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Another canonical compactification
of the moduli space of abelian varieties

Iku Nakamura

Abstract.

We construct a canonical compactification S Zﬁ’}éc of the moduli
space Ag i of abelian varieties over Z[(n,1/N] by adding certain
reduced singular varieties along the boundary of Ay i, where K is a
symplectic finite abelian group, N is the maximal order of elements of
K, and (y is a primitive N-th root of unity, and. In [18] a canonical
compactification SQg k of Ay x was constructed by adding possibly
non-reduced GIT-stable (Kempf-stable) degenerate abelian schemes.
We prove that there is a canonical bijective finite birational morphism
sq : SQIRS — SQg.x. In particular, the normalizations of SQ} i
and SQg,x are isomorphic.
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§1. Introduction

In [18] a canonical compactification SQg x of the moduli space
Ay k of abelian varieties with level structure was constructed by ap-
plying geometric invariant theory [17]. It is a compactification of Ay
by all Kempf-stable degenerate abelian schemes, that is, those degen-
erate abelian schemes whose Hilbert points have closed SL-orbits in
the semi-stable loci. However some of the Kempf-stable degenerate
abelian schemes are non-reduced in contrast with Deligne-Mumford sta-
ble curves. See [21] for a non-reduced Kempf-stable degenerate abelian
scheme.

The purpose of this article is to construct another canonical com-
pactification S ;‘:ﬁé" of Ay k by adding to Ay i certain reduced singular
degenerate abelian schemes instead of non-reduced Kempf-stable ones.
The new compactification S ;‘?}@C is very similar to SQg k. In fact, their
normalizations are canonically isomorphic (see Section 12). The com-
pactifications are, as functors, the same if ¢ < 4, and different if ¢ > 8
(or maybe if g > 5 because it is believed that there are non-reduced
Kempf-stable degenerate abelian schemes of dimension g for any g > 5).
An advantage of S Q;‘fﬁc is that the reduced degenerate abelian schemes
on the boundary SQ;‘:}? \ Ay k are much simpler than those Kempf-
stable ones lying on the boundary SQg x \ Ag . See also Alexeev [1]
for related topics.

Let R be a complete discrete valuation ring and k(n) the fraction
field of R. Given an abelian variety (G, L,) over k(n) with an ample
line bundle £,), we have Faltings-Chai degeneration data for it by a finite
base change if necessary. In [18] for the Faltings-Chai degeneration data,
we constructed two natural R-flat projective degenerating families (P, L)
and (@, £) of abelian varieties with generic fiber isomorphic to (G, £,).
The family (@, £) is the most naive choice with £ an ample line bundle,
while the family (P, £) with £ (= Lp) the pull back of £ (= Lg) on Q
is the normalization of (@, £) after a certain finite minimal base change
so that the closed fiber Py of P may be reduced.

We call the closed fiber (FPy, L) of (P, L) a torically stable quasi-
abelian scheme (abbr. TSQAS), while we call the closed fiber (Qo, Lo)
of (Q, L) a projectively stable quasi-abelian scheme (abbr. PSQAS) [18].

Let (K,ex) be a finite symplectic abelian group. Since we have
K ~®Y ((Z/e;Z) ® pe,) for some positive integers e; such that e;|e; 41,
we define emin(K) = e1 and emax(K) = e4. Let N = emax(K). The
Heisenberg group G(K) is, by definition, a central extension of K by
the group pyn of all N-th roots of unity. The classical level-K struc-
tures on abelian varieties are generalized as level-G(K) structures on



Another compactification of the moduli space 71

TSQASes. The group scheme G(K) has an essentially unique irreducible
representation of weight one over Z[(y,1/N]. In [18] this fact played a
substantial role in constructing a canonical compactification SQ4 x of
the moduli space A, i of abelian varieties with (non-classical and non-
commutative) level-K structure. We note that, for any closed field k over
Z[(n,1/N], Ay i (k) is the same as the set of all isomorphism classes of
abelian varieties with level-K structure in the classical sense.

The following is the main theorem of the present article.

Theorem. If enin(K) > 3, the functor of g-dimensional torically
stable quasi-abelian schemes with level-G(K) structure over reduced base
algebraic spaces has a complete separated reduced-coarse (hence reduced)
moduli algebraic space SQ;‘:}%" over Z[Cn,1/N]. Moreover, there is a
canonical bijective finite birational morphism sq : SQ;‘?}@C — 5Qq. k. In
particular, the normalization of SQ;‘:}? is isomorphic to that of SQg K .

