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Abstract. For any positive integers g, d, there is Alexeev’s complete
moduli AP g,d of seminormal degenerate abelian varieties, each coupled
with a semiabelian action and an ample divisor [A02], while there is
our second geometric compactification SQtoric

g,K of the moduli of abelian
varieties [N10] for any finite symplectic abelian group K. We prove that
if |K| = N2 ≥ 1, there is a (N −1)-dimensional effective family of closed

immersions of SQtoric
g,K into AP g,N . We also prove SQtoric

g,1 � AP g,1.

1. Introduction

Let K be a finite abelian group with symplectic form eK , and G(K) the
nonabelian Heisenberg group associated with K. The polarized abelian vari-
eties with classical level-K structure admit level-G(K) structure in the sense
of [N99]. For K sufficiently large, the fine moduli Ag,K of g-dimensional
abelian varieties with level-K structure is compactified into SQg,K over
Z[ζN , 1/N ], the ”fine” moduli of GIT-stable degenerate abelian schemes
(called PSQASes) with level-G(K) structure [N99].

Another compactification SQtoric
g,K of Ag,K is constructed in [N10] as the

”coarse” moduli of reduced degenerate abelian varieties (called TSQASes)
with level-G(K) structure. There is a bijective morphism sq : SQtoric

g,K →
SQg,K by [N10], which induces an isomorphism between their normaliza-
tions. In this sense, SQtoric

g,K is quite similar to SQg,K .
Alexeev [A02] constructs a complete moduli AP g,d of seminormal de-

generate abelian varieties, each coupled with semiabelian group action and
an ample divisor. It is the compactification of the coarse moduli APg,d

of pairs (A,D) with A a g-dimensional abelian variety, D an ample divi-
sor with h0(A,D) = d. We note that the dimension of AP g,d is equal to
g(g + 1)/2 + d− 1, while the dimension of SQtoric

g,K is equal to g(g + 1)/2.
The purpose of this article is to define morphisms from [N10] to [A02],

and consequently to indirectly define maps from [N99] to [A02]. We prove
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Theorem 1.1. Let K be a finite symplectic abelian group, and N =
√|K|.

Then there exists an (N − 1)-dimensional family of closed immersions of
SQtoric

g,K into AP g,N parametrized by a nonempty open subset of PN−1.

Corollary 1.2. SQtoric
g,1 � AP g,1.

The present article is organized as follows. Section 2 reviews the functors
SQtoric

g,K and APg,d. Section 3 proves that any TSQAS over a scheme has
a canonical semi-abelian action. Section 4 proves Theorem 4.14, a more
precise form of Theorem 1.1. Section 5 discusses the one dimensional case.

2. The functors SQtoric
g,K and APg,d

Definition 2.1. LetH := H(e) := ⊕g
i=1(Z/eiZ) (ei|ei+1) be a finite abelian

group of order |H| = N , K := KH = H ⊕ H∨, H∨ the Cartier dual of H
and ON := Z[ζN , 1N ], ζN a primitive N -th root of unity. We define central
extensions G(K) (resp. G(K)) of K by Gm (resp. by μN ) with product ·
and an alternating form eK on K ×K as follows:

G(K) := {(a, z, α);a ∈ μN , z ∈ H,α ∈ H∨},
G(K) := {(a, z, α);a ∈ μN , z ∈ H,α ∈ H∨},
(a, z, α) · (b,w, β) = (abβ(z), z + w,α+ β),

eK((z,α), (w,β)) = β(z)α(w)−1.

In what follows we denote (1, u) by ω(u) for u ∈ K. Therefore (a, z, α) =
a · ω(α) · ω(z). Let V (K) := ON [H∨] = ON [v(χ);χ ∈ H∨] be the group
algebra of H∨ over ON , on which G(K) acts by U(K);

U(K)(a, z, α)v(χ) := aχ(z)v(χ + α).(1)

It is an irreducible module under both G(K) and G(K) [N10, § 4]. We
denote G(K) (resp. G(K), V (K), U(K)) by GH (resp. GH , VH , UH) to
emphasize dependence on H. For any nonnegative integer m we define a GH-
module Vm by Vm = VH as a set, and Um(a, z, α)v(χ) = amN+1χ(z)v(χ+α).
Over ON , Vm is an irreducible GH-module of weight mN + 1, unique up to
isomorphism, and any GH-module of weight mN + 1 is a direct sum of Vm

because Um = UH on GH .

Definition 2.2. Let (Z,L) be a polarized T -scheme. The set of isomor-
phisms Φ := {(Tg, φg)}g∈GH

is called a GH-linearization of L if
1. Tg ∈ AutT (Z) and φg : L � T ∗

g (L) is a Z-isomorphism,
2. Tg = idZ and φg is multiplication by g if g ∈ μN ,
3. Tgh = TgTh and φgh = T ∗

hφg · φh (∀g, h ∈ GH).
Then we say that L is GH-linearized by Φ. If L is GH-linearized, then L
is GH′-linearized for any subgroup H ′ of H. We say that L is strictly GH-
linearized if there is no group H ′′ such that H ⊂ H ′′, H �= H ′′ and L
is GH′′-linearized. In what follows, we simply say that L is GH-linearized
instead of strictly GH -linearized if no confusion is possible.
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Definition 2.3. For a GH-linearization Φ of L, we define the maps τ := τΦ,
τab := τab

Φ and ρ := ρΦ : GH → End (π∗(L)) by

τ(g)(x, ζ) : = (Tg(x), φg(x)ζ) ∈ L, τab(g)(x) := Tg(x),

ρ(g)(θ) : = T ∗
g−1(φg(θ)), (x ∈ Z, ζ ∈ Lx, θ ∈ π∗(L), g ∈ GH).

We see that τ , τab and ρ are group scheme morphisms. We note τ(g) ∈
AutT (L/Z) is a scheme automorphism of L. Conversely if we are given a
group T -scheme morphism τ : GH → AutT (L/Z), then L is GH -linearized.
See Lemma 3.6 for AutT (L/Z).

Definition 2.4. Let k be an algebraically closed field over ON . A triple
(P0, φ, τ) or (P0,L0, φ, τ) is a k-TSQAS with rigid level-GH structure (or
abbr. a rigid-GH k-TSQAS) if

1. L0 is an ample line bundle, GH -linearized by Φ = {(Tg, φg)}g∈GH
,

2. τ := τΦ : GH → G(P0,L0) is an isomorphism, where (P0,L0) is the
closed fiber of a proper flat family (P,L) over a complete discrete
valuation ring with generic fiber an abelian variety [N99, pp. 669-681],
[N10, pp. 74,78,79]

3. φ : P0 → P(VH) is a rational map such that φ∗ : VH ⊗ON
k �

H0(P0,L0) is a GH -isomorphism via τ ,
4. ρ(φ, τ) = UH ⊗ON

k, where ρ(φ, τ)(g) := (φ∗)−1ρΦ(g)φ∗ (∀g ∈ GH).

It is clear from (2.4.2) that τab(GH) = K(P0,L0) � K.

Definition 2.5. Let T be any scheme over ON . The triple (P π→ T,L, φ, τ)
is a T -TSQAS with rigid level-GH structure [N10, 5.3 (ii)] (or abbr. a rigid-
GH T -TSQAS) if

1. π is flat with L π-ample and GH-linearized by Φ = {(Tg, φg)}g∈GH
,

2. τ := τΦ : (GH)T → AutT (L/P ) is a closed T -immersion,
3. φ : P → P(VH)T is a rational map such that φ∗ : VH ⊗ON

M � π∗(L)
is a (GH)T -isomorphism for some trivial (GH)T -module M ∈ Pic(T ),

4. ρ(φ, τ) := (φ∗)−1ρΦφ
∗ = UH ⊗ON

OT ,
5. any geometric fiber (Ps,Ls, φs, τs) is a rigid-GH k(s)-TSQAS.

Remark 2.6. For a T -TSQAS (P,L) with L GH -linearized, L is strictly
GH-linearized iff h0(Ps,Ls) =

√|K| for any geometric fiber (Ps,Ls).

