THE COMPLETE MODULI SPACES OF DEGENERATE ABELIAN VARIETIES

IKU NAKAMURA

Abstract

For any positive integers g, d, there is Alexeev's complete moduli $\overline{A P}_{g, d}$ of seminormal degenerate abelian varieties, each coupled with a semiabelian action and an ample divisor [A02], while there is our second geometric compactification $S Q_{g, K}^{\text {toric }}$ of the moduli of abelian varieties [N10] for any finite symplectic abelian group K. We prove that if $|K|=N^{2} \geq 1$, there is a $(N-1)$-dimensional effective family of closed immersions of $S Q_{g, K}^{\text {toric }}$ into $\overline{A P}_{g, N}$. We also prove $S Q_{g, 1}^{\text {toric }} \simeq \overline{A P}_{g, 1}$.

1. Introduction

Let K be a finite abelian group with symplectic form e_{K}, and $\mathcal{G}(K)$ the nonabelian Heisenberg group associated with K. The polarized abelian varieties with classical level- K structure admit level- $\mathcal{G}(K)$ structure in the sense of [N99]. For K sufficiently large, the fine moduli $A_{g, K}$ of g-dimensional abelian varieties with level- K structure is compactified into $S Q_{g, K}$ over $\mathbf{Z}\left[\zeta_{N}, 1 / N\right]$, the "fine" moduli of GIT-stable degenerate abelian schemes (called PSQASes) with level- $\mathcal{G}(K)$ structure [N99].

Another compactification $S Q_{g, K}^{\text {toric }}$ of $A_{g, K}$ is constructed in [N10] as the "coarse" moduli of reduced degenerate abelian varieties (called TSQASes) with level- $\mathcal{G}(K)$ structure. There is a bijective morphism sq : $S Q_{g, K}^{\text {toric }} \rightarrow$ $S Q_{g, K}$ by [N10], which induces an isomorphism between their normalizations. In this sense, $S Q_{g, K}^{\text {toric }}$ is quite similar to $S Q_{g, K}$.

Alexeev [A02] constructs a complete moduli $\overline{A P}_{g, d}$ of seminormal degenerate abelian varieties, each coupled with semiabelian group action and an ample divisor. It is the compactification of the coarse moduli $A P_{g, d}$ of pairs (A, D) with A a g-dimensional abelian variety, D an ample divisor with $h^{0}(A, D)=d$. We note that the dimension of $\overline{A P}_{g, d}$ is equal to $g(g+1) / 2+d-1$, while the dimension of $S Q_{g, K}^{\text {toric }}$ is equal to $g(g+1) / 2$.

The purpose of this article is to define morphisms from [N10] to [A02], and consequently to indirectly define maps from [N99] to [A02]. We prove

[^0]Theorem 1.1. Let K be a finite symplectic abelian group, and $N=\sqrt{|K|}$. Then there exists an ($N-1$)-dimensional family of closed immersions of $S Q_{g, K}^{\text {toric }}$ into $\overline{A P}_{g, N}$ parametrized by a nonempty open subset of \mathbf{P}^{N-1}.
Corollary 1.2. $S Q_{g, 1}^{\text {toric }} \simeq \overline{A P}_{g, 1}$.
The present article is organized as follows. Section 2 reviews the functors $\mathcal{S} \mathcal{Q}_{g, K}^{\text {toric }}$ and $\overline{\mathcal{A P}}_{g, d}$. Section 3 proves that any TSQAS over a scheme has a canonical semi-abelian action. Section 4 proves Theorem 4.14, a more precise form of Theorem 1.1. Section 5 discusses the one dimensional case.
2. The functors $\mathcal{S}_{g, K}^{\text {toric }}$ and ${\overline{\mathcal{A}}{ }_{g, d}}^{\text {a }}$