Here is an outline of our article. In Section 2, we recall from
[18] a couple of basic facts about degenerating families of abelian va-
rieties. In Section 3, we show how to recover Py from gy, and @ from
P. In Section 4, first we define Heisenberg group schemes G(K) and
G(K), finite or infinite, then we discuss in detail the relation between
level-G(K) structures and G(K)-linearizations. Moreover we recall irre-
ducible G(K)-modules of weight one, which will play a substantial role
in compactifying the moduli. We notice that the finite Heisenberg group
scheme G(K) acts on I'(Py, L") with weight one if m =1 mod N.

In Section 5, we define level-G(K) structures on TSQASes (P, Lo)
or their family, and then define the functor S ;‘?ﬁc of TSQASes. In Sec-
tion 6, we also give a precise definition of the functor SQg4 x of PSQASes,
using [21]. In Section 7, we discuss rigid p-structures for any irreducible
representation p. In Section 8, we recall from [18] the stable reduction
theorem for TSQASes with rigid level-G(K) structure. In Sections 9,
10 and 11, we prove existence of the reduced-coarse moduli S Q;"}? In
the course of the proof, we characterize TSQASes by the conditions (i)-
(x) in Sections 9.3, 9.5 and 9.6. In Section 12, we prove that there is
a canonical bijective finite birational morphism from SQ;‘?}@C to SQq.Kx
extending the identity of Ay k.

Acknowledgement. The author would like to thank Professor Ken Sug-
awara for stimulating discussions and careful reading of the manuscript
during the preparation of the article. The author also would like to
thank Professor Alastair King for critical reading of the draft, numerous
advices for improving the texts, and linguistic remarks to some of the
terminologies. Following his advices we change some of the notations
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and the terminologies we used in [18]. The author also would like to
thank Professor Gregory Sankaran for his linguistic comments.

§2. Degenerating families of abelian varieties

The purpose of this section is to recall basic facts about degenerating
families of abelian varieties. To minimize the article we try to keep the
same notation as in [18].

2.1. Grothendieck’s stable reduction

Let R be a complete discrete valuation ring, I the maximal ideal of
R and S = Spec R. Let n be the generic point of S, k(n) the fraction
field of R and k(0) = R/I the residue field.

Suppose we are given a polarized abelian variety (G, £,) of dimen-
sion g over k(n) such that £, is symmetric, ample and rigidified (that
is trivial) along the unit section. Then by Grothendieck’s stable reduc-
tion theorem [4], (G,, L,) can be extended to a polarized semiabelian
S-scheme (G, L) with £ a rigidified relatively ample invertible sheaf on
G as the connected Néron model of G, by taking a finite extension of
k(n) if necessary. The closed fiber Gy is a semiabelian scheme over k(0),
namely an extension of an abelian variety Ag by a split torus Tj.

From now on, we restrict ourselves to the totally degenerate case,
that is, the case when Ag is trivial, because by [18] there is no essentially
new difficulty when we consider the case when Ag is nontrivial. Hence
we assume that Gy is a split k(0)-torus. Let A(£,) : G, — G, be the po-
larization (epi)morphism. By the universal property of the (connected)
Néron model G* of G, we have an epimorphism X : G — G* extending
A(Ly). Hence the closed fiber of G* is also a split k(0)-torus.

Let S, = Spec R/I"*! and G, = G xg S,. Associated to G
and £ are the formal scheme G, = 1311 G, and an invertible sheaf
Lior = 1311 (L ® R/I™1). By our assumption that Gy is a k(0)-split
torus, G, turns out to be a multiplicative group scheme for every n
by [5, p. 7]. Thus the scheme Gy, is a formal split S-torus. Similarly
G}, is a formal split S-torus. Let X := Homz(Gior, (G 8)for), ¥ =
Homgz (G}, (G, s)for) and G = Homz (X, Gy, 5), Gt = Hom(Y, G, 5).
Then G (resp. G') algebrizes Gior (resp. Gf,,). The morphism A :
G — G' induces an injective homomorphism ¢ : ¥ — X and an alge-
braic epimorphism A : G — G'. For simplicity we identify the injection
¢ :Y — X with the inclusion Y C X.
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2.2. Fourier expansions
In the totally degenerate case, Ggor (resp. é) is a formal split S-

torus (resp. a split S-torus). We choose the coordinate w* of G satisfying
wrw¥ = w* Y (Va,y € X). Since Lg,, is trivial on Gior, we have

D(Gys Ly) = T(G, L) @ k(n) = T(Gror, Lior) ® k(n) — ] k() - w.

zeX

Therefore, any element § € I'(G,,, £,)) can be written as a formal Fourier
series 0 = )y 0, (0)w” with 0,.(0) € k(n), which converges I-adically.