Definition 2.7. We define the functor SQtoric
g,K from ON -schemes to sets by

SQtoric
g,K (T ) = the set of T -TSQASes (P,φ, τ) of relative dimension g

with rigid level- GH -structure modulo T -isomorphism

See [N10, 5.11, (i)-(iii)] for T -isomorphism between (P,φi, τi). The con-
dition (ii) in [ibid.] is replaced here by φ∗1 = f∗φ∗2. See also [N99, 9.17]

Theorem 2.8. SQtoric
g,K has a separated reduced-coarse moduli algebraic space

over ON , which we denote by SQtoric
g,K .
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Proof. See [N10, 11.4] for reduced-coarse moduli. We note that for any fixed
nonnegative integer m, any GH-module of weight mN + 1 is a direct sum of
a fixed GH-module Vm of the same weight. See Definition 2.1. Hence we can
apply [N10, Sections 5-11] to prove Theorem 2.8 without any restriction on
elementary divisors of K. The properness of the action of PGL×PGL [N10,
p. 123] is proved by reducing to the case where every elementary divisor of
K is at least 3. For this it suffices to prove the following

Claim 2.8.1. (cf. [N10, Lemma 6.7]) Let R be a complete discrete valuation
ring, k(η) the fraction field of R and S := Spec R. Let (Zi, φi, τi) be rigid-
GH S-TSQASes whose generic fibers are abelian varieties. If (Zi, φi, τi) are
k(η)-isomorphic, then they are S-isomorphic.

Claim 2.8.1 follows from the following Claim 2.8.2 :

Claim 2.8.2. With the same notation as above, let (P,L) be an S-TSQAS
with generic fiber (Pη,Lη) an abelian variety. Then (P,L) is the normaliza-
tion of a modified Mumford family for the generic fiber (Pη,Lη).

Proof of Claim 2.8.2. Let Pfor be the formal completion of P along P0.
Since P0 is reduced, by [SGA1, Corollaire 8.4], there is a category equiv-
alence between étale coverings of P0 and étale coverings of Pfor. Let n be
a positive integer prime to the characateristic of k(0) and |H|. Then it is
easy to see that there exists an étale H†/H � (Z/nZ)g-covering (P †

0 ,L†
0) of

(P0,L0) such that K(P †
0 ,L†

0) = H† ⊕ (H†)∨. Hence there exists a formal
scheme (P †

for,L†
for) which is an étale (Z/nZ)g-covering of (Pfor,Lfor). Then

there exists a projective S-scheme (P †,L†) algebrizing (P †
for,L†

for) which is an
étale (Z/nZ)g-covering of (P,L) with L† the pull back of L. It follows that
(P †

η ,L†
η) is a polarized abelian variety, (P †

0 ,L†
0) is a reduced k(0)-TSQAS

and P † is normal by [N10, 10.2]. Since n ≥ 3, by [N10, 10.4] (P †,L†) is the
normalization of a modified Mumford family for the generic fiber (P †

η ,L†
η).

Hence the quotient (P,L) of (P †,L†) by (Z/nZ)g is also the normalization
of a modified Mumford family for the generic fiber (Pη ,Lη).

This completes the proof of Theorem 2.8.

Definition 2.9. [A02] Let k be an algebraically closed field. A g-dimensional
semiabelic k-pair of degree d is a quadruple (G,P,L,Θ) such that

1. P is a connected seminormal complete k-variety, and any irreducible
component of P is g-dimensional,

2. G is a semi-abelian k-scheme acting on P ,
3. there are only finitely many G-orbits,
4. the stabilizer subgroup of every point of P is connected, reduced and

lies in the torus part of G,
5. L is an ample line bundle on P with h0(P,L) = d,
6. Θ is an effective Cartier divisor of P with L = OP (Θ) which does not

contain any G-orbits.
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Recall that a variety Z is said to be seminormal if any bijective morphism
f : W → Z with W reduced is an isomorphism.

Definition 2.10. Let T be a scheme. A g-dimensional semiabelic T -pair of
degree d is a quadruple (G,P π→ T,L,Θ) such that

1. G is a semi-abelian group T -scheme of relative dimension g,
2. P is a proper flat T -scheme, on which G acts,
3. L is a π-ample line bundle on P with π∗(L) locally free of rank d,
4. any geometric fiber (Gs, Ps,Ls,Θs) (s ∈ T ) is a stable semiabelic pair.

Definition 2.11. We define the functor Mg,d from schemes to sets by

Mg,d(T ) = the set of g-dimensional semiabelic T -pairs of degree d/T -isom.

The functor APg,d is a subfunctor of Mg,d of semiabelic T -pairs with
any generic fibers Pη = Gη abelian varieties. APg,d has a coarse moduli
algebraic space AP g,d over Z by [A02, 5.10.1].

3. The semi-abelian group action on a T -TSQAS

The purpose of this section to construct a semiabelian group action on
any T -TSQAS. We freely use the notation in [N99, Sections 1-3].

3.1. Notation. Let R be a complete discrete valuation ring with q uni-
formizer, k(0) := R/qR and k(η) the fraction field. Let (P,L) the one-
parameter family of TSQASes over R such that the generic fiber Pη is an
abelian variety, and the closed fiber P0 of P is a TSQAS. Let A0 the abelian
variety part of P0, T0 the torus part of P0, X = Homk(T0,Gm), g′ = dimT0,
g′′ = dimA0, g = g′ + g′′ and Del = DelB the Delaunay decomposition of
P0 on the lattice X of rank g′ and B the integral positive bilinear form on
X × X associated with P0, which we abbreviate as (x, y) := B(x, y). By
choosing qr(x)wx for wx by taking a finite base change of Spec R in [N99,
p. 671] we may assume that B is even, and r(x) = 0 for any x ∈ X. This
implies that P0 is reduced. Let T t

0 := T t ⊗ k(0) be the dual torus of T0, and
Y = Homk(T t

0 ,Gm) [ibid., p. 666].

Lemma 3.2. Let τ ∈ Del(0) and C(0, τ) the closed cone over R0 generated
by τ . Let XC(τ) be the sublattice of X generated by C(0, τ) ∩ X. Then
X/XC(τ) is torsion-free. In particular, XC(σ) = X if σ ∈ Del(g

′)(0).

Proof. It suffices to prove XC(τ)R ∩ X = XC(τ). We suffice to prove
XC(τ)R ∩ X ⊂ XC(τ) because the converse inclusion is clear. Let f ∈
XC(τ)R∩X. Then there exists x ∈ C(0, τ)∩X such that x+f ∈ C(0, τ)∩X.
Hence f = (x+f)−x with x+f , x ∈ C(0, τ)∩X. Hence f ∈ XC(τ), hence
XC(τ)R ∩X = XC(τ).

Lemma 3.3. Let τ ∈ Del(g
′−1)(c), σi ∈ Del(g

′)(c) (i = 1, 2) with τ = σ1∩σ2

and Z(σi) = O(σi) the irreducible component of P0 associated with σi. Then
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1. O(τ) is a Cartier divisor of Z(σi) defined by a single equation ζxi,c = 0
for some generator xi ∈ C(c,−c+ σi) of X/XC(τ),

2. P0 is, along O(τ), defined by the single equation ζx1,cζx2,c = 0.

Proof. By [N99, 4.9], OP0 is isomorphic to

OP0,O(τ) := OA0 [ζx,c, ζ
±
y,c] x ∈ C(0,−c + σ1 ∪ σ2) ∩ X, y ∈ XC(τ) .

Since X/XC(τ) is torsion free in view of Lemma 3.2, X/XC(τ) is infinite
cyclic. Since the subset C(0, σi) +XC(τ) is a closed half space of XR, we
can choose an element xi ∈ C(0, σi) ∩ X such that X/XC(τ) = Zxi � Z.
By choosing in addition a Z-basis yj (2 ≤ j ≤ g) of XC(τ), we may assume

(i) xi generates X/XC(τ) = XC(σ1)/XC(τ) = XC(σ2)/XC(τ),
(ii) x1 (resp. x2) and yj (2 ≤ j ≤ g) is a Z-basis of X.
Let M =

∑
i=1,2(α(σi) − α(τ), xi). Then M ∈ Z from our assumption.

