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1 Hesse cubic curves

C(μ) : x3
0 + x3

1 + x3
2 − 3μx0x1x2 = 0

(μ ∈ P1
C)
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x3
0 + x3

1 + x3
2 − 3μx0x1x2 = 0 (μ ∈ C)

if μ gets much closer to ∞
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x3
0 + x3

1 + x3
2 − 3μx0x1x2 = 0 (μ3 = 1 or ∞)

It degenerates into 3 copies of P1 (= S2)
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Thm 1 (Hesse 1849)

(0) C(μ) is nonsing. iff μ �= 1, ζ3, ζ
2
3,∞.

C(μ) is a 3-gon iff μ = 1, ζ3, ζ
2
3,∞.

(1) C(μ) has 9 inflection points [1 : −β : 0], [0 : 1 : −β],

[−β : 0 : 1], where β3 = 1.

(2) Any nonsing. cubic curve is isom. to some C(μ).

(3) μ = μ′ if and only if C(μ) and C(μ′) are isom. with

9 points preserved
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2 Moduli of cubic curves

Thm 2 (classical form)

A1,3 : = {nonsing. cubics with 9 inflection pts}/ isom.

� C \ {1, ζ3, ζ
2
3} � H/Γ(3) (H : upper half plane)

= {(C/(Z + Zτ ), (i+ jτ )/3), τ ∈ H}/ isom.

τ �→ τ ′ =
aτ + b

cτ + d
,

⎡⎢⎣a b
c d

⎤⎥⎦ ≡

⎡⎢⎣1 0

0 1

⎤⎥⎦ mod 3

A1,3 : = {stable cubics with 9 inflection pts}/ isom.

= {Hesse cubics}/isom=id

= A1,3 ∪
{
C(μ);μ3 = 1 or ∞

}
� P1.
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We wish to extend this to aribitrary dimension

1. over Z[ζN, 1/N ] or over Z (including bad primes)

2. to define a representable functor F := SQg,K (fine

moduli) of compact obj.

3. to relate to GIT stability, that is,

to aim at F (k) =GIT stable objects for k alg. closed

(This is missing in any other theory such as Alexeev,

Olsson, Faltings-Chai) This is very difficult in gen-

eral because it classifies stable objects completely.
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There are difficulties never seen in dimension one

• Classical level structure = base of n-divison points,

• Since singular limits of Abelian varieties are very

reducible in general, level structure may cause non-

separatedness of the moduli

• That is, we need to prove in any dimension,

Lemma. (Valuative Lemma for Separatedness)

Let R be a DVR with frac. fld K, X,Y ∈ F (R).

If XK � YK, then X � Y . Or rather,

if isom over K, then isom over R.



12

• separated = Hausdorff, (e.g. if X projective, then separated)

• X: non-separated = non Hausdorff,

• If non-Hausdorff, then ∃ Pn ∈ X (n = 1, 2, · · · ),
P = limPn, Q = limPn. But P �= Q

• This really happens in geometry.

Example R : DVR, q : uniformizer of R, K = R[1/q],

E, E′ : elliptic curves over R

E : y2 = x3 − q6, E′ : Y 2 = X3 − 1,

P := E0 : y2 = x3, Q := E′
0 : Y 2 = X3 − 1,

EK : (y/q3)2 = (x/q2)3 − 1, E′
K : Y 2 = X3 − 1

Hence Pn := EK � E′
K , P = lim EK, Q = lim E′

K, But P �= Q
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To overcome the difficulty of level str. we do as follows:

• New level structure = Framing of irreducible reps.

• Use the action of Heisenberg gp instead of n-div. pts

• To prove Val. Lemma for Separatedness, we use

Schur’s Lemma over R.

Let R any ring over Z[ζN, 1/N ], G : Heisenberg

gp ⊂ GL(V ⊗R), V irr. rep. of G, |G| = N .

Let h ∈ GL(V ⊗ R). If gh = hg for ∀ g ∈ G,

then h is scalar.
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Schur’s Lemma over R. Let h ∈ GL(V ⊗R).

If gh = hg for any g ∈ G, then h is scalar.

Let R : DVR, q : unif. of R, K = R[1/q].

1. Given a pair of SQASes X , Y over R s.t. XK � YK

2. If h is isom. of SQASes XK , YK over K, then

gh = hg for any g ∈ G, and h ∈ GL(V ⊗K).