Theorem 2.3. [Faltings-Chai90] Let k(n)* = k(n) \ {0}. There
exists a function a 1Y — k(n)* and a bimultiplicative function b :
Y x X — k(n)* with the following properties:

L b(y,z) = a(z +y)a(z) ta(y)~", a(0) =1 (Vz,yeY),

2. 0(y, z) = b(z,y) = aly + 2)a(y) 'a(z)"" (Vy,z€Y),

3. b(y,y) € I (Yy #0), and for everyn >0, a(y) € I™ for almost

ally ey,
4. T(G,, L,) is identified with the k(n) vector subspace of formal
Fourier series 6 = 3y 0.(0)w” which satisfy the relations

Toty(0) = a(y)b(y, z)o(0) and 0.(0) € k(n) (Vo € X,y €Y).

2.4. The bilinear form B(z,y) on X x X

By taking a finite base change of S if necessary, the functions b and
a can be extended respectively to X x X and X so that the previous
relations between b and a are still true on X x X. Let R* = R\ {0} and
k(0)* = k(0)\{0}. Then we define integer-valued functions A : X — Z,
B:X xX —Zandb(y,z) € R*, a(y) € R* by
B(y,x) = vals(b(y,x)), dA(a)(x) = B(a,z)+r(z)/2,
A(z) = vals(a(z)) = B(z,z)/2 + r(x)/2,

by, x) = By, 2)s" "), alz) = a()s P TE)/2

for some r € Homgz (X, Z), where B is positive definite by Theorem 2.3.
Let ap =a mod I and by =b mod I, where ag(x),bo(y,z) € k(0)*.

2.5. Delaunay cells and Delaunay decompositions

Let X be a lattice of rank g, Xg = X®R, and let B: X x X — Z be
a positive definite symmetric integral bilinear form, which determines a
distance || || on Xgr by ||z||s := /B(z,z) (x € XRr). For any a € Xg
we say that a € X is a-nearest if |ja — af|p = min{||b — a||p;b € X }.

For an oo € Xgr, we define a Delaunay cell o to be the closed convex
hull of all lattice elements which are a-nearest. Two different o and
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o could give the same o. If o € o satisfies the condition |la — afp =
min{||b—a|/p;b € X} for any a € 0 N X, then we call a the center of o,
which we denote by a(c). The center of ¢ is uniquely determined by o.

All the Delaunay cells constitute a locally finite decomposition of
XR, which we call the Delaunay decomposition Delg. Let Del := Delp,
and Del(c) the set of all the Delaunay cells containing ¢ € X. For
o € Del(c), we define C(c,0) := ¢+ C(0,—c+0), and define C(0, —c+0)
to be the cone spanned over R* by all a—c, (a € 0N X). See [18, p. 662].

2.6. The semi-universal covering @

Let k(n) be the fraction field of R as before, and k(n)[X] the group
algebra of the additive group X over k(7). Let

k() [(X][Y]

be the graded algebra over k(n)[X] with ¥ indeterminate of degree one,
where by definition deg(z) = 0 for any z € k(n)[X]. We denote by w”
the generator of k(n)[X] corresponding to z € X, where w” - w¥ = w**¥
for z,y € X. Then we define a graded subalgebra R of k(1) [X][¥] by

R:= Rla(z)uw™;z € X] = R[¢ % € X],

where &, = sB@)/247(2)/ 27 - and a(x) the a-part of the degeneration
data in Theorem 2.3. B B

Let @ := Proj(R) and P the normalization of Q. For y € Y, we
define an action S, on Q by

Sy(a(z)w™) = a(x + y)w" VY,

which induces a natural action on ]5, denoted by the same S,. By L we
denote Opyoj(1) on @ as well as its pullback to P.

Theorem 2.7. Let (ﬁ)for,zfor) (resp. (@for,zfor)) be the formal

completion of (P,L) (resp. (Q,L)). Then

1. The quotient formal schemes (ﬁfor,Zfor)/Y and (@for,zfor)/y
are flat projective formal S-schemes.

2. There exist flat projective S-schemes (P, L) and (Q, L) such that
their formal completions (Pior, Ltor) and (Qfor, Ltor) along the
closed fibers are respectively isomorphic to the quotient formal
schemes (ﬁfor, Zfor)/Y and (@for,zfor)/Y.

3. P is the normalization of Q.

Proof.  This follows from [3, ITI, 5.4.5]. See also [2] and [18]. Q.E.D.
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2.8. A torically stable quasi-abelian scheme (P, Lo)

Let Del(Py) be the Delaunay decomposition corresponding to Fp.
By taking a finite base change of S if necessary, we may assume that
dA(a(o)) € Hom(X, Z) for any Delaunay cell o € Del(Fy). By [2] this
implies that Py is reduced. We call the closed fiber (Py, Lo) of (P, L) a
torically stable quasi-abelian scheme (abbr. a TSQAS) over k(0) := R/I.

