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Thm 1| (Hesse 1849)

(0) C(p) is nomnsing. iff p # 1, (3, (3, co.
C(p) is a 3-gon iff yp = 1,C3,C§, 0.
(1) C(p) has 9 inflection points [1: —3:0], [0: 1 : —0],
[—3 : 0 : 1], where 33 = 1.
(2) Any nonsing. cubic curve is isom. to some C'(u).
(3) p = p/ if and only if C(u) and C(u') are isom. with

9 points preserved



Thm 2

2 Moduli of cubic curves

(classical form)

A1.3: = {nonsing. cubics with 9 inflection pts}/ isom.

~ C\ {1, (s, C’?%} ~ H/T'(3) (H : upper half plane)

= {(C/(Z+27), (i + §7)/3), 7 € H}/ isom.

/
T — T =

atT + b

CT—|—d,

a b

c d

10

01

mod 3

A1 3 : = {stable cubics with 9 inflection pts}/ isom.

= {Hesse cubics}/isom=id

= A1 3U {C’(u);u?’ = lor oo} ~ pl,
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We wish to extend this to aribitrary dimension

1. over Z[(n,1/IN] or over Z (including bad primes)

2. to define a representable functor |F' := SQ4 K (fine

moduli) of compact obj.

3. to relate to GIT stability, that is,

to aim at F'(k) =GIT stable objects

for k alg. closed

(This is missing in any other theory such as Alexeev,

Olsson, Faltings-Chai) This is very difficult in gen-

eral because it classifies stable objects completely.
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There are difficulties never seen in dimension one

e Classical level structure = base of n-divison points,

e Since singular limits of Abelian varieties are very
reducible in general, level structure may cause non-
separatedness of the moduli

e That is, we need to prove in any dimension,

Lemma. (Valuative Lemma for Separatedness)

Let R be a DVR with frac. ild K, X,Y € F(R).

If Xgr ~ Yg, then X ~ Y. Or rather,

if isom over K, then isom over R.




e separated = Hausdorft,

e X: non-separated = non Hausdorft,

e If non-Hausdorff, then |3 P, € X (n =1,2,:--),
P=1lmP,, Q =1limP,. But |P # Q

e This really happens in geometry.

Example

R : DVR, q : uniformizer of R, K = R[1/q],

E, E’ : elliptic curves over R

Ex: (y/q°)" = (z/q")° — 1,

E:y>=2>—-—¢%° FE:Y*=X°-1,

P:=Ey:y’=2°, Q:=E|:Y’=X"-1,

Hence |P, := Ex ~ E% |, P = limEg, Q = lim E’,, But

El:Y?’=X’-1

PZ£Q

12

(e.g. if X projective, then separated)
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To overcome the difficulty of level str. we do as follows:

e New level structure = Framing of irreducible reps.
e Use the action of Heisenberg gp instead of n-div. pts

e To prove Val. Lemma for Separatedness, we use

Let R any ring over Z[{n,1/N]|, G : Heisenberg
gp C GL(V ® R), V irr. rep. of G, |G| = N.
Let h € GL(V Q R). If gh = hg for V g € G,

then h 1s scalar.
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Schur’s Lemma over R.W Let h € GL(V ® R).
If gh = hg for any g € GG, then h is scalar.

Let R : DVR, q : unif. of R, K = R[1/q].

1. Given a pair of SQASes X , Y over Rs.t. X ~ Yy

2. If h is isom. of SQASes Xg , Y over K, then
gh = hg for any g € G, and h € GL(V Q K).

3. By Schur’s Lemma. Then h = cidy gk

4. Hence h = idp(y g k), hence h extends to idp(ygR),

5. hence X ~ Y over R, This proves Valuative Lemma.
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Next Representability of the functor (page 10).

Case g = 1, X(INV) the integral model of H/T'o(INV).

a b

Lo(IN) = € SL(2,Z);¢c=0 mod N

Thm 3

c d

(Mazur) Xo(N)(Q) = cusps for N large.

Corollary

Let g be an autom. of an elliptic curve.

ord(g) # 11, but < 12.



F(S) = SQ4,k(S) for any S over Z[(x,1/N], hence in
particular, F(Q({n)) = SQq k(Q(CN))-

Conjecture| SQ, Kk (Q(¢y)) C Boundary for N large.
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We re-start with

Thm 4| (classical form)

A1 3 : = {nonsing. cubics with 9 inflection pts}/ isom.