Definition 2.1. Let $H:=H(e):=\oplus_{i=1}^{g}\left(\mathbf{Z} / e_{i} \mathbf{Z}\right)\left(e_{i} \mid e_{i+1}\right)$ be a finite abelian group of order $|H|=N, K:=K_{H}=H \oplus H^{\vee}, H^{\vee}$ the Cartier dual of H and $\mathcal{O}_{N}:=\mathbf{Z}\left[\zeta_{N}, 1 N\right], \zeta_{N}$ a primitive N-th root of unity. We define central extensions $\mathcal{G}(K)$ (resp. $G(K)$) of K by \mathbf{G}_{m} (resp. by μ_{N}) with product. and an alternating form e_{K} on $K \times K$ as follows:

$$
\begin{aligned}
& \mathcal{G}(K):=\left\{(a, z, \alpha) ; a \in \mu_{N}, z \in H, \alpha \in H^{\vee}\right\}, \\
& G(K):=\left\{(a, z, \alpha) ; a \in \mu_{N}, z \in H, \alpha \in H^{\vee}\right\}, \\
&(a, z, \alpha) \cdot(b, w, \beta)=(a b \beta(z), z+w, \alpha+\beta), \\
& e_{K}((z, \alpha),(w, \beta))=\beta(z) \alpha(w)^{-1} .
\end{aligned}
$$

In what follows we denote $(1, u)$ by $\omega(u)$ for $u \in K$. Therefore $(a, z, \alpha)=$ $a \cdot \omega(\alpha) \cdot \omega(z)$. Let $V(K):=\mathcal{O}_{N}\left[H^{\vee}\right]=\mathcal{O}_{N}\left[v(\chi) ; \chi \in H^{\vee}\right]$ be the group algebra of H^{\vee} over \mathcal{O}_{N}, on which $\mathcal{G}(K)$ acts by $U(K)$;

$$
\begin{equation*}
U(K)(a, z, \alpha) v(\chi):=a \chi(z) v(\chi+\alpha) \tag{1}
\end{equation*}
$$

It is an irreducible module under both $\mathcal{G}(K)$ and $G(K)$ [N10, § 4]. We denote $\mathcal{G}(K)$ (resp. $G(K), V(K), U(K)$) by \mathcal{G}_{H} (resp. G_{H}, V_{H}, U_{H}) to emphasize dependence on H. For any nonnegative integer m we define a $\mathcal{G}_{H^{-}}$ module V_{m} by $V_{m}=V_{H}$ as a set, and $U_{m}(a, z, \alpha) v(\chi)=a^{m N+1} \chi(z) v(\chi+\alpha)$. Over \mathcal{O}_{N}, V_{m} is an irreducible \mathcal{G}_{H}-module of weight $m N+1$, unique up to isomorphism, and any \mathcal{G}_{H}-module of weight $m N+1$ is a direct sum of V_{m} because $U_{m}=U_{H}$ on G_{H}.
Definition 2.2. Let (Z, \mathcal{L}) be a polarized T-scheme. The set of isomorphisms $\Phi:=\left\{\left(T_{g}, \phi_{g}\right)\right\}_{g \in \mathcal{G}_{H}}$ is called a \mathcal{G}_{H}-linearization of \mathcal{L} if

1. $T_{g} \in \operatorname{Aut}_{T}(Z)$ and $\phi_{g}: \mathcal{L} \simeq T_{g}^{*}(\mathcal{L})$ is a Z-isomorphism,
2. $T_{g}=\mathrm{id}_{Z}$ and ϕ_{g} is multiplication by g if $g \in \mu_{N}$,
3. $T_{g h}=T_{g} T_{h}$ and $\phi_{g h}=T_{h}^{*} \phi_{g} \cdot \phi_{h}\left(\forall g, h \in \mathcal{G}_{H}\right)$.