In what follows, we always assume that dA(a(c)) € Hom(X,Z) for
any o € Del(P,). Hence P, is reduced.

We quote two theorems from [2] and [18].

Theorem 2.9. Let Py (resp. Py) be the closed fiber of P (resp.
P). Let o and 7 be Delaunay cells in Del(By).
1. For each o € Del(Py), there exists a subscheme O(c) of Py, which
is a torus of dimension dimg o over k(0),
2. 7 C o iff O(1) is contained in O(o), the closure of O(c) in Py,
and O(0) is the union of all O(t) with T C o, T € Del(P,),
3. o= UUEDel(Po) mod Y O(U)

Theorem 2.10. Let Py be the closed fiber of P, and n > 0. Then
1. hO(Po, L3) = [X : Yn9, h'(Py,LY) =0 (i > 0), and

clx = bo(y, z)a clx
i 9 - {3 s 10 o o],

2. T(Py, LL) =T(P, L") ® k(0),
3. L is very ample forn > 2g + 1.

2.11. The group schemes G and G*

We review [18, 4.12] to recall the notation. By choosing a suitable
base change of S, we assume dA(a(o)) € Hom(X,Z) for any o € Delp.
Then Py is reduced. Then G is realized as an open subscheme of P.
In fact, for any Delaunay g-cell o € Del(0), there is an open smooth
subscheme G(o) C P such that

(i) G(o) ~ G, G(a), = Py, G(o)o = O(0),

(ii) G(0)for is a formal S-torus of dimension g.

We define G¥ = G*(0) := Uue(x/v)S=(G(0)) C P. Then G* is
a group scheme over S such that Gg, = P,. It is an S-group scheme
uniquely determined by P, independent of the choice of o, though G(o)
are in general distinct as S-subschemes of P. We note that each stratum
O(r) is Go-invariant for any 7 € Delp. See [18, 4.12] for the detail.
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2.12. The Heisenberg group scheme G(L,) of £,

Let K(L,) be the kernel of \(£,) : G, — G}. Tt is the subgroup
scheme of G, representing the functor defined by

_ . Lyu @p3(N) =T (Lyur)
U K(Ly)(U) = {x € Gy(U); for some N € Pic(U)
for a k(n)-scheme U, where L, ry is the pullback of L, to G, v =
(Gy) Xge) U. We note that N is given by the restriction of £,y to
the subscheme x(U) (~ U) of G, . In other words,

re€ K(Ly)(U) <= Lyu @p5(Lyview)) = Ti(Lyv)

See [15, § 13] for the details.

Let £ := L, \{the zero section} be the G,-torsor on G, associated
with the line bundle £,,. Let G(L;) := (L)) |k (c,) be the restriction of
Ly to K(Ly). We call G(L,) the Heisenberg group scheme of L,. See
[15, § 23, Theorem 1]. Then we define a functor Aut(L, /P,) similar to
Aut(L/X) in [15, § 23, Theorem 1]:

U= Aut(Ly,/Py)(U)

- ~xe K(L,)(U) and
= {(xﬂb)’ ¢: Loy n_) T (Lyu) U-isom. on Gy }

for any k(n)-scheme U.

An obvious difference from the definition of K (£,) is that the def-
inition of Aut(L, /P,) lacks N € Pic(U). This difference enables us to
define the action of Aut(L,/P,) on I'(G,, L,).

In the same manner as in [15, § 23, Theorem 1], we see the func-
tor Aut(L,/P,) is represented by the k(n)-scheme G(L,,), which admits
therefore naturally a structure of a group k(7)-scheme over K (L,).

The group scheme structure of G(L,) is given by [13, p. 289] as
follows. Let (z,¢) and (y,v) be any T-valued points of G(L,), T a
k(n)-scheme. Equivalently, ¢ : £, — T;(L,) and ¢ : L, — T;(L,) are
T-isomorphisms of line bundles on G, 7. The group law of G(L£,) is

where we note the composition 771 o ¢ is an isomorphism of £, onto

Ty, (Ly). There is a natural epimorphism of G(£,) onto K(L,) with

fiber Gy, k(n), Where Gy, i is the center of the group scheme G(L,)).
Thus G(L,,) is a central extension of K(L,) by the k(n)-split torus

G k(). We define the commutator form e“7 of G(L,) by
e“1(g,h) = [g,h] := ghg~'h™", for Yg,h € G(Ly)
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where g, h are the images of g and h in K(£,). It is a nondegenerate
and alternating bimultiplicative form on K (L,).