A1 3 : = {stable cubics with 9 inflection pts}/ isom.

9

— {Hesse cubics}/isom=id

= A1 3U {C(u);u?’ = lor oo} ~ Pl

We convert it into G(3)-equivariant theory

G (3): Heisenberg group of level 3
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the Heisenberg group G = G(3) of level 3
G = (o, T) acts on V, order |G| = 27,
V = Cxy+ Cx; + Cx,,
o(@) = oy (@) = win1 (i € 2/32)
(3 is a primitive cube root of 1, We will see later (page 22/23)

xo + x8 + x5, xox1x2 € S*V only are G-invariant

zo + x5 4+ x5 — 3uxorizs = 0 (u € C),

»Hesse cubic curves” in P?

lL generalized

A compactification of moduli of abelian varieties




3 Theta functions

Why-How does G(3) get involved 7, FE(7) : an elliptic curve /C
E(t)=C/(Z+ Z7) = C*/w — wq®, ¢ = e*™/6
Def 5 Theta functions (k = 0,1, 2)

2 2
Hk(T,Z) — Z q(k—|—3m) wkt3m — Z q(k—l—y) wrFtY
meZ k+yck+Y

where w = e?™*, Y =32 C X =7,k € X/Y = Z/3Z.

Define a map O : E(1) — P, as
z +— [0o(T, 2),0:(T, 2),02(T, 2)]

This is a closed immersion, Idenitify 0, = x;.

19
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G (3) get involved as follows :

Recall again

Ou(r = + 3) = Aokl 2),
O(r, 2+ 2) = ¢ 7w B (7, 2),
60, 01, 05] (T, 2 + g) = [64, 02, 0] (T, 2)

where w = e2™%, q = e2™i7/6
o, T are liftings of these to GL(3):

z +— z + 1 is lifted to o (6;) = (56,

z +— z + 7 is lifted to 7(0x) = Ok
(To be more precise, we need to consider contragredient rep.)

Then G(3) := the group (o, T)
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Let V = Rxg + Rxy + Rx>, char.R # 3, R any ring,
Define o, 7 € End(V), and G(3) := the group (o, T)

0($k;) — C;’f«’Bk, T(wk) = Lk+1

Then [0, 7] := o707 '77! = ({3 - idy) Thus G(3) is of order 27.

Lemma 6| For R any ring with 1/3 € R, V is G(3)-irreducible,

that is, it has no proper G(3)-subspace except IV, I any ideal of R.

Schur’s lemma follows, Hence the base x; are unique up to simula-
taneous constant multiple.
Thus G(3) determines x; ”uniquely”

x; 1s viewed as an algebraic theta function.



We recall Formulae:
1 k
Ou(r, = + 3) = Ch6u(r, ),
T
Or(7, 2 + g) — q_lw_19k+1(7-9 z)
Define a map © : E(1) — Pg as
z +— [0o(Ty2),01(T,2),02(T, 2)]

This is a closed immersion, Identify 0, = x;.
The cubic curve O(E(7)) is G(3)-invariant,

It is a Hesse cubic curve. Why ? (Compare page 18)

22
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As a G(3)-module,
8
SV =2-1,8 P(1,)
where

2-1p = {mg + :L";’ + a:‘;’, TOT1T2},
J—{mo+csm1+63 (4 =1,2)

1, = {zpz1 + Gxixs + (Gxoxe} (k> 3)
2 - 1y gives the equation of @(FE (7)) (Compare page 18)
3 3 3 _
xry + ] + x;, — 3u(T)ToT 12 = 0

because Hesse cubics form a one parameter family.



4 Stability for compactification

moduli = the set of isomorphism classes,
roughly, ”moduli”=X/G, where G: algebraic group

Comparison Table

GIT Geometry
X the set of geometric objects
G the group of isomorphisms

x, ' are isom. | G-orbits are the same O(x) = O(x’)

Xps stable objects
X s semistable objects
X,s/G ”moduli”

Xs//G ”compactification” of moduli

24
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e A lot of compactif. of the moduli of abelian varieties are known.