Then we say that \mathcal{L} is \mathcal{G}_{H}-linearized by Φ. If \mathcal{L} is \mathcal{G}_{H}-linearized, then \mathcal{L} is $\mathcal{G}_{H^{\prime}}$-linearized for any subgroup H^{\prime} of H. We say that \mathcal{L} is strictly $\mathcal{G}_{H^{-}}$ linearized if there is no group $H^{\prime \prime}$ such that $H \subset H^{\prime \prime}, H \neq H^{\prime \prime}$ and \mathcal{L} is $\mathcal{G}_{H^{\prime \prime}}$-linearized. In what follows, we simply say that \mathcal{L} is \mathcal{G}_{H}-linearized instead of strictly \mathcal{G}_{H}-linearized if no confusion is possible.

Definition 2.3. For a \mathcal{G}_{H}-linearization Φ of \mathcal{L}, we define the maps $\tau:=\tau_{\Phi}$, $\tau^{a b}:=\tau_{\Phi}^{a b}$ and $\rho:=\rho_{\Phi}: \mathcal{G}_{H} \rightarrow \operatorname{End}\left(\pi_{*}(\mathcal{L})\right)$ by

$$
\begin{aligned}
\tau(g)(x, \zeta) & :=\left(T_{g}(x), \phi_{g}(x) \zeta\right) \in \mathcal{L}, \tau^{a b}(g)(x):=T_{g}(x), \\
\rho(g)(\theta) & :=T_{g^{-1}}^{*}\left(\phi_{g}(\theta)\right), \quad\left(x \in Z, \zeta \in \mathcal{L}_{x}, \theta \in \pi_{*}(\mathcal{L}), g \in \mathcal{G}_{H}\right) .
\end{aligned}
$$

We see that $\tau, \tau^{a b}$ and ρ are group scheme morphisms. We note $\tau(g) \in$ $\operatorname{Aut}_{T}(\mathcal{L} / Z)$ is a scheme automorphism of \mathcal{L}. Conversely if we are given a group T-scheme morphism $\tau: \mathcal{G}_{H} \rightarrow \operatorname{Aut}_{T}(\mathcal{L} / Z)$, then \mathcal{L} is \mathcal{G}_{H}-linearized. See Lemma 3.6 for $\operatorname{Aut}_{T}(\mathcal{L} / Z)$.

Definition 2.4. Let k be an algebraically closed field over \mathcal{O}_{N}. A triple $\left(P_{0}, \phi, \tau\right)$ or $\left(P_{0}, \mathcal{L}_{0}, \phi, \tau\right)$ is a k-TSQAS with rigid level- \mathcal{G}_{H} structure (or abbr. a rigid- $\mathcal{G}_{H} k$-TSQAS) if

1. \mathcal{L}_{0} is an ample line bundle, \mathcal{G}_{H}-linearized by $\Phi=\left\{\left(T_{g}, \phi_{g}\right)\right\}_{g \in \mathcal{G}_{H}}$,
2. $\tau:=\tau_{\Phi}: \mathcal{G}_{H} \rightarrow \mathcal{G}\left(P_{0}, \mathcal{L}_{0}\right)$ is an isomorphism, where $\left(P_{0}, \mathcal{L}_{0}\right)$ is the closed fiber of a proper flat family (P, \mathcal{L}) over a complete discrete valuation ring with generic fiber an abelian variety [N99, pp. 669-681], [N10, pp. 74,78,79]
3. $\phi: P_{0} \rightarrow \mathbf{P}\left(V_{H}\right)$ is a rational map such that $\phi^{*}: V_{H} \otimes_{O_{N}} k \simeq$ $H^{0}\left(P_{0}, \mathcal{L}_{0}\right)$ is a \mathcal{G}_{H}-isomorphism via τ,
4. $\rho(\phi, \tau)=U_{H} \otimes_{O_{N}} k$, where $\rho(\phi, \tau)(g):=\left(\phi^{*}\right)^{-1} \rho_{\Phi}(g) \phi^{*}\left(\forall g \in \mathcal{G}_{H}\right)$.