Applying [18, Lemma 7.4], we see that the isomorphism class of
G(L;) as a central extension is uniquely determined by the commutator
form e“ by taking a finite extension of k(n) if necessary. In other words,
suppose that we are given two central extensions G and G’ of K(L,,) by
G k(n)- If they have the same commutator form, then by taking a finite
extension K’ of k(n) if necessary, the pullbacks of G and G’ to K’ are
isomorphic as central extensions of K (L;) Xy K' by G .

2.13. The action of G(£,) on I'(G,, L)

The group scheme G(£,)) acts on I'(G,,, £,)) as follows: for z = (z, ¢)
any T-valued point of G(L,), T any k(n)-scheme,

pe, (2)(0) =T, (4(0))
where 0 € I'(G,, 7, Ly, 7). For any w = (y,v¢) € G(L,))(T'), one checks

pe,(w)pe, (2)(0) = pe, (€ +y, T () - 9)(0) = pr, (w - 2)(0).

See [13, p. 295]. Thus I'(G,;, L,) is a G(L,))-module.

By [12, V, 2.5.5] (See also [15, § 23]), I'(G,, £,) is an irreducible
G(L,)-module of weight one, unique up to isomorphism by taking a
finite extension of k(n) if necessary.

If the characteristic of k(1) and the order of K (L)) are coprime, then
G(L,) ~ G(K) ® k(n) by taking a finite extension of k(7) if necessary.
Moreover if On C k(n), then I'(G,, £,) =~ V(K) @ k(n) as G(K) ® k(n)-
modules, which is therefore irreducible. See § 4 for the precise definitions
of G(K), Oy and V(K).

Lemma 2.14. The flat closure Kg(ﬁ) of K(Ly,) in G* is finite
and flat over S.

Proof. See [18, Lemma 4.14]. Caution : Kg.(ﬁ) is the same as
Kg(lln) in [18, Lemma 4.14].

2.15. The Heisenberg group scheme gg(c) of L
Now we shall extend G(L,)) relatively completely over S. Let £L* :=

L\ {the zero section} be the G,,-torsor on P associated with the invert-

ible sheaf £, and gg(ﬁ) = ElxKﬁ © the restriction of £L* to Kg(ﬁ). We
S

note that gg(ﬁ) is the same as g”s(c,,) in [18, Definition 4.15].
Let eg be an extension of e to Kg(ﬁ) By [12, IV, 7.1 (ii)] gg(z:)
is a group scheme over S extending G(L,), which is a central extension
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of Kg(ﬁ) by Gy,,s with eg; the commutator form. The bimultiplicative

form eﬁs on Kg(ﬁ) is nondegenerate alternating by [12, IV, 2.4] and by

Lemma 2.14.

We note that in view of [18, Lemma 7.4], the isomorphism class of
glf; (L) as a central extension is uniquely determined by the commutator
form eﬁs by taking a finite cover of S if necessary.

Lemma 2.16. We define a functor Aut(L/P) as follows:
Uw— Aut(L/P)(U)
—d(wg) € KL(L)(U) and
¢:Lp, =T (Lp,) U-isom. on Py
for any S-scheme U. The functor Aut(L/P) is represented by gg(z:).

Proof. Similar to that of [15, § 23, Theorem 1]. Q.E.D.
Definition 2.17. We define

K(P,L) = K5(L), G(P,L):= G&(L),

G(Gn, Ly) == G(Ly) =G(P,L) ® k(n),

K(Po, ‘CO) = K(P7 ‘C) ® k(0)7 g(P07‘C0) = g(Pa ‘C) ® k(O)

The natural projection from £* to G* makes G(P, L) a central ex-

tension of K (P, L) by G, s with its commutator form eg;

1—Gps—G(PL)— K(P,L)— 0.
We call G(P, L) (resp. G(Po, Ly)) the Heisenberg group scheme of (P, L)
(resp. (Py,Lp)). See also Section 4.6.

Lemma 2.18. Let G* C P be the group S-scheme in 2.11. Then

L. T(Q,L)=T(P,L) =T(G*, L),

2. TPy, Lo) =T(P, L) ® k(0) and

3. it is an irreducible G(P, L)-module of weight one, in other words
(by definition), any G(P, L)-submodule of T'(P,L) of weight one
is of the form JU(P,L) for some ideal J of R.

Proof.  See [12, V, 2.4.2; VI, 1.4.7], [18, Theorem 3.9, Lemma 5.12].

See also Theorem 2.10. Q.E.D.