3. By Schur’s Lemma. Then h = c idV⊗K.

4. Hence h = idP(V⊗K), hence h extends to idP(V⊗R),

5. hence X � Y over R, This proves Valuative Lemma.
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Next Representability of the functor (page 10).

Case g = 1, X0(N) the integral model of H/Γ0(N).

Γ0(N) =

⎧⎪⎨⎪⎩
⎡⎢⎣a b
c d

⎤⎥⎦ ∈ SL(2,Z); c ≡ 0 mod N

⎫⎪⎬⎪⎭
Thm 3 (Mazur) X0(N)(Q) = cusps for N large.

Corollary Let g be an autom. of an elliptic curve.

ord(g) �= 11, but ≤ 12.
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F (S) = SQg,K(S) for any S over Z[ζN, 1/N ], hence in

particular, F (Q(ζN)) = SQg,K(Q(ζN)).

Conjecture SQg,K(Q(ζN)) ⊂ Boundary for N large.
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We re-start with

Thm 4 (classical form)

A1,3 : = {nonsing. cubics with 9 inflection pts}/ isom.

A1,3 : = {stable cubics with 9 inflection pts}/ isom.

= {Hesse cubics}/isom=id

= A1,3 ∪
{
C(μ);μ3 = 1 or ∞

}
� P1.

We convert it into G(3)-equivariant theory

G(3): Heisenberg group of level 3
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the Heisenberg group G = G(3) of level 3

G = 〈σ, τ 〉 acts on V , order |G| = 27,

V = Cx0 + Cx1 + Cx2,

σ(xi) = ζi3xi, τ (xi) = xi+1 (i ∈ Z/3Z)

ζ3 is a primitive cube root of 1, We will see later (page 22/23)

x3
0 + x3

1 + x3
2, x0x1x2 ∈ S3V only are G-invariant

x3
0 + x3

1 + x3
2 − 3μx0x1x2 = 0 (μ ∈ C),

”Hesse cubic curves” in P2

�� generalized

A compactification of moduli of abelian varieties
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3 Theta functions

Why-How does G(3) get involved ?, E(τ ) : an elliptic curve /C

E(τ ) = C/(Z + Zτ ) = C∗/w �→ wq6, q = e2πiτ/6

Def 5 Theta functions (k = 0, 1, 2)

θk(τ, z) =
∑
m∈Z

q(k+3m)2wk+3m =
∑

k+y∈k+Y
q(k+y)2wk+y

where w = e2πiz, Y = 3Z ⊂ X = Z, k ∈ X/Y = Z/3Z.

Define a map Θ : E(τ ) → P2
C as

z �→ [θ0(τ, z), θ1(τ, z), θ2(τ, z)]

This is a closed immersion, Idenitify θk = xk
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G(3) get involved as follows :

Recall again

θk(τ, z +
1

3
) = ζk3θk(τ, z),

θk(τ, z +
τ

3
) = q−1w−1θk+1(τ, z),

[θ0, θ1, θ2](τ, z +
τ

3
) = [θ1, θ2, θ0](τ, z)

where w = e2πiz, q = e2πiτ/6

σ, τ are liftings of these to GL(3):

z �→ z + 1
3

is lifted to σ(θk) = ζk3θk

z �→ z + τ
3

is lifted to τ (θk) = θk+1

(To be more precise, we need to consider contragredient rep.)

Then G(3) := the group 〈σ, τ 〉
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Let V = Rx0 +Rx1 +Rx2, char.R �= 3, R any ring,

Define σ, τ ∈ End(V ), and G(3) := the group 〈σ, τ 〉

σ(xk) = ζk3xk, τ (xk) = xk+1

Then [σ, τ ] := στσ−1τ−1 = (ζ3 · idV) Thus G(3) is of order 27.

Lemma 6 For R any ring with 1/3 ∈ R, V is G(3)-irreducible,

that is, it has no proper G(3)-subspace except IV , I any ideal of R.

Schur’s lemma follows, Hence the base xj are unique up to simula-

taneous constant multiple.