Satakel] Baily-Borel, Mumford, Namikawa (/C), Faltings-Chai,
e What is nice? What is natural?[]

e Naively wish ”to classify the isomorphism classes by invariants”

(algebraic) moduli = the set of isom. classes distinguished

(or identified) by the invariants

e But it is difficult to investigate by the invariants.

e it is easier to investigate geometrically.

e | Consider only those geometric objects (= semi-stable objects)

with their invariants well-defined




(algebraic) moduli = the set of isom. classes distinguished
o (or identified) by the invariants

—: the set of semi-stable objects

e Thus | Stability and Semistability 0 (Mumford:GIT)




5 The space of closed orbits

X
G

x, ' are isom.

the set of geometric objects
the group of isomorphisms
G-orbits are the same O(x) = O(x)
the set of properly-stable objects
the set of semistable objects

”compact moduli”

Rem

stability —> closed orbits —> semistability

27



Exam 1| Action on C? of G = G,,(= C*),

C*3 (z,y) = (az,a™'y) (a € Gn)

What is the quotient of C? by G ?

e Simple answerl] the set of G-orbits (X)
e Answerl[] Spec(the ring of all G-invariant poly.)(o )

e t := xy (and its polynomials) is the unique G-invariant !
C?//G := SpecC[t] = {t € C}

But this is different from ”the set of G-orbits”.

e C?//G = {t € C} is the set of all closed orbits !!

28



0(d, 1)

xy =0

O(c,1)
= {t € C}

- xy =0

(c > 0,d <0)

et =0 is a point of C?//G.

e But {xy = 0} consists of three G-orbits

C* x {0},

{o} x ¢, {(0,0)}

e {(0,0)} is the only closed orbit in {xy = 0}

29



Proof of Thm 7

30

Thm 7| C?//G = {t € C} (t = xy) is the set of all closed orbits.

[0 (Compare page 41)

e O(t) = {(x,y); zy = t} is a closed orbit for any t # 0.

e For t =0, {(0,0)} is the only closed orbit in {xy = 0}

e Any t € C corresp. to a unique closed orbit in {zy =t} [

Thm 8| (Seshadri,Mumford) G : reductive, acting on a scheme

X, (e.g. G = Gy,). Let X3 = the set of semistable points. Then

X:s//G : = Spec(all G-invariants)

— the set of closed orbits.

Closed means that the orbit is closed in X,..
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Thm 9| (Seshadri-Mumford) Let X be a projective scheme over

a closed field k, G a reductive algebraic k-group acting on X.
Let X, be an open subscheme of all semistable points in X, Then

3 (cat.) quotient ¥ = X,;//G. To be more precise,

(0) 3 a proj. k-scheme Y and a G-invariant 7w : X,; — Y such that

(1) 7 is universal

(2) For a,b € X, w(a)==w(b) iff O(a) NO(b) #0
where the closure is taken in X,

(3) Y (k) = the set of G-orbits closed in Xg;.
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Def 10 We keep the same notation as in Theorem 9 (Seshadri-
Mumford). Let p € X.

(1) the point p is said to be semistable if there exists a G-invariant
homogeneous polynomial F' on X such that F(p) # 0,

(2) the point p is said to be Kempf-stable if the orbit O(p) is closed
in Xgs,

(3) the point p is said to be properly-stable if p is Kempf-stable and

the stabilizer subgroup of p in G is finite.
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We note that if a,b € X, (or if a, b Kempf-stable)

m(a) = m(b) <= O(a) N O(b) # 0
<= O(a)NO() #0
<= O(a) = O(b)

<— a and b are isomorphic.

1. Each point of X, gives a closed orbit and
2. the first moduli X,,//G = X,;/G (just the orbit space),
3. Moreover X,;//G is compactified by X.;//G.

This is currently one of the most powerful methods for compactify-

ing moduli spaces.
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Thus we consider only those objects with closed orbits

As its consequence we will see

e Abelian varieties have closed orbits (Kempf), and

e our SQASes have closed orbits,

e |Conversely, any degenerate abelian scheme with closed orbit

is one of our SQASes

® There is a simple characterization of our SQASes,
e This characterization enables us to compactify of the moduli of

abelian varieties.



6 GIT-stability and stable critical points

Recall
e Definition of GIT-stability (born in 1965) has
nothing to do with stable critical points

e But it has to do with stable critical points.