We prove M > 0. It follows from (i) that x1 + x2 ∈ XC(τ)R ∩ X, hence
x1 + x2 ∈ XC(τ) by Lemma 3.2. Since xi ∈ C(0,−c + σi), there exists
ri,λ > 0 and zi,λ ∈ (−c+ σi) ∩X such that xi =

∑
λ ri,λzi,λ. For each λ,

(α(σi), ziλ) ≥ (ziλ, ziλ)/2 ≥ (α(σi), ziλ)

by [N99, 1.3]. Hence (α(σi), xi) ≥ (α(τ), xi) where equality holds iff any
ziλ ∈ τ . Since xi is a generator of X/XC(τ), there is at least one ziλ such
that ziλ �∈ τ . Hence M > 0 and ζx1,cζx2,c = qMζx1+x2,c = 0 in OP0,O(τ).

For any wi ∈ C(0,−c+σi)∩X with wi �∈ C(0,−c+τ), there are a positive
integer ni and yi ∈ XC(τ) such that wi = nixi +yi, hence ζwi,c = ζni

xi,cζyi,c ∈
OP0,O(τ). Thus ζxi,c = 0 (resp. ζx1,cζx2,c = 0) is a defning equation of O(τ)
in Z(σi) (resp. a defining equation of P0).

Definition 3.4. Let Sing (P0) be the singular locus of P0. Let Ω1
P0

be the
sheaf of germs of regular one-forms over P0, and ΘP0 := HomOP0

(Ω1
P0
, OP0) =

Der(OP0). Then we define Ω̃P0 to be the sheaf of germs of rational one forms
φ over P0 such that

1. φ is regular outside Sing (P0), and it has log poles along the codimension-
one singularities (We say φ has log poles on P0 for simplicity),

2. the sum of the residues of φ along any of Weil divisors of Sing (P0) is
equal to zero. (These conditions makes sense by Lemma 3.3. )

By [Rim72, p. 112] the tangent space of automorphism group Aut(P0) is
given by H0(P0,ΘP0). We define Θ†

P0
and Ω†

P0
by

Θ†
P0

:= HomOP0
(Ω̃P0, OP0), Ω†

P0
:= HomOP0

(Θ†
P0
, OP0).

Lemma 3.5. Let P0 be a k(0)-TSQAS of dimension g, A0 the abelian part
of P0, T0 the torus part of P0 and X = Hom(T0,Gm,k(0)) the lattice of rank
g′. Then

1. Θ†
P0

� O⊕g
P0

, Ω†
P0

� O⊕g
P0

, in particular if P0 is totally degenerate, then
Θ†

P0
� X ⊗Z OP0 , Ω†

P0
� X∨ ⊗Z OP0 ,
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2. H0(P0,Θ
†
P0

) � H0(A0,ΘA0) ⊕ X ⊗Z k(0), which is the tangent space
of the action of O(σ) for any σ ∈ Del(g

′)(P0).

Proof. Let k = k(0). First we consider the case where P0 is totally de-
generate, g = g′. There is an exact sequence 0 → Ω1

P0
→ Ω̃P0 → A → 0

for some sheaf A with Supp (A) one-codimensional. The sheaf OP0 is tor-
sion free because P0 is reduced and Cohen-Macaulay by [AN99]. Hence
Hom(A, OP0) = 0. Hence Θ†

P0
is a subsheaf of ΘP0. Let θ ∈ H0(P0,Θ

†
P0

).
Then θ ∈ H0(P0,ΘP0), which is a global infinitesimal automorphism of P0.

Let Z(σ) be the closure of O(σ) in P0 with reduced structure. Since each
Z(σ) (σ ∈ Del(g)(P0)) contains the torus O(σ) � G⊕g

m,k = Spec k[ζ±1
eλ,σ], the

restriction of θ to O(σ) is of the form∑
λ

aeλ,σζeλ,σ
∂

∂ζeλ,σ

for some aeλ,σ ∈ Γ(O(σ), OP0), where eλ is a basis of X.
We shall prove that the restriction to O(τ) (aeλ,σ)|O(τ) of aeλ,σ is inde-

pendent of σ ∈ Del(g). To prove this, it suffices to prove (aeλ,σ1)|O(τ) =
(aeλ,σ2)|O(τ). For any element ω ∈ Ω̃P0, and any pair σ1, σ2 ∈ Del(g) with
τ = σ1 ∩ σ2 ∈ Del(g−1), we have ResZ(τ)(ω|Z(σ1)) + ResZ(τ)(ω|Z(σ2)) = 0.
Since θ ∈ Θ†

P0
, we have

θ|Z(σ1)(ω|Z(σ1)) = θ|Z(σ2)(ω|Z(σ2)).

By Lemma 3.3 (2), we may assume xj, eλ (2 ≤ λ ≤ g) is a basis of X =
XC(σj), while eλ (2 ≤ λ ≤ g) is a basis of XC(τ), where we may further
assume e1 = x1 = −x2. Hence dζeλ,σ/ζeλ,σ ∈ Ω̃P0 for 2 ≤ λ ≤ g. Hence
we have (aeλ,σ1)|O(τ) = (aeλ,σ2)|O(τ) for 2 ≤ λ ≤ g. By (3.4.2), we choose
ω := dζx1,σ1/ζx1,σ1 = −dζx2,σ2/ζx2,σ2 ∈ Ω̃P0. Then we introduce a coordinate
on Z(σ2) as ζe1,σ2 := ζ−1

x2,σ2
to infer

ω = dζe1,σ1/ζe1,σ1 = dζe1,σ2/ζe1,σ2 ,

whence (ae1,σ1)|O(τ) = (ae1,σ2)|O(τ), hence (aeλ,σ)|O(τ) is independent of σ.
Let Z be the union of all O(ρ) (∀ρ ∈ Del(k), ∀k ≤ g − 2). Then the

above proves Θ†
P0\Z � X ⊗ OP0\Z . This implies that Θ†

P0
� X ⊗ OP0 . In

fact, let j : P0 \ Z ⊂ P0 be the inlcusion, φ ∈ Θ†
P0\Z = Hom(Ω̃P0\Z , OP0\Z)

and ω ∈ Ω̃P0. Then φ(ω|P0\Z) ∈ OP0\Z � j∗(OP0\Z) = OP0 because P0 is
reduced, Cohen-Macaulay (depth g) and codimP0(Z) ≥ 2. Hence φ(ω|P0\Z)
extends regularly to P0, so that φ(Ω̃P0) ∈ OP0 , that is, φ ∈ Θ†

P0
. Since the

extension of φ to P0 is unique by j∗(OP0\Z) = OP0 , we see

Θ†
P0

� j∗(Θ
†
P0\Z) � j∗(X ⊗OP0\Z) = X ⊗OP0 .

This proves (1) in the totally degenerate case.
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Next we consider the general case g = g′ + g′′, g′′ > 0. See [N99, p. 678].
Let eλ be a basis of X, σ ∈ Del(g

′), and O(σ) is a T0(σ)-bundle over A0,
where T0(σ) = Spec k[ζ±1

eλ,σ] � Gg′
m. Let θ ∈ H0(P0,Θ

†
P0

). Then there exists
a closed subscheme Z of P0 of codimension two such that the restriction of
θ to O(σ) is of the form

θ′ +
∑

λ

aeλ,σζeλ,σ
∂

∂ζeλ,σ
,

where θ′ ∈ H0(ΘA0)⊗k H
0(P0 \Z,OP0), ζσ,eλ

∂
∂ζeλ,σ

is a global log one form

on P0, hence aeλ,σ ∈ H0(P0 \Z,OP0). Since P0 is reduced Cohen-Macaulay,
H0(P0 \ Z,OP0) = H0(P0, OP0) = k, hence we have (1) and (2).

Lemma 3.6. Let L be a line bundle on a T -scheme Z (viewed as a Z-
scheme). Then AutT (L/Z) is a group T -scheme over AutT (Z).