Thus G(3) determines xj ”uniquely”

xj is viewed as an algebraic theta function.
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We recall Formulae:

θk(τ, z +
1

3
) = ζk3θk(τ, z),

θk(τ, z +
τ

3
) = q−1w−1θk+1(τ, z)

Define a map Θ : E(τ ) → P2
C as

z �→ [θ0(τ, z), θ1(τ, z), θ2(τ, z)]

This is a closed immersion, Identify θk = xk

The cubic curve Θ(E(τ )) is G(3)-invariant,

It is a Hesse cubic curve. Why ? (Compare page 18)
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As a G(3)-module,

S3V = 2 · 10 ⊕
8⊕
j=1

(1j)

where

2 · 10 = {x3
0 + x3

1 + x3
2, x0x1x2},

1j = {x3
0 + ζj3x

3
1 + ζ2j

3 x
3
2} (j = 1, 2)

1k = {x2
0x1 + ζ3x

2
1x2 + ζ2

3x
2
2x0} (k ≥ 3)

2 · 10 gives the equation of Θ(E(τ )) (Compare page 18)

x3
0 + x3

1 + x3
2 − 3μ(τ )x0x1x2 = 0

because Hesse cubics form a one parameter family.
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4 Stability for compactification

moduli = the set of isomorphism classes,

roughly, ”moduli”=X/G, where G: algebraic group

Comparison Table

GIT Geometry

X the set of geometric objects

G the group of isomorphisms

x, x′ are isom. G-orbits are the same O(x) = O(x′)

Xps stable objects

Xss semistable objects

Xps/G ”moduli”

Xss//G ”compactification” of moduli
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• A lot of compactif. of the moduli of abelian varieties are known.

Satake，Baily-Borel, Mumford, Namikawa (/C), Faltings-Chai,

• What is nice? What is natural?　

• Naively wish ”to classify the isomorphism classes by invariants”

(algebraic) moduli = the set of isom. classes distinguished

(or identified) by the invariants

• But it is difficult to investigate by the invariants.

• it is easier to investigate geometrically.

• Consider only those geometric objects (= semi-stable objects)

with their invariants well-defined
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•

(algebraic) moduli = the set of isom. classes distinguished

(or identified) by the invariants

=: the set of semi-stable objects

• Thus Stability and Semistability　(Mumford:GIT)



27

5 The space of closed orbits

X the set of geometric objects

G the group of isomorphisms

x, x′ are isom. G-orbits are the same O(x) = O(x′)

Xps the set of properly-stable objects

Xss the set of semistable objects

Xss//G ”compact moduli”

Rem

stability =⇒ closed orbits =⇒ semistability
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Exam 1 Action on C2 of G = Gm(= C∗),

C2 � (x, y) �→ (αx,α−1y) (α ∈ Gm)

What is the quotient of C2 by G ?

• Simple answer：the set of G-orbits (×)

• Answer：Spec(the ring of all G-invariant poly.)(○)

• t := xy (and its polynomials) is the unique G-invariant !

C2//G := Spec C[t] = {t ∈ C}

But this is different from ”the set of G-orbits”.

• C2//G = {t ∈ C} is the set of all closed orbits !!
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�

∼= {t ∈ C}
�

�

xy = 0

xy = 0

�

O(c, 1)

(c > 0, d < 0)

�

O(d, 1)

• t = 0 is a point of C2//G.

• But {xy = 0} consists of three G-orbits

C∗ × {0}, {0} × C∗, {(0, 0)}
• {(0, 0)} is the only closed orbit in {xy = 0}
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Thm 7 C2//G = {t ∈ C} (t = xy) is the set of all closed orbits.

Proof of Thm 7：(Compare page 41)

• O(t) = {(x, y);xy = t} is a closed orbit for any t �= 0.

• For t = 0, {(0, 0)} is the only closed orbit in {xy = 0}
• Any t ∈ C corresp. to a unique closed orbit in {xy = t} �

Thm 8 (Seshadri,Mumford) G : reductive, acting on a scheme

X, (e.g. G = Gm). Let Xss = the set of semistable points. Then

Xss//G : = Spec(all G-invariants)

= the set of closed orbits.

Closed means that the orbit is closed in Xss.
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Thm 9 (Seshadri-Mumford) Let X be a projective scheme over

a closed field k, G a reductive algebraic k-group acting on X.