35



Let V : vector spacell G : reductive group acting on V,
K : a max. compact subgp of G,

| - || : K-inv. metric

pu(9) :=llg-v| (v e V)

Thm 11| (Kempf-Ness 1979) The following are equivalent

(1) the orbit O(v) is closed (= GIT-stable)
(2) p, attains a minimum on O(v)

(3) py has a (stable) critical point on O(v)

36
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Exam 2| Let G =C*, K =S,V = C?,

C? 3 (z,y) — (tz,t7'y) (t €G)

pv(g) -= ”(wa y)”2 — |£13|2 + |y|29 U = (iB,y)

o If v=(x,y) and xy =t # 0,
then p, attains the min. when |tx| = |ty
because |tz|? + [t71y|? > 2|tz - tly| = 2|zy]|.

o If xy = 0, then p, attains min. at (0,0).

e When zy = 0, p, has no min. on C* x {0}, {0} x C*
where {xy = 0} = {(0,0)} U C* x {0} U {0} x C*



7 Stable curves of Deligne-Mumford

Def 12 C is a stable curve of a genus g if
(0) it is a connected projective reduced curve
(1) with finite automorphism group,

(2) the singularities of C are like xy = 0

(3) dim H'(Oc) = g

Thm 13| (Deligne-Mumford 1969+ Knudsen)

Let ﬁg : moduli of stable curves of genus g,
M, : moduli of nonsing. curves of genus g.
Then M, is projective (compact),

M, is a Zariski open subset of M,,.

38
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Caution: Definition of stable curves is irrelevant to GIT stability

Nevertheless we have

Thm 14| The following are equivalent

(1) C is a stable curve (moduli-stable)
(2) any Hilbert point of ®,,,x|(C) is GIT-stable (GIT-stable)
(3) any Chow point of ®,,,x(C) is GIT-stable (GIT-stable)

(1)<(2) Gieseker 1982 (actually done before Mumford’s work)

(1)< (3) Mumford 1977 (suggested by Gieseker’s work)



8 Stability of cubic curves

CUBIC CURVES STABILITY STAB GP.
smooth elliptic stable finite
3-gon closed orbits 2-dim
a line4a conic (transv.) semistable 1-dim
irred. with node semistable finite
others unstable 1-dim

Thm 15

For a cubic C, the following cond. are equiv.

(1) C has a closed SL(3)-orbit in (S3V),, [0

(2) C is a Hesse cubic curve, that is, G(3)-invariant

(3) C is either smooth elliptic or a 3-gon

40
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Exam 3

Cope : amg + ba:‘i’ + cwg — xox1T2 = 0. (1)
The diagonal subgroup G ~ (G,,)? of SL(3) on the parameter space
Spec k|a, b, c] acts by

(a,b,c) — (sa,tb,uc) (2)
where stu = 1, and s, t,u € (G,,,. We also see
(i) (G,,)*-Kempf-stable points are abc # 0 or (a,b,c) = (0,0,0),

(ii) (G,,)?-semistable points which are not (G,,)*-Kempf-stable

are abc = 0 except (0,0,0). (Compare page 30)



Thm 16

42

9 Stability in higher-dim.

(N.1999) k is alg. closedU char.k and | K| are coprime

K (£ H® HY) : a finite symplectic abelian group, large enough

G(K) : Heisenberg gp assoc. to K, V = k[H"] : gp ring of H"

Assume X is a limit of abelian varieties with K-torsions (Here K

large enough implies X C P(V))

Then the following are equivalent:

(1) X has a closed SL(V)-orbit in Hilb,, (GIT-stable)

(2) X is invariant under G(K) (G(K)-stable)

(3) X is one of our SQASes (moduli-stable)
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Thm 17| For cubics the following are equiv:

(1) it has a closed SL(3)-orbit (GIT-stable)O
(2) it is a Hesse cubic, that isJ G(3)-invariant (G(3)-stable)

(3) it is smooth elliptic or a 3-gon. (moduli-stable)

This is generalized into

Thm 18| Let X be a degenerate abelian variety (posssibly nonsin-

gular). The following are equivalent under natural assump.:

(1) it has a closed SL(V)-orbit (GIT-stable)
(2) X is invariant under G(K) (G(K)-stable)

(3) it is one of our SQASes (moduli-stable)



10 Moduli over Z[{n,1/N]

Thm 19| (a new version of the theorem of Hesse)

SQ13 = P%[cs,l/S]’

the projective fine moduli
(1) The universal cubic curve
3 3 3 _
po(xy + x| + x5,) — 3pizorize =0

where ([,LO,/,Ll) - SQl,g = Pl.
(2) when k is alg. closed and char. k # 3

44



SQ1,3(k)

A1 3(k) =

’

N/

N/

N/

closed orbit cubic curves /k

with level 3-structure

Hesse cubics /k

with level 3-structure
/

closed orbit nonsingular cubic curves /k

with level 3-structure

nonsingular Hesse cubics /k

with level 3-structure

N

\

45

> /isom.