Lemma 2.19. We define a morphism A(Lo) : G% — Pic’(Py) by
MLo)(a) = T (Lo) ® Ly

for any U-valued point a of Gg, and U any k(0)-scheme. Then
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1. K(Po,ﬁo) = ker )\(£0)7
2. G(Py, Lo) is determined uniquely by (Po, Lo).

Proof. First we note that G% ~ Gy x (X/Y) in general, and that
in the totally degenerate case Gy ~ Homgz (X, G,,), while in the general
case Gy is a Homgz (X, G,,)-torsor over an abelian variety Ag, whose
extension class is determined uniquely by (Pp, Lo). The proof of the
first assertion is proved in the same manner as [18, Lemma 5.14].

Next we prove the second assertion. We see as in the case of abelian
varieties that K (Py, Lp) is the maximal subscheme of Gg such that the
sheaf m*(L)®@p5 (L)~ is trivial on K (P, L) x Py, where m : Gg x Py —
Py is the action of Gg, and po : Gg x Py — Py is the second projection.
This is proved in the same manner as in [15, § 13].

Now we define a functor Aut(Ly/Pp):

U Aut(Lo/Po)(U)

(@ 9) x € K(Py,Lo)(U) and
‘ "¢ Loy — T (Low) U-isom. on Py

for any k(0)-scheme U. Then in the same manner as in [15, § 23, Theo-
rem 1], we see the functor Aut(Ly/Fp) is represented by G(Po, Lo).

By the first assertion and Section 2.12, K (P, Lo) and G(Py, L) are
independent of the choice of a Delaunay g-cell o. Q.E.D.

Definition 2.20. Let k& be an algebraically closed field, and let
(Po, L) be a TSQAS over k = k(0). Then we define

emin (K (FPo, L)) = max{n > 0; ker(n ing) C K(Py,Lo)},
emax (K (Po, Lo)) = min{n > 0; ker(n - ing) D K(Py, L)},

where G is the closed fiber of G in 2.11. If the order of K (Py, £o) and
the characteristic of k(0) are coprime, then K (Py, Lo) ~ &9_,(Z/e;Z)?
for some positive integers e; with e;|e;+1. Hence emin(K(FPo, Lo)) = e1
and emax (K (Po, Lo)) = eq4.

Theorem 2.21. Let (Py, Lo) be a (not necessarily totally degen-
erate) torically stable quasi-abelian scheme over k(0). Then
1. T(Po, Ly) =T(P, L™) ® k(0) for any n > 1,

2. hO(Po,,Cg):ng\/|K(P0,,C0),
3. HY(Py, Ly) = HY(P, L") =0 for any ¢,n > 1,
4. if n > 29+ 1, L is very ample on Fy.

See [2] and [18].
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Theorem 2.22.  Let (Qo, Lo) be a projectively stable quasi-abelian
scheme over k(0), by definition, a closed fiber of (Q, L) in Theorem 2.7.
We define K(Qo, Lo) = K(Po, Lo) (see [18, Definition 5.11]). Then

1. T(Qo, L) =T(Q, L") @ k(0) for anyn > 1,

2. hO(QOa‘Cg) =n9 |K(Q05£0);

3. H9(Qo, £3) = HU(Q, L") = 0 for any ¢,n > 1, and

4. if emin(K(Qo, Lo)) > 3, Lo is very ample on Q.

Proof. The first and the second assertions are corollaries to [21,
Theorem 5.17]. We prove the third assertion. If Q) is an abelian vari-
ety A over k(0) and if n := emnin(K(Po, Lo)), then Py ~ Qo = A and
Aln] = Ker (nida) is a closed subscheme of K (Fy, £y). This implies that
Lo = M™ for some ample line bundle M on A in view of [15, p. 231,
Theorem 3]. It follows from Lefschetz’s theorem that Ly is very ample.
The general case follows from [18, Theorem 6.3], using (1). Q.E.D.

Theorem 2.23.  Suppose emin(K (Py, Lo)) > 3. Then

1. T(P, L) is base-point free and defines a finite morphism ¢ of P
into the projective space P(T'(P,L)). The image of P by ¢ with
reduced structure is isomorphic to Q, and

2. ¢ coincides with the normalization morphism v : P — @,

3. letting Sym(¢) be the graded subalgebra of @32 (P, L") gener-
ated by T'(P, L) = v*'T(Q, Lq), and Lsym(,) the tautological line
bundle, then (Q,Lq) ~ (Proj(Sym(ép)), Lsym(ép))-

Proof. Let v: P — @ be the normalization. We note that both P
and @ are reduced by the construction in Section 2.6.