Let Xss be an open subscheme of all semistable points in X, Then

∃ (cat.) quotient Y = Xss//G. To be more precise,

(0) ∃ a proj. k-scheme Y and a G-invariant π : Xss → Y such that

(1) π is universal

(2) For a, b ∈ Xss, π(a) = π(b) iff O(a) ∩ O(b) �= ∅
where the closure is taken in Xss,

(3) Y (k) = the set of G-orbits closed in Xss.
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Def 10 We keep the same notation as in Theorem 9 (Seshadri-

Mumford). Let p ∈ X.

(1) the point p is said to be semistable if there exists a G-invariant

homogeneous polynomial F on X such that F (p) �= 0,

(2) the point p is said to be Kempf-stable if the orbit O(p) is closed

in Xss,

(3) the point p is said to be properly-stable if p is Kempf-stable and

the stabilizer subgroup of p in G is finite.
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We note that if a, b ∈ Xps, (or if a, b Kempf-stable)

π(a) = π(b) ⇐⇒ O(a) ∩ O(b) �= ∅
⇐⇒ O(a) ∩ O(b) �= ∅
⇐⇒ O(a) = O(b)

⇐⇒ a and b are isomorphic.

1. Each point of Xps gives a closed orbit and

2. the first moduli Xps//G = Xps/G (just the orbit space),

3. Moreover Xps//G is compactified by Xss//G.

This is currently one of the most powerful methods for compactify-

ing moduli spaces.
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Thus we consider only those objects with closed orbits

As its consequence we will see

• Abelian varieties have closed orbits (Kempf), and

• our SQASes have closed orbits,

• Conversely, any degenerate abelian scheme with closed orbit

is one of our SQASes

• There is a simple characterization of our SQASes,

• This characterization enables us to compactify of the moduli of

abelian varieties.
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6 GIT-stability and stable critical points

Recall

• Definition of GIT-stability (born in 1965) has

nothing to do with stable critical points

• But it has to do with stable critical points.
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Let V : vector space，G : reductive group acting on V ,

K : a max. compact subgp of G,

‖ · ‖ : K-inv. metric

pv(g) := ‖g · v‖ (v ∈ V )

Thm 11 (Kempf-Ness 1979) The following are equivalent

(1) the orbit O(v) is closed (= GIT-stable)

(2) pv attains a minimum on O(v)

(3) pv has a (stable) critical point on O(v)
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Exam 2 Let G = C∗, K = S1, V = C2,

C2 � (x, y) �→ (tx, t−1y) (t ∈ G)

pv(g) := ‖(x, y)‖2 = |x|2 + |y|2, v = (x, y)

• If v = (x, y) and xy = t �= 0,

then pv attains the min. when |tx| = |t−1y|
because |tx|2 + |t−1y|2 ≥ 2|tx · t−1y| = 2|xy|.

• If xy = 0, then pv attains min. at (0, 0).

• When xy = 0, pv has no min. on C∗ × {0}, {0} × C∗

where {xy = 0} = {(0, 0)} ∪ C∗ × {0} ∪ {0} × C∗
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7 Stable curves of Deligne-Mumford

Def 12 C is a stable curve of a genus g if

(0) it is a connected projective reduced curve

(1) with finite automorphism group,

(2) the singularities of C are like xy = 0

(3) dimH1(OC) = g

Thm 13 (Deligne-Mumford 1969+ Knudsen)

Let Mg : moduli of stable curves of genus g,

Mg : moduli of nonsing. curves of genus g.

Then Mg is projective (compact),

Mg is a Zariski open subset of Mg.
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Caution: Definition of stable curves is irrelevant to GIT stability

Nevertheless we have

Thm 14 The following are equivalent

(1) C is a stable curve (moduli-stable)

(2) any Hilbert point of Φ|mK|(C) is GIT-stable (GIT-stable)

(3) any Chow point of Φ|mK|(C) is GIT-stable (GIT-stable)

(1)⇔(2) Gieseker 1982 (actually done before Mumford’s work)

(1)⇔(3) Mumford 1977 (suggested by Gieseker’s work)
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8 Stability of cubic curves

CUBIC CURVES STABILITY STAB GP.

smooth elliptic stable finite

3-gon closed orbits 2-dim

a line+a conic (transv.) semistable 1-dim

irred. with node semistable finite

others unstable 1-dim

Thm 15 For a cubic C, the following cond. are equiv.