Proof. Let P be a P1-bundle P(OZ ⊕L) which compactifies L along infinity
by Z∞ := P(0 ⊕ L) � Z, π : L → Z the projection. Let 0 be the zero
section of L, ∞ = Z∞ the infinity section of P. We recall AutT (L/Z) is the
functor from T -schemes to sets

U �→ AutT (L/Z)(U)

: =
{

(g, φ); g ∈ AutT (Z)(U) and φ(0) = 0
φ : LU � g∗(LU ) fiberwise linear ZU -isom.

}

=

⎧⎨⎩(g, φ);
g ∈ AutT (Z)(U) and φ(0) = 0
φ ∈ AutT (L)(U) U -isom. s.t. πφ = gπ
φ : fiberwise linear over ZU

⎫⎬⎭
where the product (g, φ1) · (h, φ2) is defined by (gh, h∗φ1 ◦ φ2). See Defini-
tion 2.3. Since any automorphism of P1 which fixes 0 and ∞ is linear,

AutT (L/Z)(U) =
{

(g, ψ); g ∈ AutT (Z)(U), ψ(0) = 0, ψ(∞) = ∞
ψ ∈ AutT (P)(U) s.t. πψ = gπ

}
.

It follows that AutT (L/Z) is representable by the closed subgroup T -
scheme (denoted AutT (L/Z)) of AutT (Z) × AutT (P):

AutT (L/Z) = {(g,ψ);ψ(0) = 0, ψ(∞) = ∞, πψ = gπ}.
This proves Corollary.

Theorem 3.7. Let S be a scheme, (P π→ S,L) an S-TSQAS. Let Ω̃P/S

be the sheaf of germs over P of relative rational one forms with log poles
(Definition 3.4), the sum of whose residues along any of one-codimensional
singular loci of the fibers is equal to zero, Θ†

P/S the OP -dual of Ω̃P/S and

Ω†
P/S the OP -dual of Θ†

P/S. We define Aut†S(P ) to be the maximal closed

subgroup S-scheme of AutS(P ) which keep Ω†
P/S stable, and Aut†S(P )0 (resp.

Aut†0S (P )) the identity component (resp. the fiberwise identity component,
that is, the minimal open subgroup S-schme) of Aut†S(P ). Then
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1. Aut†S(P ) is flat over S, and the fiber (Aut†S(P ))s has the tangent space
H0(Ps,Θ

†
Ps

) for any geometric point s of S,
2. Aut†0S (P ) is a semi-abelian group scheme over S, flat over S, while

Aut†S(P )0 is a semi-abelian group scheme over S, flat over S, possibly
with reducible geometric fibers.

Proof. Let s := Spec k(s) be any geometric point of S. From its defi-
nition Aut†S(P ) is a closed subscheme of AutS(P ), while Aut†S(P )0 hence
Aut†0S (P ) is a closed subscheme of AutS(P ) of finite type. Since AutS(P )
commutes with base change (because AutS(P ) represents the relative Aut
functor), AutS(P )s = Autk(s)(Ps). Hence (Aut†S(P ))s = Aut†k(s)(Ps) be-

cause (Ω†
P/S)s � Ω†

Ps/k(s). It follows that (Aut†0S (P )) ⊗ k(s) = Aut†0k(s)(Ps).

The tangent space of (Aut†S(P ))s equalsH0(Ps,Θ
†
Ps

) by Lemma 3.5. π∗Θ
†
P/S

is a finite free OP -module of rank g by Lemma 3.5. Hence (π∗Θ
†
P/S)s �

H0(Θ†
Ps/k(s)), hence (π∗Ω

†
P/S)s � H0(Ω†

Ps/k(s)). Hence (Aut†S(P ))s is smooth

of dimension g, hence Aut†S(P ) is Sred-flat, hence S-flat because flatness is
an open condition. This proves (1).

Since Aut†S(P ) is S-flat by (1), so are Aut†0S (P ) and Aut†S(P )0. In view
of Lemma 3.5, (Aut†0S (P ))s = Aut†0k(s)(Ps) coincides with the action of a

semi-abelian scheme O(σ) on Ps [N99, 4.12, p .680]. Hence Aut†0S (P ) is a
semi-abelian scheme over S, which proves (2).

4. The closed immersions of SQtoric
g,K into AP g,N

In this section we prove that there is a natural family of closed immersions
of SQtoric

g,K into AP g,N parametrized by an open subset of P(VH).

Definition 4.1. Let H = H(e) := ⊕g
i=1(Z/eiZ) (ei|ei+1) and let K =

H ⊕ H∨ be an abelian group with the symplectic form eK in Section 2.
Aut(K, eK) is the group of automorphisms of K keeping the symplectic form
eK invariant. We call g ∈ Aut(K, eK) a symplectic automorphism of K. Let
Aut(K, eK) := Aut(K, eK)/± idK .

Definition 4.2. We define Autc(GH) to be the group consisting of all au-
tomorphisms of GH which fix the center of GH elementwise.

Lemma 4.3. Let π : Autc(GH) → Aut(K, eK) be the natural homomor-
phism. Then the following are true :

1. there is an exact sequence over ON3

0 → ker(π) → Autc(GH) π→ Aut(K, eK) → 1,

2. ker(π) � K∨ = Hom(K,Gm). This isomorphism is given explicitly as
follows: for γ ∈ K∨, there exists t ∈ K such that γ(s) = eK(t, s) (∀s ∈
K). Let ξ(γ)(g) := ω(t)gω(t)−1. Then ξ(γ) ∈ ker(π) and ξ(γ)(g) =
[ω(t), g]g, ξ(γ)(ω(u)) = eK(t, u)g. Moreover ξ(γ)ξ(γ′) = ξ(γ + γ′).



10 IKU NAKAMURA

Proof. Since eK is the commutator form of GH with values in the center,
it is invariant by Autc(GH). Hence any ξ ∈ Autc(GH) induces a symplectic
automorphism π(ξ) of K, which defines the natural homomorphism π :
Autc(GH) → Aut(K, eK). It is easy to see ker(π) � K∨ � K.

We shall prove that π is surjective. For η ∈ Aut(K, eK ), we construct
ξ ∈ Autc(GH) with π(ξ) = η over ON3 . Let s, t ∈ K, ω(s) := (1, s) ∈ 1⊕K ⊂
GH , and φ(s, t) := ω(s+ t)ω(s)−1ω(t)−1 and f(s, t) := φ(η(s), η(t))/φ(s, t).
Then φ ∈ C2(K,μN ), f ∈ C2(K,μN ) and eK(s, t) = φ(s, t)/φ(t, s) by [M12,
p. 206, (d)]. Then φ and f belong to H2(K,μN ). Since η ∈ Aut(K, eK), we
have eK(s, t) = eK(η(s), η(t)), hence f(s, t) = f(t, s).

Then we shall prove f = 0 in H2(K,μN3). Now we choose a symplectic
basis ei, fi of K such that eK(ei, fi) = ζδi

, eK(ei, fj) = 1 (i �= j), eK(ei, ej) =
eK(fi, fj) = 1 (∀i, j), where ei and fi are of order δi,

√|K| = N =
∏g

i=1 δi.
Then by the argument of [N99, 7.4, p.690], we can prove by the induction

on the number of generators of K that there exists χ ∈ C1(K,μN3) such
that f = δ(χ), that is, f(s, t) = χ(s+ t)χ(s)−1χ(t)−1. In fact, in the proof
of [ibid.] each time when the number of (symplectic) generators increases,
we need to multiply the denominator of the cochain χ by the order (say
δi) of the new generator, hence need to multiply the denominator of χ by
N2 = (

∏g
i=1 δi)

2 in total to define χ, hence χ ∈ C1(K,μN3).
By using χ we define ξ(aω(s)) = aχ(s)ω(η(s)) (a ∈ Gm, s ∈ K). It

follows from η ∈ Aut(K) that ξ ∈ Autc(GH ⊗ON3). The rest is easy.