By definition £ := v*(Lg). By Lemma 2.18 we have I'(P, L) =
v*I(Q, Lg). Hence I'(P, L) is base-point free by Theorem 2.22 so that
it defines a finite S-morphism ¢ : P — P(T'(P, £)). Since I'(Q, Lg)®k(0)
is very ample on Qg by Theorem 2.22, s0is I'(Q, Lg) on Q. Let ¢g : Q —
P(T'(Q, Lg)) be the natural morphism defined by I'(Q, Lg). Then since

I'(P, L) =v*'T(Q, Lg), ¢ factors through ¢o(Q) ~ Q C P(I'(Q, Lg)) ~

P(T'(P,L)). Thus ¢ : P — ¢o(Q) ~ @ coincides with v. This proves
(2). Slnce Q is reduced, we have (¢(P))red = Qrea = Q. This proves
(1). In particular, ¢* : F(Q,E”) — T'(P,L™) is injective.

Since I'(Q, Lg) is very ample by Theorem 2.22, S"I'(Q,Lgy) —
I(Q, L) is surjective for any n > 0. It follows from ¢*(I'(Q, Lg)) =
['(P, L) that the degree n part of Sym(¢) coincides with ¢*I'(Q, L3),
hence @ ~ Proj(Sym(¢)). This proves (3). Q.E.D.

Remark 2.24. We note that if Q)¢ is non-reduced, then Qy =
Proj(Sym(¢)) ® k(0)) can be different from Proj(Sym(¢p,)), where
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Sym(¢p,) is the subalgebra of &5 (I'(Fo, Lf) generated by T'(Fy, Lo).
In fact, if Qo is non-reduced, there is an n such that v} : T'(Qo, L§) —
T'(Py, Ly) has a nontrivial kernel, and Ker (S"T'(Qo, Lo) — T'(Py, L))
can be strictly smaller than Ker (S"T'(Qo, Lo) — I'(Qo, LY)).

§3. The schemes Py and Qg

3.1. An amalgamation of an admissible scheme

Let k be a field, and we consider k-schemes locally of finite type. Let
A be a partially ordered set with < a partial order, where we understand
that A < v if and only if either A = v or A < v (that is, A is strictly
smaller than v).

We assume that A satisfies the following

(a) A has a unique minimal element ¢ with ¢ < A for any A € A, and
if A < v for infinitely many mutually distinct v, then A = ¢,

(b) any totally ordered sequence in A has a maximum,

(c) for any pair of maximal elements A, v (A # v), there is an element
A Nv, called the intersection of A and v, which is the maximal
element among o € A such that o < A\, 0 < v,

(d) for any pair of maximal elements A, v, we have incidence numbers
[A: ANv] and [v: ANv], both being +1 with distinct signs.

For the ordered set A, we suppose that we are given a set of irre-
ducible reduced k-schemes Z of finite type (A € A), and that there
exists a closed immersion i, ) : Zx — Z, for any ordered pair A < v.

Let Z, be the disjoint union of all Zy (A € A), and I the set of iy ,
for all ordered pairs A < p. The pair (Zx, ) is called an admissible
system if the conditions (i)-(iv) are satisfied:

(i) Zy is empty,

(il) Zxnw = Zx N Z, for any pair of maximal element \, v,

(iii) for any ordered pair A < v, the closed immersion i, 5 : Zx — Z,
is not an isomorphism if A # v, and iy ) = idz,,

(iv) 4ux =iy 01,y » for any ordered triple A < v < p.

A reduced scheme Z (locally of finite type) is called an amalgamation
of the admissible system (Zn, I,) if the following conditions are satisfied:

(v) there is a closed immersion iy : Z) — Z,
(vi) ix =1, 01y, for any ordered pair A < v,
(vii) there is a finite surjective morphism ¢ : Zy — Z such that iy =
i|z,, the restriction of i to Z,
(viii) if there is a reduced scheme Y (locally of finite type) with closed
immersions jy : Z)x — Y, and a finite surjective morphism j :
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Zn — Y such that j) = J1Zx» Jx = Jv O lua for A < v, then there
is a morphism h : Z — Y such that hoi = j.

3.2. An example of an amalgamation

Let A ={¢,a,b,c} be an ordered set with ¢ < a < b, p < a <c. We
note that b and ¢ are maximal in A. Let Z, = Spec k, Z, = Spec k[z],
Z. = Spec kly, z]. We define

b Zq ~ Spec klz]/(x) C Zp,
¢ Zq =~ Spec kly, z]/(y, z) C Z..

Let Z = Spec k[z,y,z]/(zy,xzz). Then Z is an amalgamation of
(Za,In). In fact, there is an exact sequence

0—-0z =0z &0z, — Oz,
(f,9) r~[b:alf+]c:alg.