(1) C has a closed SL(3)-orbit in (S3V )ss　

(2) C is a Hesse cubic curve, that is, G(3)-invariant

(3) C is either smooth elliptic or a 3-gon
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Exam 3

Ca,b,c : ax3
0 + bx3

1 + cx3
2 − x0x1x2 = 0. (1)

The diagonal subgroup G � (Gm)2 of SL(3) on the parameter space

Spec k[a, b, c] acts by

(a, b, c) �→ (sa, tb, uc) (2)

where stu = 1, and s, t, u ∈ Gm. We also see

(i) (Gm)2-Kempf-stable points are abc �= 0 or (a, b, c) = (0, 0, 0),

(ii) (Gm)2-semistable points which are not (Gm)2-Kempf-stable

are abc = 0 except (0, 0, 0). (Compare page 30)
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9 Stability in higher-dim.

Thm 16 (N.1999) k is alg. closed，char.k and |K| are coprime

K (∼= H ⊕ H∨) : a finite symplectic abelian group, large enough

G(K) : Heisenberg gp assoc. to K, V = k[H∨] : gp ring of H∨

Assume X is a limit of abelian varieties with K-torsions (Here K

large enough implies X ⊂ P(V ))

Then the following are equivalent:

(1) X has a closed SL(V )-orbit in Hilbss (GIT-stable)

(2) X is invariant under G(K) (G(K)-stable)

(3) X is one of our SQASes (moduli-stable)
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Thm 17 For cubics the following are equiv:

(1) it has a closed SL(3)-orbit (GIT-stable)　

(2) it is a Hesse cubic, that is，G(3)-invariant (G(3)-stable)

(3) it is smooth elliptic or a 3-gon. (moduli-stable)

This is generalized into

Thm 18 Let X be a degenerate abelian variety (posssibly nonsin-

gular). The following are equivalent under natural assump.:

(1) it has a closed SL(V )-orbit (GIT-stable)

(2) X is invariant under G(K) (G(K)-stable)

(3) it is one of our SQASes (moduli-stable)
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10 Moduli over Z[ζN, 1/N ]

Thm 19 (a new version of the theorem of Hesse)

SQ1,3 = P1
Z[ζ3,1/3],

the projective fine moduli

(1) The universal cubic curve

μ0(x
3
0 + x3

1 + x3
2) − 3μ1x0x1x2 = 0

where (μ0, μ1) ∈ SQ1,3 = P1.

(2) when k is alg. closed and char. k �= 3
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SQ1,3(k) =

⎧⎪⎨⎪⎩ closed orbit cubic curves /k

with level 3-structure

⎫⎪⎬⎪⎭ /isom.

=

⎧⎪⎨⎪⎩ Hesse cubics /k

with level 3-structure

⎫⎪⎬⎪⎭ /isom.=id.

A1,3(k) =

⎧⎪⎨⎪⎩ closed orbit nonsingular cubic curves /k

with level 3-structure

⎫⎪⎬⎪⎭ /isom.

=

⎧⎪⎨⎪⎩ nonsingular Hesse cubics /k

with level 3-structure

⎫⎪⎬⎪⎭ /isom.=id.
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Thm 20 (N. 1999) There exists the fine moduli SQg,K

projective over Z[ζN, 1/N ], N =
√|K|

For k : alg. closed, if char.k and N =
√|K| are coprime

SQg,K(k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
degenerate abelian schemes /k

with level G(K)-structure

and a closed SL -orbit

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
/isom.

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
G(K)-invariant degenerate

abelian schemes /k

with level G(K)-structure

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
=

⎧⎪⎨⎪⎩ G(K)-invariant SQAS /k

with level G(K)-structure

⎫⎪⎬⎪⎭
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Ag,K(k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(nonsingular) abelian schemes /k

with level G(K)-structure

and a closed SL -orbit

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
/isom.