4.4. The action of Autc(GH) on SQtoric
g,K . Let ξ ∈ Autc(GH). Since UH ◦ ξ

is a representation of GH of weight one over ON , it is equivalent to UH over
ON by [N10, p. 88]. It follows that there is A(ξ) ∈ GL(VH), unique up to a
constant multiple, such that

(UH ◦ ξ)A(ξ) = A(ξ)UH , equivalently,(2)
UH(ξ(a, z, α))w(β) = aβ(z)w(α + β),(3)

where w(β) := A(ξ)vH(β) =:
∑

γ aβ,γ(ξ)vH(γ) ∈ VH . It is clear that
A(ξξ′) = A(ξ)A(ξ′) in PGL(VH).

Let p(ξ) be the automorphism of P(VH) such that p(ξ)∗ = A(ξ). Let σ :=
(P0,L0, φ, τ) be any rigid-GH T -TSQAS, φ(ξ) := p(ξ) ◦ φ, and τ(ξ) := τ ◦ ξ.
Then σ(ξ) := (P0,L0, φ(ξ), τ(ξ)) is a rigid-GH T -TSQAS.

Lemma 4.5. Let k be an algebraically closed field over ON , ξ ∈ Autc(GH)
and σ := (P0,L0, φ, τ) ∈ SQtoric

g,K (k). Then the following are true :

1. for γ ∈ K∨, τ(h) : σ → σ(ξ(γ)) is an isomorphism for some h ∈ ω(K),
2. σ � σ(ξ(− idK)), (see the proof below for ξ(− idK))
3. Suppose σ ∈ SQtoric

g,K (k) is generic. Then σ � σ(ξ) if and only if
ξ = ξ(γ) or ξ = ξ(γ) · ξ(− idK) for some γ ∈ K∨.

Proof. First we shall prove (1). Let ω(s) = (1, s) for s ∈ K. For γ ∈ K∨,
then there exists a unique t ∈ K such that γ(s) = eK(t, s) = [ω(t), ω(s)].
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Let h = ω(t). We define ξ(γ) ∈ Autc(GH) by ξ(γ)(g) := hgh−1 = [ω(t), g]g
where [ω(t), g] ∈ Gm. Hence

UH(ξ(γ)(g))UH (h) = UH(h)UH(g),

hence we can identify A(ξ(γ)) = UH(h). In view of Definition 2.3, UH(h)
on VH induces the translation Th−1 of P0. It follows that φ(ξ(γ))∗ =
φ∗(p(ξ(γ)))∗ = φ∗UH(h) = T ∗

h−1φhφ
∗, hence φ = φ(ξ(γ)) · Th because both

φ and φ(ξ(γ)) are the maps from P0 to P(VH) so that we can ignore the
unit φh. It is clear that τ(ξ(γ)(g))τ(h) = τ(h)τ(g). It follows that the map
τ(h) : (P0,L0) → (P0,L0) induces a GH-isomorphism

σ = (P0,L0, φ, τ) � σ(ξ(γ)) = (P0,L0, φ(ξ(γ)), τ(ξ(γ)).

Next we shall prove (2). Any k-TSQAS (P0,L0) has an automorphism
invP0 which is induced from the algebra endomorphism of R̃ [N99, p. 670]
invR : a(x)wxϑ �→ a(x)w−xϑ, or in other words, induced from (− idZ) of
an abelian variety Z := Pη, the generic fibre of P in Definition 2.4 (by
choosing an even B, r = 0 in Subsec. 3.1 by some base change). Note that
− idK ∈ Aut(K, eK) lifts to an automorphism invGH

as invGH
(a, z, α) =

(a,−z,−α). We denote invGH
by ξ(− idK). The automorphism invP0 gives

an isomorphism (P0, φ, τ) � (P0, φ(ξ(− idK)), τ(ξ(− idK))). This proves (2).
Finally we shall prove (3). If σ � σ(ξ), then there exists an isomorphism

(f, δ) : (P0,L0) � (P0,L0) such that (f, δ) · τ(g) = τ(ξ(g)) · (f, δ) for any g.
It follows that f(Tg(x)) = Tξ(g)f(x) and δ(Tg(x))φg(x) = φξ(g)(f(x))δ(x).
Since σ is a general abelian variety over k, f ∈ Aut(P0) is a translation Th,
or the composite of a translation Th and invP0 for h = ω(t) and t ∈ K.
If f = Th, then (f, δ) = (Th, φh) = τ(h). This case is reduced to (1). If
f = Th · (invP0), then g := f · (invP0) is reduced to (1). This completes the
proof.

Corollary 4.6. The action of Autc(GH) on SQtoric
g,K reduces to Aut(K, eK).

Proof. The map s(ξ) : SQtoric
g,K → SQtoric

g,K sending σ to σ(ξ−1) is an auto-
morphism of SQtoric

g,K . This defines an action of Autc(GH) on SQtoric
g,K , that

is, s(ξξ′) = s(ξ)s(ξ′). By Lemma 4.5 (1), s(ξ(γ)) (γ ∈ K∨) acts on SQtoric
g,K

trivially. by Lemma 4.3, the action of Autc(GH) reduces to Aut(K, eK).

Definition 4.7. Let ξ ∈ Autc(GH), and G(ξ) be the subset of P(VH) con-
sisting of all eigenvectors of A(ξ) �= id. Let Gg,K be the union of all G(ξ)
for ξ ∈ Autc(GH). Gg,K is at most (N − 2)-dimensional. See Subsec. 5.4.

Lemma 4.8. Let k be an algebraically closed field over ON , and (P0,L0, φ, τ)
be a rigid-GH k-TSQAS, and (P0,L0, ψ, σ) be another rigid-GH k-TSQAS.
Then there exists ξ ∈ Autc(GH) such that

(P0,L0, ψ, σ) � (P0,L0, φ(ξ), τ(ξ)).

Proof. We choose and fix a rigid-GH TSQAS (P0, φ, τ) and take another
rigid-GH TSQAS (P0, ψ, σ) above (P0,L0). Let Φ := {(Tg, φg)}g∈GH

(resp.
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Ψ := {(Sg, ψg)}g∈GH
) be a GH-linearization of L0 such that τ = τΦ, σ = τΨ.

Let τab(g) = Tg and σab(g) = Sg. By Definition 2.4 and by [N10, 2.19]
τab(GH) = σab(GH) = K(P0,L0). Hence via the isomorphisms τab(GH) � K
and = σab(GH) � K the identity of K(P0,L0) induces an isomorphism
η ∈ Aut(K) such that η(Tg) = Sg for ∀g ∈ GH , which keeps eK invariant
because eK(Sg, Sh) = [g, h] = eK(Tg, Th) ∈ k. Hence η ∈ Aut(K, eK). By
Lemma 4.3 η is lifted to ξ(η) ∈ Autc(GH) with Sg = η(Tg) = Tξ(η)(g).

It follows γ(g) := ψg · φ−1
ξ(η)(g) ∈ AutP0(L0) = HomOP0

(L0,L0)× = k×.
Then γ is a character of GH because

γ(gh) = ψgh · φ−1
ξ(η)(g)ξ(η)(h) = (S∗

hψg · ψh)(T ∗
ξ(η)(h)φξ(η)(g) · φξ(η)(h))

−1

= (S∗
hψg · ψh)(S∗

hφξ(η)(g) · φξ(η)(h))
−1 = S∗

hγ(g)γ(h) = γ(g)γ(h).

Let ξ(g) := γ(g)ξ(η)(g) ∈ GH . Then ξ ∈ Autc(GH). Hence

φξ(g) = φξ(η)(g)γ(g) = T ∗
γ(g)φξ(η)(g)φγ(g) = φξ(η)(g)γ(g) = ψg,

τ(ξ(g)) = (Tξ(g), φξ(g)) = (Tξ(η)(g), ψg) = (Sg, ψg) = τΨ(g) = σ(g).

Hence σ = τξ. Let A := (φ∗)−1(ψ∗) ∈ GL(VH ⊗ k). Then

UH(g) = ρ(ψ, σ)(g) = (ψ∗)−1S∗
g−1ψgψ

∗ = (ψ∗)−1T ∗
ξ(g)−1φξ(g)ψ

∗

= A−1ρ(φ, τ)(ξ(g))A = A−1UH(ξ(g))A

by Definition 2.4 (3). We can identify A = A(ξ) so that ψ = p(ξ)φ, σ = τξ,
hence (P0, ψ, σ) = (P0, φ(ξ), τ(ξ)).

