ
n
(z)− z|dτ k

n
δ(x).

for sufficiently large arbitrary n. Put M ≡ sup
x∈R

1+x2

|x−z|2 (<∞), then we get

|Jn−In| ≤ M ·
|H δ

n
(z)− z|

� z − |H δ
n
(z)− z| ·

δ

n

n−1∑
k=0

τ k
n

δ(R) → 0·
∫ δ

0
τt(R)dt = 0 (n→∞).

Here we used the continuity of the function t �→ τt(R) = �Ht(i)− 1. So we get the
desired result Jn → I (n→∞). �

Lemma 6.2. If the semigroup {Ht(z)}t≥0 is not trivial, then Ht(z) �= z for all t > 0
and all z ∈ C+.

Proof. Let us suppose that there exist some t0 > 0 and some z0 ∈ C+ such that
Ht0(z0) = z0. Then we have �(Ht0(z0)) = � z0. It is known that any reciprocal
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Cauchy transform with such a properpty must correspond to some point measure
([Maa], Prop.2.1.). Hence the Nevanlinna representation of Ht0(z) must be

Ht0(z) = at0 + z, z ∈ C+,

that is τt0(R) = 0. By the way, from τt(R) = �Ht(i)− 1, we have

τt+ε(R) = �Hε(Ht(i))− 1 ≥ �Ht(i)− 1 = τt(R),

so τt(R) is a nondecreasing function of t. Therefore we have 0 ≤ τt(R) ≤ τt0(R) = 0
for each t ∈ [0, t0]. Let T > 0 be an arbitrary positive real number, then there
exists some natural number n ≥ 1 such that T

n
∈ [0, t0]. The probability measure

µT
n

corresponding to HT
n
(z) must be a point measure since τT

n
(R) = 0. So we have

HT
n
(z) = aT

n
+ z, z ∈ C+, and hence

HT (z) = HT
n
(HT

n
(· · · (HT

n
(z)) · · ·)) = naT

n
+ z

by n times iteration. So the probability measure µT must be a point measure. That
is

HT (z) = aT + z, z ∈ C+

for all T ≥ 0. Note that aT = T ·a1 because of the semigroup property of {Ht(z)}t≥0.
By the way, since we have z0 = Ht0(z0) = t0 · a1 + z0, we obtain a1 = 0. After all we
have HT (z) = z for all T > 0 and all z ∈ C+. But this contradicts to the assumption
that the semigroup {Ht(z)}t≥0 is not trivial. Therfore we conclude that Ht(z) �= z
for all t > 0 and all z ∈ C+. �

Lemma 6.3. Let µ, ν be probability measures on R with finite variances. Then
λ = µ�ν also has finite variance. Besides the mean m and variance σ2 are additive:

m(λ) = m(µ) + m(ν), σ2(λ) = σ2(µ) + σ2(ν).

Proof. Since ν ∈ P2, there exists a real number a and a finite positive measure ρ
such that

Hν(z) = a + z +
∫ +∞

−∞
1

x− z
dρ(x)

by the characterization theorem ([Maa], Prop. 2.2). Here a and ρ satisfy a = −m(ν)
and ρ(R) = σ2(ν). For each y ∈ R, we have

Hν(z)− y = −(m(ν) + y) + z +
∫ +∞

−∞
1

x− z
dρ(x).

This integral representation uniquely determines a probability measure νy ∈ P2 by
Hν(z)− y = Hνy(z). Note that m(νy) = m(ν) + y and σ2(νy) = ρ(R) = σ2(ν). As
seen in the proof of Theorem 3.5, the monotonic convolution measure λ = µ � ν is
given by

λ(·) =
∫ +∞

−∞
νy(·)dµ(y). (6.2)

Using the relations m(νy) = m(ν) + y and (6.2), we get

m(λ) = m(µ) + m(ν). (6.3)

Also, using the relations σ2(νy) = σ2(ν), (6.2) and (6.3), we get

σ2(λ) = σ2(µ) + σ2(ν). �
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Lemma 6.4. Let λ, µ, ν ∈ P such that λ = µ � ν. Then
(1) If µ and ν are compactly supported, then λ is cpompactly supported.
(2) If λ is compactly supported, then ν is compactly supported.

Proof. (1) From Corollary 2.2, there exist monotonically independent bounded self-
adjoint random variables X, Y in some Hilbert space with unit vector (H, ξ) such
that µX = µ and µY = ν. By theorem 3.1, we have

µX+Y = µX � µY = µ � ν = λ.

Obviously X + Y is a bounded self-adjoint operator, and hence λ is compactly
supported.

(2) Remind of the composition formula

λ(·) =
∫ +∞

−∞
νx(·)dµ(x).

where νx ∈ P is defined by Hνx(z) = Hν(z) − x. Since λ is compactly supported,
the above expression yields the existence of x0 ∈ R such that νx0 is compactly
supported. Assume that νx0 is supported in a compact interval [−M,M ]. Then,
for any ε > 0, there exists M1(≥M) such that Gνx0

(z) is holomorphic and satisfies

0 < |Gνx0
(z)| < ε on |z| > M1. Take ε > 0 so that 1

ε
> |x0|, then we have

1

ε
< |Hνx0

(z)| = |Hν(z)− x0| ≤ |Hν(z)|+ |x0|

and hence

|Hν(z)| ≥ 1

ε
− |x0| > 0

for |z| > M1. This means that Hν(z) has the reciprocal Gν(z) = 1
Hν(z)

on |z| > M1.

Therfore ν is compactly supported. �

Lemma 6.5. Let µ be a probability measure on R. Then the followings are equiva-
lent.

(1) µ is compactly supported.
(2) There exists a real number a and a compactly supported finite positive measure

ρ on R such that

Hµ(z) = a + z +
∫ +∞

−∞
1

x− z
dρ(x).

Proof. We can assume that µ ∈ P2 because of Proposition 2.2 in [Maa]. Hence
Hµ(z) has a representation

Hµ(z) = a + z +
∫ +∞

−∞
1

x− z
dρ(x)

with a ∈ R and ρ a finite positive measure on R. µ is compactly supported if and
only if Gµ(z) (and hence Hµ(z)) is holomorphic on C \ [−M,M ] for some M > 0.

Furthermore this case is equivalent to that
∫ +∞
−∞

dρ(x)
x−z

(= Hµ(z)−a−z) is holomorphic
on C \ [−M,M ], that is, ρ is compactly supported. �
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[AcB] Accardi, L., Bozėjko, M.: Interacting Fock spaces and gaussianization of probability mea-
sures, Infinite Dim. Anal. Quantum Prob. 1, 663-670 (1998)

[AHO] Accardi, L., Hashimoto, Y., Obata, N.: Notions of independence related to the free group,
Infinite Dim. Anal. Quantum Prob. 1, 201-220 (1998)

[AcO] Accardi, L., Obata, N.: “Introduction to Algebraic Probability Theory,” Nagoya Math.
Lectures 2 (1999)

[Arn] Arnold, V.I.: “Ordinary Differential Equations,” MIT Press, Cambridge (1973)
[Bha] Bhatia, R.: “Matrix Analysis,” Springer (1997)
[Bia] Biane, P.: Permutation model for semi-circular systems and quantum random walks, Pacific

J. Math. 171, 373-387 (1995)
[BiS] Biane, P. and Speicher, R.: Stochastic calculus with respect to free Brownian motion and

analysis on Wigner space, Prob. Th. Rel. Fields 112, 373-409 (1998)
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