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
G(K)-invariant (nonsingular)

abelian schemes /k

with level G(K)-structure

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
=

⎧⎪⎨⎪⎩ G(K)-invariant nonsingular SQAS /k

with level G(K)-structure

⎫⎪⎬⎪⎭
Compare page 78.
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11 Tate curve and SQAS

SQAS : a generalization of Tate curve, R:DVR

Tate curve 　：　Gm(R)/w �→ qw

Hesse cubics at ∞ ： Gm(R)/w �→ q3w

Rewrite Tate curve as ：　Gm(R)/wn �→ qmnwn(m ∈ Z)

Hesse cubics at ∞ ：　Gm(R)/wn �→ q3mnwn(m ∈ Z)

The general case : B pos. def. symmetric

Gm(R)g/wx �→ qB(x,y)b(x, y)wx, b(x, y) ∈ R× (x ∈ X, y ∈ Y )

”natural limit as q → 0” =⇒
3-gon and SQAS are born
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12 Faltings-Chai degeneration data

R : a discrete valuation ring R, m the max. ideal of R,

k(0) = R/m, k(η) : the fraction field of R

Let (G,L) a quasi abelian scheme over R,

That is, (Gη, Lη) : abelian variety over k(η)

and suppose that G0 is a split torus over k(0),

(tG,t L) : the (connected) Neron model of (tGη,
t Lη)

May then suppose that (tG0,
t L0) is a split torus over k(0)

Then we have a Faltings Chai degeneration data ass. to (G,L)
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Let X = Hom(G0,Gm), Y = Hom(tG0,Gm).

Hence X � Zg, Y � Zg, Y : a sublattice of X of finite index.

BECAUSE ∃ a natural surjective morphism G →t G,

∃ a surjective morphism G0 →t G0,

∃ Hom(tG0,Gm) → Hom(G0,Gm),

Hence ∃ an injective homom. Y → X �
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Consider always over Z[ζN, 1/N ],

Let K = X/Y ⊕ (X/Y )∨, G(K) : Heisenberg group

1 → μN → G(K) → K → 0(exact)

R[X/Y ] = ⊕x∈X/YR v(x) (the group algebra of X/Y )

(a, z, α) · v(x) = aα(x)v(z + x)

H0(G,L): G(K)-irreducible � R[X/Y ]

⇒ a unique basis v(x) = θx ∈ H0(G,L) (theta functions)

Let Gfor : the formal completion of G along G0

Gfor � (Gg
m,R)for
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θx (x ∈ X/Y ) are expanded on Gfor as

θx =
∑
y∈Y

a(x+ y)wx+y

These a(x) satisfy the conditions:

(1) a(0) = 1, a(x) ∈ k(η)× (∀x ∈ X),

(2) b(x, y) := a(x+ y)a(x)−1a(y)−1 is bilinear (x, y ∈ X)

(3) B(x, y) := valq(a(x+ y)a(x)−1a(y)−1) is positive definite

(x, y ∈ X)

These a(x) are called a degeneration data of (G,L)

Exam 4 If g = 1, N = 3, then theta functions (k = 0, 1, 2)

θk = θk(τ, z) =
∑
m∈Z

q(3m+k)2w3m+k =
∑

3m∈Y
a(3m+ k)w3m+k

where w ∈ Gm, a(x) = qx
2
, X = Z and Y = 3Z, B(x, y) = 2xy.
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Def 21

R̃ := R[a(x)wxϑ, x ∈ X]

Define an action of Y on R̃ by

Sy(a(x)wxϑ) = a(x+ y)wx+yϑ

Proj(R̃) : locally of finite type over R

X : the formal completion of Proj(R̃)

X/Y : the top. quot. of X by Y

OX(1) descends to X/Y : ample
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Grothendieck (EGA) guarantees

∃ a projective R-scheme (Z,OZ(1))

s.t. the formal completion Zfor of Z

Zfor � X/Y
(Zη, OZη(1)) � (Gη, Lη)

(the stable reduction theorem)

The central fiber (Z0, OZ0(1)) is our (P)SQAS.

If we take the normalization Znorm of Z with Znorm
0 reduced, we get

a bit different central fiber (Znorm
0 , OZnorm

0
(1)), we call it TSQAS.
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Exam 5 g = 1, X = Z, Y = 3Z.

X = Proj(R̃), a(x) = qx
2
, (x ∈ X)

The scheme X is covered with affine

Vn = SpecR[a(x)wx/a(n)wn, x ∈ X]

Vn � SpecR[xn, yn]/(xnyn − q2) (n ∈ Z)

xn = q2n+1w, yn = q−2n+1w−1.