Lemma 4.9. Let k be a local ring with N = |H| invertible, R a local k-
algebra, I an ideal of R with I2 = 0 such that k = R/I. Let σ0 =
(P0,L0, φ0, τ0) be a rigid-GH k-TSQAS, and σ := (P,L, φ, τ) a rigid-GH

R-TSQAS such that σ ⊗R (R/I) � σ0, If (P,L) is the pull back of (P0,L0)
to R, then σ is the pull back of σ0 to R.

Proof. By the assumption, (P,L) � Spec R×k (P0,L0), and R is a k-algebra
with R = k⊕ I, and H0(P,L) � H0(P0,L0)⊗kR is an R-isomorphism with
GH-action. Hence there exists B ∈ I · End (VH ⊗R) such that

φ∗ = φ∗0 + φ∗0 · B, φ∗0 : VH ⊗ k � H0(P0,L0).

Moreover τ maps GH into AutR(L/P ) � Spec R ×k Autk(L0/P0). Hence
τab(GH) ⊂ Aut†(P ) = Spec R ×k Aut†(P0). Let τab = T 0 + T 1, T 0 =
τab ⊗ k and T 1 = {T 1

g } ∈ C1(GH , IH
0(Θ†

P0
)) where τab(g) := T 0

g + T 1
g ,

T 0
g ∈ Aut†(P0), T 1

g ∈ IH0(Θ†
P0

). Let εg = T 0
g−1T

1
g . Since τab is a group

homomorphism, we have εgh = Ad(T 0
h−1)εg + εh. Thus ε := {εg}g∈GH

∈
H1(GH , IH

0(Θ†
P0

)). Let W := H0(P0,Θ
†
P0

). Then W � k⊕g by Lemma 3.5
and Nakayama’s lemma. Since Th (h ∈ GH) acts on P0 as translation by
K(P0,L0) � K, T 0

h keeps any θ ∈ W invariant. Hence εgh = εg + εh, and
ε ∈ Hom(K, IW ) = Hom(K, I⊕g) = 0 because N is invertible in R, hence
ε = 0, τab = T 0.
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Let φg = φ0
g + φ1

g and εg := (φ0
g)

−1 · φ1
g. Then εg ∈ IH0(OP0). In fact, we

can write φg in down-to-earth terms as follows. Since (P,L) � (P0,L0)R,
we can choose, by [N10, p. 94], a GH-invariant affine open covering Uj of
P and a one-cycle Aij(x) of L0 such that L0 is trivial over Uj. Then we
obtain φν

i (g, x) = Aij(gx)
Aij(x) φ

ν
j (g, x) (ν = 0, 1), where (φν

g)|Ui
=: φν

i (g, x). Hence
φ0

i (g, x)
−1φ1

i (g, x) = φ0
j(g, x)

−1φ1
j (g, x). This implies εg ∈ IH0(OP0).

Since φg is a GH -linearization of L,

φ0
gh = (T 0

h )∗φ0
g · φ0

h, φ
1
gh = (T 0

h )∗φ0
g · φ1

h + (T 0
h )∗φ1

g · φ0
h,

whence εgh = (T 0
h )∗εg + εh = εg + εh because (T 0

h )∗εg = εg ∈ IH0(OP0). It
follows ε := {εg} ∈ Hom(GH , IH

0(OP0)) = Hom(K, IH0(OP0)) = 0 because
N is invertible in R and IH0(OP0) = I by H0(OP0) = k. Hence ε = 0,
φg = φ0

g (∀g ∈ GH), and τ = τ0. Hence we see

UH = ρ(φ, τ) = ρ(φ, τ0) = ρ(φ0, τ0) + [ρ(φ0, τ0), B] = UH + [UH , B],

whence [UH , B] = 0. Since UH is an irreducible representation of GH , B is
a scalar. Hence σ � (σ0)R.

Definition 4.10. Let (P0,L0) be a k-TSQAS with L0 GH-linearized. Then
a maximal isotropic subgroup H of K is said to be hereditary for (P0, φ0, τ0)
if τab

0 (H) ⊂ G0 := Aut†0k (P0). Therefore if P0 is an abelian variety, then any
maximal isotropic subgroup is hereditary. If (P0,L0) is totally degenerate,
then a maximal isotropic subgroup H (denoted Hhd) of K is hereditary iff
H ⊂ G0 := Aut†0k (P0) = Homk(X,Gm).

Definition 4.11. We freely use the notation of [N99, pp.670-671]. Let
(P0,L0) be a totally degenerate k-TSQAS with L0 GH -linearized, Hhd a
hereditary maximal isotropic subgroup of K for (P0,L0) with H∨

hd = X/Y .
Let φhd : P0 → P(VHhd

) be

φ∗hd(vHhd
(α)) = θ(α) :=

∑
y∈Y

a(x+ y)wx+y,

where x ≡ α ∈ H∨
hd = X/Y . We define

τhd(a, z, u)(a(x)wxϑ) := aα(z)a(x + u)wx+uϑ,

τhd(a, z, α) = τR
hd(a, z, u) mod Y,

ρhd(a, z, α)θ(β) = aβ(z)θ(α+ β),

where u ∈ X, α ≡ u ∈ H∨
hd, and (a, z, α) ∈ GH . It is clear that

ρ(φhd, τhd) = (φ∗hd)−1ρhdφ
∗
hd = UHhd

.

Lemma 4.12. Let (P0,L0) be a totally degenerate k-TSQAS with L0 strictly
GH-linearized and G0 = Aut†0k (P0). Let D = (f) and f =

∑
x∈X/Y axθ(x),

ax ∈ k. Then D contain no G0-orbits iff ax �= 0 for any x ∈ X/Y .
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Proof. Let (Q0,L0) be the unique PSQAS associated with (P0,L0) via sq
[N10, p.71]. By [NS06, Theorem 2] and [N99, 4.2] H0(P0,L0) = H0(Q0,L0)
and there is a bijective correspondence between G0-orbits O(σ) of P0 and
OQ(σ) of Q0. Any zero-dimensional G0-orbit of Q0 is OQ(c) ∈ W0(c) (c ∈
X), which is defined by ξx,c = 0 for all x �= 0, x ∈ Star (0) by [N99, § 3, § 5].
By [N99, 4.2], H0(P0,L0) = H0(Q0,L0) is spanned by

θ(x) :=
∑
y∈Y

a0(x+ y)ξx+y (x ∈ X/Y ).

Suppose that any of g elementary divisor of X/Y = H∨
hd is at least 3.

Then by [N99, 6.3], The restriction of θ(x)/ξc to W0(c) is equal to

θ(x)/ξc =

{
a0(x+ y)(ξx+y/ξc) if ∃ y ∈ Y with x+ y ∈ Star (c),
0 otherwise

where ξc/ξc = 1. Hence (θ(x)/ξc)|W0(c) is at most a single term, and θ(x)
is zero at OQ(c) if x �∈ c + Y . It follows that θ(c) is the unique element of
H0(Q0,L0) that does not vanish at O(c). Hence θ(c) is the unique element
of H0(P0,L0) that does not vanish at O(c).

Let D = (f) and f =
∑

x∈X/Y axθ(x), ax ∈ k. Thus we see that the
divisor D does not contain O(c) iff ax �= 0 for x ≡ c mod Y . Hence D
contains no O(c) (c ∈ X/Y ) iff ax �= 0 for any x ∈ X/Y . Meanwhile,
D contains no G0-orbits iff D contains no zero-dimensional G0-orbits iff D
contains no O(c) (c ∈ X/Y ). This proves the lemma in this case.