> /isom.=id.

\

> /isom.

> /isom.=id.
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Thm 20| (N. 1999) There exists the fine moduli SQ, x

projective over Z[(n,1/N]|, N = /| K|
For k : alg. closed, if char.k and N = /|K| are coprime
)

/

degenerate abelian schemes /k

SQg, (k) =< with level G (K)-structure > /isom.

and a closed SL -orbit

( )
G (K)-invariant degenerate

= 4 abelian schemes /k 0

\ with level G(K)-structure /
( )

G(K)-invariant SQAS /k

with level G(K)-structure
/



2

Ag,K(k) = 9

Ve

\

Compare page 78.

.
(nonsingular) abelian schemes /k

with level G(K)-structure > /isom.,

and a closed SL -orbit

\
G (K)-invariant (nonsingular)

abelian schemes /k 0

with level G(K)-structure

/

G (K)-invariant nonsingular SQAS /k

with level G(K)-structure

\

47
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11 Tate curve and SQAS

SQAS : a generalization of Tate curve, R:DVR
Tate curve 000 G,,(R)/w — qw

Hesse cubics at co 0 G,,(R)/w — q*w

Rewrite Tate curve as 00 G, (R)/w"™ — ¢™"w"(m € Z)

Hesse cubics at co 00 G,,(R)/w™ — ¢*™"w™(m € Z)

The general case : B pos. def. symmetric

Gm(R)! /w® — g #¥)b(z, y)w®, bz,y) € R* (x € X,y €Y)

”natural limit as g — 07 —

3-gon and SQAS are born
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12 Faltings-Chai degeneration data

R : a discrete valuation ring R, m the max. ideal of R,
k(0) = R/m, k(n) : the fraction field of R

Let (G, L) a quasi abelian scheme over R,

That is, (G, L) : abelian variety over k(n)

and suppose that Gy is a split torus over k(0),

(*G,Y L) : the (connected) Neron model of (*G,," L,)

May then suppose that (‘Gy," Lg) is a split torus over k(0)

Then we have a Faltings Chai degeneration data ass. to (G, L)



Let X = Hom(Gy, G,,), Y = Hom(*Gy, G,,).

Hence X ~ 79, Y ~ 79, Y : a sublattice of X of finite index.

BECAUSE 3 a natural surjective morphism G —! G,
3 a surjective morphism G, —! Gy,
3 Hom(*Gy, G,,,) — Hom(Gy, G,,),

Hence d an injective homom. ¥ — X []

50



Consider always over Z[{n,1/IN],
Let K=X/Y & (X/Y)Y, G(K) : Heisenberg group
1 - puny — G(K) - K — 0(exact)
R(X/Y)] = @zex/yR v(x) (the group algebra of X/Y)
(a,z,x) - v(x) = aa(x)v(z + )
H°(G,L): G(K)-irreducible ~ R[X/Y]
= a unique basis v(z) = 0, € H'(G, L) (theta functions)

Let Gy, : the formal completion of G along G|

Gfor = (ng,R)for
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0. (x € X/Y) are expanded on Gy, as

033 = Z a,(:v + y)wwﬂ/

yey
These a(x) satisfy the conditions:

(1) a(0) =1, a(z) € k(n)* (Vo € X),
(2) b(x,y) := a(x + y)a(x) ta(y)~! is bilinear (z,y € X)
(3) B(z,y) := val,(a(x + y)a(x) ta(y)™!) is positive definite

(z,y € X)

These a(x) are called a degeneration data of (G, L)

Exam 4, If g =1, N = 3, then theta functions (k = 0,1, 2)

Or = Ok(1,2) = > _ gBm ) qp3mtk — N a(3m + k)wtmt
meZ 3meY

where w € G,,, a(x) = qwz, X =Zand Y = 3Z, B(xz,y) = 2xy.