(Vn)0 = {(xn, yn) ∈ k(0)2;xnyn = 0}
X0 : a chain of infinitely many P1

k(0)
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Y acts on X0 as Vn
S−3→ Vn+3,

(xn, yn)
S−3�→ (xn+3, yn+3) = (xn, yn)

X0/Y : a cycle of 3 P1
k(0), (X/Y )alg

η : a Hesse cubic over k(η),

V−2 V−1 V0 V1 V2 V3 V4

S−3 S−3
� �

� � � � � � �

X0/Y

��
�
�
�
�
�
�
�
�
�
�
�
�
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�
�

�
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�
�
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�

�
�
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13 Limits of theta functions

E(τ ) is embedded in P2 by theta θk :

θk(q, w) =
∑

m∈Z q
(3m+k)2w3m+k (k = 0, 1, 2)

θ3
0 + θ3

1 + θ3
2 = 3μ(q)θ0θ1θ2

Let R DVR, q uniformizer, I = qR, w = q−1u

u ∈ R \ I, u = u mod I

θk =
∑
y∈Y a(y + k)wy+k
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θ0(q, q
−1u) =

∑
m∈Z

q9m2−3mu3m

= 1 + q6u3 + q12u−3 + · · ·
θ1(q, q

−1u) =
∑
m∈Z

q(3m+1)2−3m−1u3m+1

= u+ q6u−2 + q12u4 + · · ·
θ2(q, q

−1u) =
∑
m∈Z

q(3m+2)2−3m−2u3m+2

= q2·(u2 + u−1 + q18u5 + · · · )

��
limq→0 [θk(q, q

−1u)] = [1, u, 0] ∈ P2
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In P2

limq→0 [θk(q, q
−1u)]k=0,1,2 = [1, u, 0]

Similarly

limq→0 [θk(q, q
−3u)]k=0,1,2 = [0, 1, u]

limq→0 [θk(q, q
−5u)]k=0,1,2 = [u, 0, 1]
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�
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O(τ0)

O(τ2)

O(τ1)O(σ0)

O(σ1)O(σ2)
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w = q−2λu and u ∈ R \ I.
limq→0 [θk(q, q

−2λu)] =

{ [1, 0, 0] (if −1/2 < λ < 1/2),

[0, 1, 0] (if 1/2 < λ < 3/2),

[0, 0, 1] (if 3/2 < λ < 5/2).
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O(τ0)

O(τ2)

O(τ1)O(σ0)

O(σ1)O(σ2)
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When λ ranges in R, the same limits repeat mod Y = 3Z.

Thus limτ→∞C(μ(τ )) is the 3-gon x0x1x2 = 0.

Def 22 For λ ∈ X ⊗Z R fixed

Fλ(x) = x2 − 2λx (x ∈ X = Z)

Define D(λ) (a Delaunay cell) by

the conv. closure of all a ∈ X s.t. Fλ(a) = min{Fλ(x);x ∈ X}.

Exam 6 1-dim. B(x, x) = x2.

� � � � � � �
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14 The shape of SQAS

”Limits of theta functions are described by the Delaunay

decomposition.”

SQAS is a geometric limit of theta functions

SQAS is a generalization of 3-gons.　

which is described by the Delaunay decomposition.
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SQAS : a generalization of Tate curve, R:DVR

Tate curve 　：　Gm(R)/w �→ qw

Hesse cubics at ∞ ： Gm(R)/w �→ q3w

Rewrite Tate curve as ：　Gm(R)/wn �→ qmnwn (m ∈ Z)

Hesse cubics at ∞ ：　Gm(R)/wn �→ q3mnwn (m ∈ Z)

The general case : B pos. def. symmetric

Gm(R)g/wx �→ qB(x,y)b(x, y)wx, b(x, y) ∈ R× (x ∈ X, y ∈ Y )

”natural limit as q → 0” =⇒
3-gon and SQAS are born



64

Let X = Zg, B a positive symmetric on X ×X.

‖x‖ =
√
B(x, x) : a distance of X ⊗ R (fixed)

Def 23 Let α ∈ XR. a Delaunay cell D = D(α) is defiend to be

the convex closure of points of X closest to α.

• All Delaunay cells form a the Delaunay decomp. ass. to B

• Each SQAS (its scheme struture) and its decomposition into

torus orbits (its stratification) are described

by the Delaunay decomposition

• Each positive symmetric B defines a Delaunay decomp.