It is clear from (2.4.2) that $\tau^{a b}\left(\mathcal{G}_{H}\right)=K\left(P_{0}, \mathcal{L}_{0}\right) \simeq K$.
Definition 2.5. Let T be any scheme over \mathcal{O}_{N}. The triple $(P \xrightarrow{\pi} T, \mathcal{L}, \phi, \tau)$ is a T-TSQAS with rigid level- \mathcal{G}_{H} structure [N10, 5.3 (ii)] (or abbr. a rigid$\mathcal{G}_{H} T$-TSQAS) if

1. π is flat with $\mathcal{L} \pi$-ample and \mathcal{G}_{H}-linearized by $\Phi=\left\{\left(T_{g}, \phi_{g}\right)\right\}_{g \in \mathcal{G}_{H}}$,
2. $\tau:=\tau_{\Phi}:\left(\mathcal{G}_{H}\right)_{T} \rightarrow \operatorname{Aut}_{T}(\mathcal{L} / P)$ is a closed T-immersion,
3. $\phi: P \rightarrow \mathbf{P}\left(V_{H}\right)_{T}$ is a rational map such that $\phi^{*}: V_{H} \otimes_{O_{N}} \mathcal{M} \simeq \pi_{*}(\mathcal{L})$ is a $\left(\mathcal{G}_{H}\right)_{T}$-isomorphism for some trivial $\left(\mathcal{G}_{H}\right)_{T}$-module $\mathcal{M} \in \operatorname{Pic}(T)$,
4. $\rho(\phi, \tau):=\left(\phi^{*}\right)^{-1} \rho_{\Phi} \phi^{*}=U_{H} \otimes_{O_{N}} O_{T}$,
5. any geometric fiber $\left(P_{s}, \mathcal{L}_{s}, \phi_{s}, \tau_{s}\right)$ is a rigid- $\mathcal{G}_{H} k(s)$-TSQAS.

Remark 2.6. For a T-TSQAS (P, \mathcal{L}) with $\mathcal{L} \mathcal{G}_{H}$-linearized, \mathcal{L} is strictly \mathcal{G}_{H}-linearized iff $h^{0}\left(P_{s}, \mathcal{L}_{s}\right)=\sqrt{|K|}$ for any geometric fiber $\left(P_{s}, \mathcal{L}_{s}\right)$.
Definition 2.7. We define the functor $\mathcal{S} \mathcal{Q}_{g, K}^{\text {toric }}$ from \mathcal{O}_{N}-schemes to sets by
$\mathcal{S Q}_{g, K}^{\text {toric }}(T)=$ the set of T-TSQASes (P, ϕ, τ) of relative dimension g with rigid level- \mathcal{G}_{H}-structure modulo T-isomorphism
See [N10, 5.11, (i)-(iii)] for T-isomorphism between $\left(P, \phi_{i}, \tau_{i}\right)$. The condition (ii) in [ibid.] is replaced here by $\phi_{1}^{*}=f^{*} \phi_{2}^{*}$. See also [N99, 9.17]

Theorem 2.8. $\mathcal{S Q}_{g, K}^{\text {toric }}$ has a separated reduced-coarse moduli algebraic space over \mathcal{O}_{N}, which we denote by $S Q_{g, K}^{\text {toric }}$.

Proof. See [N10, 11.4] for reduced-coarse moduli. We note that for any fixed nonnegative integer m, any \mathcal{G}_{H}-module of weight $m N+1$ is a direct sum of a fixed \mathcal{G}_{H}-module V_{m} of the same weight. See Definition 2.1. Hence we can apply [N10, Sections 5-11] to prove Theorem 2.8 without any restriction on elementary divisors of K. The properness of the action of PGL \times PGL [N10, p. 123] is proved by reducing to the case where every elementary divisor of K is at least 3 . For this it suffices to prove the following

Claim 2.8.1. (cf. [N10, Lemma 6.7]) Let R be a complete discrete valuation ring, $k(\eta)$ the fraction field of R and $S:=\operatorname{Spec} R$. Let $\left(Z_{i}, \phi_{i}, \tau_{i}\right)$ be rigid$\mathcal{G}_{H} S$-TSQASes whose generic fibers are abelian varieties. If $\left(Z_{i}, \phi_{i}, \tau_{i}\right)$ are $k(\eta)$-isomorphic, then they are S-isomorphic.