Def 21

~

R := Rla(x)w*,x € X]
Define an action of Y on R by
Sy(a(x)w*?) = a(x 4+ y)w V9

Proj(ﬁ) : locally of finite type over R
X : the formal completion of Proj(R)
X /Y : the top. quot. of X by Y
Ox(1) descends to X /Y : ample

53
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Grothendieck (EGA) guarantees
3 a projective R-scheme (Z,07z(1))
s.t. the formal completion Z;, of Z

Zir ~ XY
(Zn, Oz,(1)) >~ (Gy, Ly)

(the stable reduction theorem)

The central fiber (Zy, Oz,(1)) is our (P)SQAS.

If we take the normalization Z""™ of Z with Zj°™™ reduced, we get

a bit different central fiber |(Z7°™, Oznom(1)), we call it TSQAS.




Exam 5

95

g:]_,X:Z,Y:SZ.

X =Proj(R), a(z)=q", (z € X)
The scheme X is covered with affine
V., = Spec Rl[a(x)w”/a(n)w™, x € X]|

Vn =~ Spec R[wna yn]/(wnyn - q2) (n S Z)
T, = q2n—|—1w, Yp = q—2n—|—1w—1.

Xy : a chain of infinitely many P,lc(o)



S_3
Y actson Xy as V,, — V3,

S_
(wna yn) '_>3 (wn—|—39 yn—|—3) — (wnayn)

Xo/Y : a cycle of 3 P,i(o), (X/Y);lg : a Hesse cubic over k(n),

56



13 Limits of theta functions

E(7) is embedded in P? by theta 6y, :
Ok(q, w) = 3 e7 @B w3 (k= 0,1,2)
93 + 02 4+ 05 = 3u(q)006:10-

Let R DVR, q uniformizer, I = qR, w = g 'u
u€eE R\I, u=u mod I

Ok = Zer a(y -+ I{i)wy+k

o7



58

_ 2_
90(q,q 1’LL) — Z q9m 3mu3m
me7Z

=14 ¢%u + ¢2u"3 + - ..

_ 2_ _
91(q, q lu) — Z q(Sm—I—l) 3m 1u3m—|—1
meZ

:u+q6u_2—|—q12u4—|—---

_ 2_ _
92((], q lu) — Z q(3m+2) 3m 2u3m—|—2
meZ

:qzo(uz—l—u_l—l—q18u5—|—---)

I

lim, .o [Ox(g, g 'u)] = [1,u, 0] € P?



In P?

limg .o [0x(q; g~ 'u)]k=0,1,2 = [1, W, O]
Similarly

limg_o [0k(q, ¢ °u)]k=0,1,2 = [0, 1, ]

limg o [0k(q, ¢~ °u)]k=0,12 = [, 0, 1]

O(72)

O(T()) 0(0'0) O('Tl)
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w=q *uand u € R\ I.
limg_.o [0(q, g~ u)] =
1,0,0]  (if —1/2 <\ < 1/2),

0,1,0] (if 1/2 < X < 3/2),

0,0,1] (if 3/2 < X < 5/2).

O(72)

O (7o) O(o9) O(t1)
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When A ranges in R, the same limits repeat mod Y = 3Z.

Thus lim, .., C(u(7)) is the 3-gon xgx1x2 = 0.

Def 22 For A\ € X ®y R fixed

() =2 -2\ (xe€ X =2172)

Define D(A) (a Delaunay cell) by

the conv. closure of all a € X s.t. F)\(a) = min{F)(x);x € X }.

Exam 6| 1-dim. B(z,x) = z°.

—@ ® ® ® ® ® o—
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14 The shape of SQAS

”Limits of theta functions are described by the Delaunay
decomposition.”
SQAS is a geometric limit of theta functions
SQAS is a generalization of 3-gons. []

which is described by the Delaunay decomposition.
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SQAS : a generalization of Tate curve, R:DVR
Tate curve 000 G,,(R)/w — qw

Hesse cubics at co 0 G,,(R)/w — q*w

Rewrite Tate curve as 0 0 G, (R)/w"™ — q™"w™ (m € Z)

Hesse cubics at co 0 0 G, (R)/w™ — ¢*™"w™ (m € Z)

The general case : B pos. def. symmetric

Gm(R)! /w® — g "¥)b(z, y)w®, b(z,y) € R* (x € X,y €Y)

”natural limit as g — 07 —

3-gon and SQAS are born
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Let X = 79, B a positive symmetric on X X X.