In the general case, let D = (f), and f =
∑

α∈X/Y aαθ(α) ∈ H0(P0,L0).
There exists an étale Y/3Y -covering π : P ′

0 → P0. Let L′
0 := π∗(L0). Then

π∗f =
∑

α′∈X/3Y bα′ϑ(α′) ∈ H0(P ′
0,L′

0), where ϑ(α′) =
∑

x∈α′ a(x)wx ∈
H0(P ′

0,L′
0), bα′ = aα for α′ ≡ α mod Y . Then D contains no OP0(c)

(c ∈ X/Y ) iff π∗D contains no OP ′
0
(c) (c ∈ X/3Y ) iff bα′ �= 0 for any

α′ ∈ X/3Y iff aα �= 0 for any α ∈ X/Y . This proves the lemma.

Lemma 4.13. Let H be a maximal isotropic subgroup of (K, eK), and v :=∑
β∈H∨ aβvH(β) ∈ VH . Then the following are equivalent :

1. (Aut†0k (P0), P0,L0,divφ∗(v)) is a semiabelic pair for any rigid-GH

k-TSQAS (P0,L0, φ, τ),
2.

∑
α∈H∨ aαaα,β(ξ) �= 0 for ∀β ∈ H∨, ∀ξ ∈ Autc(GH),

3.
∑

α∈H∨ aαaα,β(ξ(η)) �= 0 for ∀β ∈ H∨, and some ξ(η) with π(ξ(η)) = η
for ∀η ∈ Aut(K, eK).

Proof. First we assume that P0 is totally degenerate and then we may as-
sume H = Hhd. By Lemma 4.8, (P,φ, τ) � (P,φhd(ξ), τhd(ξ)) for some
ξ ∈ Autc(GH). Since H∨

hd = X/Y ,

φ∗(v) = φ∗hdA(ξ)(
∑

α∈X/Y

aαvHhd
(α)) =

∑
β∈X/Y

(
∑

α∈X/Y

aαaα,β(ξ))θ(β)

whence (1) and (2) are equivalent by Lemma 4.12.
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If P0 is partially degenerate with A0 (resp. T0) its abelian part (resp.
torus part), then we choose a hereditary maximal isotropic subgroup Hhd of
K for (P0,L0) such that X/Y is a direct summand of H∨

hd. See Subsec. 3.1.
Assume for simplicity Y ⊂ eX for some e ≥ 3. Let G0 = Aut†0k (P0) and
F = φ∗(v) ∈ H0(P0,L0). Then F is of the form F =

∑
α∈H∨

hd
aαθ(α),

θ(α) = φ∗(vH(α)) =
∑

x≡x̄ mod Y θxζx for some 0 �= θx ∈ H0(A0,Mx),
by [N99, 4.10], where aα ∈ k, α = (a, x̄), x̄ ∈ X/Y . Since eX ⊂ Y for
some e ≥ 3, by [N99, 6.3], for c ∈ X, (θ(α)/ζc)O(c) = θc �= 0 if c ∈ x̄,
and (θ(α)/ζc)O(c) = 0 otherwise. Since O(c) is an abelian variety A0, and
since θc is not identically zero, aα �= 0 iff div(F ) does not contains O(c).
Hence aα �= 0 for any α iff div(F ) contains no G0-orbits. By Lemma 4.8,
any (P,φ, τ) is isomorphic to (P,φhd(ξ), τhd(ξ)) for some ξ ∈ Autc(GH).
Hence by the same argument as in the totally degenerate case, (1) and (2)
are equivalent. By Lemma 4.5, (P0, φ(ξ · ξ0), τ(ξ · ξ0)) � (P0, φ(ξ), τ(ξ))
if ξ0 = ξ(γ) or ξ0 = ξ(− idK). Hence (Aut†0k (P0), P0,div φ(ξ · ξ0)∗(v)) is
semiabelic if (Aut†0k (P0), P0,div φ(ξ)∗(v)) is semiabelic. Hence (2) and (3)
are equivalent.

Theorem 4.14. Let K = H⊕H∨ be a finite symplectic group, H a maximal
isotropic subgroup of K, Fg,K a hypersurface of P((VH)∨)

Fg,K :
∏

β∈H∨,η∈Aut(K,eK)

(
∑

α∈H∨
aαaα,β(ξ(η))) = 0,(4)

and Dg,K = P((VH )∨) \ (Fg,K ∪ Gg,K). (See Definition 4.7 for Gg,K .) We
define the map sqap by

sqap : SQtoric
g,K ×Dg,K → AP g,N

(P,L, φ, τ) × [v] �→ (Aut†0(P ), P,L,div φ∗(v)).

Then the following are true :

1. sqap⊗ON3 is an étale Galois covering with Gal(sqap) � Autc(GH),
2. sqapv := sqap|SQtoric

g,K ×[v] is a closed immersion for any fixed [v] ∈
Dg,K(k), where k is any field over ON .

Proof. First we prove that sqap is well-defined. Since any k-TSQAS is semi-
normal by [N10, 3.3, 3.8] for any algebraically closed field k over ON , we
have sqap(σ × v) ∈ AP g,N (T ) by Lemma 4.13. Let T be any ON -scheme
and v ∈ Dg,K(T ). If σ := (P,L, φ, τ) � (P ′,L′, φ, τ ′) in SQtoric

g,K (T ), then
there exists an isomorphism (f, δ) : σ → σ′ such that φ′ · f = φ and
(f, δ)τ(g) = τ ′(g)(f, δ) (g ∈ GH). Hence φ∗v = f∗(φ′)∗v for any v ∈ VH ,
hence (f∗)−1 div(φ∗v) = div((φ′)∗v). Hence the map (Ad(f), f, δ, (f∗)−1) is
an isomorphism from sqap(σ, [v]) to sqap(σ′, [v]) where Ad(f)(g) = fgf−1

for g ∈ Aut†0(P ). Thus sqap is a well-defined ON -morphism.
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For ξ ∈ Autc(GH), σ := (P,L, φ, τ) ∈ SQtoric
g,K (T ) and [v] ∈ Dg,K , let

σ(ξ) := (P,L, φ(ξ), τ(ξ)). We define an action of ξ by

ξ · (σ, [v]) := (σ(ξ−1), [A(ξ)v]).

This is also well-defined. We see
(i) (ξξ′) · (σ, [v]) = ξ · (ξ′ · (σ, [v])) for ∀ξ, ξ′ ∈ Autc(GH),
(ii) sqap(ξ · (σ, [v])) = sqap(σ, [v]) for ∀ξ ∈ Autc(GH).
Next we prove

sqap−1(sqap(σ, [v])) = Autc(GH) · (σ, [v])(5)

for any v ∈ Dg,K(k) and any field k over ON3 . The inclusion LHS ⊃ RHS
is clear. Conversely by Lemma 4.8, LHS ⊂ RHS. By Lemma 4.9, φ and τ
are rigid for a fixed (P,L) over a local ring k, while Aut†0(P,L) is uniquely
determined by (P,L). Hence the tangent space of SQtoric

g,K ×Dg,K at (σ, [v])
is isomorphic to the tangent space of AP g,N at sqap(σ, [v]). Hence sqap
is étale. Le k be any field over ON3 and (σ, [v]) ∈ SQg,K(k) × Dg,K(k).
A(ξ)[v] are all distinct because [v] ∈ Gc

g,K , hence ξ · (σ, [v]) are all distinct
for ξ ∈ Autc(GH). This proves (1) by Equality (5).

Next we prove (2). Let k be any field over ON and we prove sqapv(k)
is injective. Suppose sqap(σ × [v]) = sqap(σ′ × [v]) for some σ = (P,φ, τ),
σ′ = (P,φ′, τ ′) ∈ SQtoric

g,K (k) and [v] ∈ Dg,K(k). By Lemma 4.8, there
exists ξ ∈ Autc(GH) such that (φ′, τ ′) � (φ(ξ), τ(ξ)) and p(ξ)∗ = A(ξ).
It follows that [φ∗p(ξ)∗(v)] = [φ∗v], hence [A(ξ)(v)] = [v] because φ∗ is
injective. Hence v is an eigenvector of A(ξ). Since v ∈ Dg,K ⊂ Gc

g,K , we
have A(ξ) = idVH

. It follows that sqapv(k) is injective.
In order to prove that sqapv is a closed immersion, it suffices to prove

sqapv(R) : SQtoric
g,K (R) × {v} → AP g,N (R)

is injective for R an Artin local k-ring, I the maximal ideal of R with I2 = 0,
R/I = k. Since the set of all R-deformations of a given σ ∈ SQtoric

g,K (k) (resp.
sqapv(σ) ∈ AP g,N (k)) with R/I = k admits a k-vector space structure, it
suffices to prove that if σ ∈ SQtoric

g,K (R) and if sqapv(σ) is trivial in AP g,N (R),
then σ is trivial. Let σ = (P,L, φ, τ) ∈ SQtoric

g,K (R). Suppose sqapv(σ) is
trivial in AP g,N (R). Then (P,L) = (P0,L0) × Spec R. By Lemma 4.9, σ
is trivial. This proves the injectivity of sqapv(R), hence sqapv is a closed
immersion.