We infer from this exact sequence that Z is an amalgamation of
(Z, Ip), as we will see soon in the proof of Theorem 3.3.

Theorem 3.3. There exists an amalgamation Z of (Zx,Ix). More-
over if Zy is normal for any A, then Z is seminormal, that is, any finite
bijective morphism f: W — Z with W reduced is an isomorphism.

Proof. Let Zpyax be the disjoint union of all Z,, for 1 maximal. Let
Zmax2 be the disjoint union of Zxq, for all pairs A # v both maximal.

Now we define an equivalence relation = on Z,.« as follows. For
p € Zy, p € Z,, we define p = p’ if one of the following equivalent
conditions is satisfied:

(s) there exists ¢ € Zy such that p = i,n.,.(¢) and p’ = i,q0,.(q),

(t) there exists g € Z) for some A\ < v Ny such that p =iy ,(¢q) and

P =ixu(q).

Let Z%P be the quotient space of Z.« by the equivalence relation
=. Thus there is a finite-to-one continuous map tmax : Zmax — £ °P.
And there is a finite morphism 4,52 : Znax? — Zmax Such that for any
pair A # v both maximal

(imax2)|Z,\m, . Zkﬁl/ (C Zmax2) - Z)\ U Zl/ (C Zmax)

is the disjoint union of iy xn, and i, xn,. It is obvious that tmax(p) =
tmax(p') € Z%P iff either p = p' € Zpmax o 3 ¢ € Zpaxe such that
tmax(P) = tmax (D) = tmax (imax2(q)) € Z%°P. Thus Z, is set-theoretically
a subset of ZtP



Another compactification of the moduli space 83

It remains to define a scheme structure of Z'*P. For this purpose,
we define a sheaf homomorphism :O0%pa — Oz, by

max?

@ (ax) — @ ([A s AN V)il yqpax + VAN V]i;muau).

A:max A# v
both max

We define Oz to be the kernel of i . : Oz — OZmaXQ. Then
Oz inherits a natural algebra structure from Oy, which defines a
scheme Z of locally of finite type by Z = Spec (Oz) with its underlying
topological space Z°P .

Next we show that there is a natural closed immersion i) of Z
into Z such that the underlying continuous map if\OP of i) coincides
with (fmax)|z, for any maximal A. Let A be the subset of A consisting
of all maximal » € A with A < v. There is a natural epimorphism

iy, + Oz, — Oz, for any v € Ay. Suppose EE?\ (ay) € Oz. Then
veAN
iy, (av) =13 ,(ay) for any maximal v and p because A < pNv. Hence

we define i5 : Oz — Oz, by i}( E?\ (ay,)) = i3 ,(a,), independent of v.
vEAN ’

max

Thus 43 is a well-defined epimorphism, which induces a closed immersion
of Zy into Z.

Suppose that there is a reduced scheme Y (locally of finite type)
with closed immersions jy : Zx — Y, and a finite surjective morphism
J : Za — Y such that such that jx = jjz,, jx = ju 0 iy for A <wv.

Let jmax = J|Zn...- Then we have a sequence of k-modules

-

j;xx max
Oy "% Oy =0z

max max

such that ¥ .jr.. = 0. Hence j; ., induces a homomorphism of Oy
into Oz, which defines a morphism h : Z — Y as desired. We note
that an amalgamation is unique locally, hence local amalgamations are
patched together globally to define a global amalgamation.

Finally we prove that Z is seminormal if Z) is normal for any A € A.
Suppose that there is a finite bijective morphism f : W — Z with W
reduced. Then we define Wy := f~(ix(Z))). Since fiw, : Wy —
ix(Zx) ~ Zy is finite bijective and Z) is normal, we see that fyy, is
an isomorphism, Wy ~ Z,. It follows that there is a finite morphism
g : Zx — W such that gz, = (f|WX)_1 oiy. Then g is surjective
because f is bijective, and g satisfies the condition (viii). Since Z is an
amalgamation of Z,, there is a surjective morphism h : Z — W such
that hoi = g. It is obvious that foh =idz. Hence W ~ Z. This proves
that Z is seminormal. Q.E.D.
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3.4. The coordinates of Py and g

Let k(1) be the fraction field of R as before, and R the graded
subalgebra of k(n)[X][J] defined in Section 2.6

R:= Rla(z)uw™;z € X] = R[&9;x € X],

where &, := sB@2)/24r@)/2y7 et @ = Proj(ﬁ), P the normalization
of CNQ and S, the action of Y on both é and P defined in Section 2.6.
We always ass