• Different B can yield the same Delaunay decomp. and the same

SQAS.
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15 Delaunay decompositions

Exam 7 1-dim. B(x, y) = 2xy, X/Y = Z/nZ,

then SQAS Z0 is an n-gon of P1

� � � � � � �
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Exam 8 B =

⎛⎜⎝1 0

0 1

⎞⎟⎠ This (mod Y ) is a union of P1 × P1

� � � � � �

� � � � � �

� � � � � �

� � � � � �
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Exam 9 B =

⎛⎜⎝ 2 −1

−1 2

⎞⎟⎠
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1. This (mod Y ) is a SQAS.

It is a union of P2, each triangle denotes a P2,

2. each line segment is a P1

3. two P2 intersect along P1

4. six P2 meet at a point, locally k[x1, · · · , x6]/(xixj, |i− j| ≥ 2)
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Red one is the decomp. dual to the Delaunay decomp.

called Voronoi decomp.
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Voronoi decomposition
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Def 24 D : for Delaunay cells

V (D) := {λ ∈ X ⊗Z R;D = D(λ)}

We call it a Voronoi cell

V (0) = {λ ∈ X ⊗Z R; ‖λ‖ � ‖λ− q‖, (∀q ∈ X)}
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This is a crystal of mica.
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For B =

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎠
We get V (0), a cube (salt),　

For B =

⎛⎜⎜⎜⎜⎝
1 0 0

0 2 −1

0 −1 2

⎞⎟⎟⎟⎟⎠
then we get a hexagonal pillar (calcite)，

and then
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B =

⎛⎜⎜⎜⎜⎝
2 −1 0

−1 2 −1

0 −1 2

⎞⎟⎟⎟⎟⎠
A Dodecahedron (Garnet)
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B =

⎛⎜⎜⎜⎜⎝
2 −1 0

−1 3 −1

0 −1 2

⎞⎟⎟⎟⎟⎠
Apophyllite KCa4(Si4O10)2F · 8H2O
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B =

⎛⎜⎜⎜⎜⎝
3 −1 −1

−1 3 −1

−1 −1 3

⎞⎟⎟⎟⎟⎠
A Trunc. Octahed. — Zinc Blende ZnS
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16 The Second Compactification over Z[ζN, 1/N ]

Recall

Grothendieck (EGA) guarantees

∃ a projective R-scheme (Z,OZ(1))

s.t. the formal completion Zfor of Z

Zfor � X/Y , (Zη,OZη(1)) � (Gη, Lη)

(the stable reduction theorem)

The central fiber (Z0, OZ0(1)) is our (P)SQAS.

The normalization Znorm of Z with Znorm
0 reduced gives a bit

different central fiber (Znorm
0 , OZnorm

0
(1)), we call it TSQAS.
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Thm 25 (N. 2010) ∃ a complete separated reduced-coarse moduli

alg. space SQtoric
g,K (Comapre page 46/47)

:moduli of TSQASes with level-G(K) str. over Z[ζN, 1/N ].

Moreover, ∃ cano. bij. birat. morphism

sq : SQtoric
g,K → SQg,K

Corollay

The normalizations of SQtoric
g,K and SQg,K are isom.
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Proof of Existence of SQtoric
g,K .

1. Consider all TSQAS (X,L) with level G(K). Then can embed

(X,L) by Ln, any n ≡ 1 mod N , n ≥ 2g + 1

2. (X,Ln) × (X,Lm) ∈ Hilb × Hilb′ for any rel. prime pair (n,m)

3. H0(X,Ln) � V ⊗ Wn, H
0(X,Lm) � V ⊗ Wm as G(K)-mod.

where V � H0(X,L)

4. U a good reduced subsch. on which GL(Wn) ×GL(Wm) acts

5. take quotient of U by GL(Wn) ×GL(Wm) by Keel-Mori

6. SQtoric
g,K := U//GL(Wn) ×GL(Wm) is independent of n,m
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Construction of a canonical morphism

1. For a given TSQAS over S with generic fibre AV, S any reduced

scheme, we construct a PSQAS over S,

2. We can take U a subscheme of Hilb × Hilb′ over which universal

TSQAS exists

3. (X,L) universal TSQAS, Then |L| is base point free,

we have a morphism Φ|L| : X → P

4. The image Φ|L|(X) of (X,L) by |L| is PSQAS.

5. Prove flatness of PSQAS

6. The map X �→ Φ|L|(X) defines a morphism

sq : SQtoric
g,K → SQg,K.