Corollary 4.15. SQtoric
g,1 � AP g,1.

Proof. We note that SQtoric
g,1 is the reduced-coarse-moduli of (P,L, φ, τ) with

φ and τ trivial. By Lemma 4.13 (2), (Aut†0k (P0), P0,L0,div φ∗(v0)) is semi-
abelic if (P0,L0) is any k(0)-TSQAS with K = {1} and v0 the generator
of VH = V{1} � k(0). Hence sqap : SQtoric

g,1 → AP g,1 is a birational mor-
phism defined everywhere. Let T be any scheme and (P,L) ∈ SQtoric

g,1 (T )
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any T -TSQAS. Hence h0(Ps,Ls) = 1 for any geometric point s ∈ T . There-
fore sqap(P,L) = (Aut†0(P ), P,L,Θ) is a semiabelic T -pair where Θ is the
divisor defined by a unique generator of the invertible sheaf π∗(L). Since
sqap : Ag,1 → APg,1 is an isomorphism and SQtoric

g,1 is proper, sqap is surjec-
tive. Hence if (G,P,L,Θ) is a semi-abelic T -pair, then (P,L) is a T -TSQAS.
Hence the forgetful map (G,P,L,Θ) �→ (P,L) is the inverse of sqap. Since
AP g,1 is the closure of a reduced scheme APg,1, it is reduced. SQtoric

g,1 is also
reduced by the same reason. This proves SQtoric

g,1 � AP g,1.

5. The one-dimensional case

We use the notation in Subsec. 2.1 and 4.4. Let H = μ3 � Z/3Z, H∨ =
Z/3Z, K := K(H) = H ⊕H∨ and O := Z[ζ3, 1/3] . Let e0 ∈ H, f0 ∈ H∨
be a standard basis of KH with eK(e0, f0) = ζ3. Let C(μ) be a Hesse cubic

x3
0 + x3

1 + x3
2 − 3μx0x1x2 = 0.

Let φ : C(μ) → P(VH) be φ∗(vH(βf0)) = xβ and τ = UH . Then σ :=
(C(μ), φ, τ) is a rigid-GH TSQAS of dimension one and conversely. By abuse
of notation we use the same symbol φ ad τ for any C(μ).

Let ξ ∈ Autc(GH). Then σ(ξ) := (C(μ), φ(ξ), τ(ξ)) is another Hesse cu-
bic (C(μ′), φ, τ), and the action of H∨ on σ is transformed into the action
of ξ(H∨) on σ(ξ), which is just the action of H∨ on (C(μ′), φ, τ) by Sub-
sec. 4.4 Eq.(3).

5.1. The case η1(e0) = −f0 and η1(f0) = e0. Let ξ1 ∈ Autc(GH) be

ξ1(ω(e0)) := ω(−f0), ξ1(ω(f0)) := ω(e0).

Let A(ξ1) = (aβ,γ) and w(β) = vH(ξ1(βf0)). Then since ω(−f0) · w(β) =
ζβ
3w(β), ω(e0) · w(β) = w(β + 1) by Subsec. 4.4 Eq.(3), we see A(ξ1) =
a0,0(ζ

βγ
3 ). Let P = C(μ) and let (P,φ, τ) := (C(μ), φ, τ). Let yβ :=

φ(ξ1)∗(vH(βf0)) =
∑

γ aβ,γxγ . Then (P,φ(ξ1), τ(ξ1)) is a Hesse cubic

(μ− 1)(y3
0 + y3

1 + y3
2) − 3(μ+ 2)y0y1y2 = 0.

5.2. The case η2(e0) = e0 and η2(f0) = e0 + f0. Let ξ2 ∈ Autc(GH) be

ξ2(ω(e0)) = ω(e0), ξ2(ω(f0)) = ζ3ω(e0)ω(f0) = ζ2
3ω(e0 + f0).

Since ξ2(ω(e0)) · w(β) = ζβ
3w(β), ξ2(ω(f0)) · w(β) = w(β + 1), we see

A(ξ2) = a11 diag(ζ3, 1, 1). Let (P,φ, τ) := (C(μ), φ, τ) as before, and zβ :=
φ(ξ2)∗(vH(βf0)). Then (P,φ(ξ2), τ(ξ2)) is a Hesse cubic

(z3
0 + z3

1 + z3
2) − 3ζ3μz0z1z2 = 0.
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5.3. The group Aut(K, eK). Let SQ1,3 := SQ1,K � SQtoric
1,K . SQ1,3 is the

reduced-fine-moduli scheme over O of Hesse cubics (C(μ), φ, τ).
Let b0 = [0, 1,−1], b1 = [0, 1,−ζ3], b2 = [−1, 0, 1]. Hence −b2 = [1,−1, 0].

We define gi ∈ PGL(3,O3) by

g1 : = A(ξ1) : (x0, x1, x2) �→ (y0, y1, y2),
g2 : = A(ξ2) : (y0, y1, y2) �→ (z0, z1, z2),

where ⎛⎝y0

y1

y2

⎞⎠ =

⎛⎝1 1 1
1 ζ3 ζ2

3
1 ζ2

3 ζ3

⎞⎠ ⎛⎝x0

x1

x2

⎞⎠ ,

⎛⎝z0z1
z2

⎞⎠ =

⎛⎝ζ3 0 0
0 1 0
0 0 1

⎞⎠ ⎛⎝y0

y1

y2

⎞⎠ .

Each gi induces a transformation on the group of 3-torsions C(μ)[3] :⎧⎪⎨⎪⎩
g1(b0) = b0,

g1(b1) = −b2,
g1(b2) = b1

⎧⎪⎨⎪⎩
g2(b0) = b0,

g2(b1) = b1,

g2(b2) = b1 + b2.

We note that g2
1 = invC(μ) = A(ξ(− idK)) is 3 times the permutation of

x1 and x2. Aut(K, eK) is generated by g1 and g2 with g2
1 regaded as trivial,

whence Aut(K, eK) � PSL(2,F3) � A4. Let P1 = SQ1,1 :=the coarse
moduli of one-pointed smooth cubics and a one-pointed nodal cubic. Then
Aut(K, eK) is the Galois group of SQ1,3 over P1 = SQ1,1 under the map
(C(μ), φ, τ) �→ (C(μ), b0).

5.4. The subset G1,K . Let K = (Z/3Z)⊕2. Let vi = vH(if0). Let G1,K be
the union of all eigenvectors of nontrivial A(ξ) ∈ PGL(VH) for ξ ∈ Autc(GH)
and F1,K the hypersurface of P(V ∨

H ) of degree 12

F1,K : a0a1a2

∏
j,k∈Z/3Z

(a0 + ζj
3a1 + ζk

3a2) = 0.

The above g2 has eigenvectors a1v1 + a2v2 with ai arbitrary. This im-
plies that G1,K contains the hypersurface a0 = 0. Since G1,K is Autc(GH)-
invariant, G1,K contains F1,K = Autc(GH) · {a0 = 0}. The eigenvectors of
g1 are w0 := v1 − v2 and w± := (1±√

3)v0 + v1 + v2, where w0 ∈ F1,K . Let
H1,K = G1,K \ F1,K = Autc(GH){w±}. Hence

H1,K = {[(1 ±
√

3)vi + ζj
3vi+1 + ζk

3 vi+2]; i, j, k ∈ Z/3Z}.
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