Def 23

|z|]| = /B(a,x) : a distance of X ® R (fixed)

Let a € Xgr. a Delaunay cell D = D(a) is defiend to be

the convex closure of points of X closest to a.

e All Delaunay cells form a the Delaunay decomp. ass. to B

Each SQAS (its scheme struture)

and its decomposition into

torus orbits (its stratification) |are described

by the Delaunay decomposition

e Each positive symmetric B defines a Delaunay decomp.

e Different B can yield the same Delaunay decomp. and the same

SQAS.



15 Delaunay decompositions

Exam 7| 1-dim. B(x,y) = 2xy, X/Y = Z/nZ,
then SQAS Z;, is an n-gon of P!
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Exam 8

B =

10

This (mod Y) is a union of P! x P1

01
® ® ® ® ® ®
® ® ® ® ® ®
® ® ® ® ® ®
® ® ® ® ® ®
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N
|
a |
~_
I

=

e




//

/

It is a union of P2, each triangle denotes a P2,

. This (mod Y) is a SQAS.

. each line segment is a P!
. two P? intersect along P!

. six P? meet at a point, locally k[xq,--- ,x¢]/(xizj, |t — | > 2)
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/?

s

Red one is the decomp. dual to the Delaunay decomp.

called Voronoi decomp.






Voronoi decomposition
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Def 24 D : for Delaunay cells
VD) ={A€e X QzR;D =D(\)}

We call it a Voronoi cell

V(O)={2e Xz R;||Al| = [|A—4q]|, (Vg € X)}

This is a crystal of mica.
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(100\

For B=|010

\001)

We get V(0), a cube (salt),O

/10 O\

For B=|0 2 -1

\0 —1 2)

then we get a hexagonal pillar (calcite)l

and then



(2 —1 O\

B=|-1 2 -1

\ 0 -1 2)

A Dodecahedron (Garnet)
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(2 —1 O\

B=|-1 3 -1

\ 0 -1 2)

Apophylllte KCG4(S?:4010)2F . 8H20

5



(3 -1 -1)

B=|-1 3 -1

\—1 -1 3)

A Trunc. Octahed. — Zinc Blende ZnS
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16 The Second Compactification over Z[(n,1/N]

Recall
Grothendieck (EGA) guarantees
3 a projective R-scheme (Z,0z(1))
s.t. the formal completion Z;, of Z
Ziow 2 XY, (Zy,0g,(1)) = (Gy, Ly)

(the stable reduction theorem)

The central fiber (Zy, Oz,(1)) is our (P)SQAS.

The normalization Z""™ of Z with Zj*™ reduced gives a bit

different central fiber [(Z7°™, Ozrom (1)), we call it TSQAS.

T
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Thm 25| (N. 2010) 3 a complete separated reduced-coarse moduli

toric

alg. space SQ g (Comapre page 46/47)
:moduli of TSQASes with level-G(K) str. over Z[{n,1/N].

Moreover, d cano. bij. birat. morphism

sSq - SQ;?;éC — SQg,K

Corollay

O 0 toric O
The normalizations of SQ 0K and SQ, k are isom.
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Proof of Existence of SQ;"’?.

1. Consider all TSQAS (X, L) with level G(K). Then can embed
(X,L) by L, any n =1 mod N, n > 2g+1

2. (X, L") x (X,L™) € Hilb x Hilb’ for any rel. prime pair (n,m)

3. HY(X,L") ~ V@ W,,, H(X,L™) ~ V ® W,, as G(K)-mod.
where V ~ H%(X, L)

4. U a good reduced subsch. on which GL(W,,) Xx GL(W,,) acts

5. take quotient of U by GL(W,) X GL(W,,) by Keel-Mori

6. SQ;‘,’;}C :=U//GL(W,) Xx GL(W,,) is independent of n,m
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Construction of a canonical morphism

1. For a given TSQAS over S with generic fibre AV, S any reduced
scheme, we construct a PSQAS over S,

2. We can take U a subscheme of Hilb X Hilb’ over which universal
TSQAS exists

3. (X, L) universal TSQAS, Then |L| is base point free,
we have a morphism ® 7 : X — P

4. The image ® (X)) of (X, L) by |L| is PSQAS.

5. Prove flatness of PSQAS

6. The map X +— @|(X) defines a morphism

sq : SQ;"’;}C — SQy.k-