Claim 2.8.1 follows from the following Claim 2.8.2 :
Claim 2.8.2. With the same notation as above, let (P, \mathcal{L}) be an S-TSQAS with generic fiber $\left(P_{\eta}, \mathcal{L}_{\eta}\right)$ an abelian variety. Then (P, \mathcal{L}) is the normalization of a modified Mumford family for the generic fiber $\left(P_{\eta}, \mathcal{L}_{\eta}\right)$.
Proof of Claim 2.8.2. Let $P_{\text {for }}$ be the formal completion of P along P_{0}. Since P_{0} is reduced, by [SGA1, Corollaire 8.4], there is a category equivalence between étale coverings of P_{0} and étale coverings of $P_{\text {for }}$. Let n be a positive integer prime to the characateristic of $k(0)$ and $|H|$. Then it is easy to see that there exists an étale $H^{\dagger} / H \simeq(\mathbf{Z} / n \mathbf{Z})^{g}$-covering $\left(P_{0}^{\dagger}, \mathcal{L}_{0}^{\dagger}\right)$ of $\left(P_{0}, \mathcal{L}_{0}\right)$ such that $K\left(P_{0}^{\dagger}, \mathcal{L}_{0}^{\dagger}\right)=H^{\dagger} \oplus\left(H^{\dagger}\right)^{\vee}$. Hence there exists a formal scheme $\left(P_{\text {for }}^{\dagger}, \mathcal{L}_{\text {for }}^{\dagger}\right)$ which is an étale $(\mathbf{Z} / n \mathbf{Z})^{g}$-covering of $\left(P_{\text {for }}, \mathcal{L}_{\text {for }}\right)$. Then there exists a projective S-scheme $\left(P^{\dagger}, \mathcal{L}^{\dagger}\right)$ algebrizing $\left(P_{\text {for }}^{\dagger}, \mathcal{L}_{\text {for }}^{\dagger}\right)$ which is an étale $(\mathbf{Z} / n \mathbf{Z})^{g}$-covering of (P, \mathcal{L}) with \mathcal{L}^{\dagger} the pull back of \mathcal{L}. It follows that $\left(P_{\eta}^{\dagger}, \mathcal{L}_{\eta}^{\dagger}\right)$ is a polarized abelian variety, $\left(P_{0}^{\dagger}, \mathcal{L}_{0}^{\dagger}\right)$ is a reduced $k(0)$-TSQAS and P^{\dagger} is normal by $[\mathrm{N} 10,10.2]$. Since $n \geq 3$, by $[\mathrm{N} 10,10.4]\left(P^{\dagger}, \mathcal{L}^{\dagger}\right)$ is the normalization of a modified Mumford family for the generic fiber $\left(P_{\eta}^{\dagger}, \mathcal{L}_{\eta}^{\dagger}\right)$. Hence the quotient (P, \mathcal{L}) of $\left(P^{\dagger}, \mathcal{L}^{\dagger}\right)$ by $(\mathbf{Z} / n \mathbf{Z})^{g}$ is also the normalization of a modified Mumford family for the generic fiber $\left(P_{\eta}, \mathcal{L}_{\eta}\right)$.

This completes the proof of Theorem 2.8.
Definition 2.9. [A02] Let k be an algebraically closed field. A g-dimensional semiabelic k-pair of degree d is a quadruple $(G, P, \mathcal{L}, \Theta)$ such that

1. P is a connected seminormal complete k-variety, and any irreducible component of P is g-dimensional,
2. G is a semi-abelian k-scheme acting on P,
3. there are only finitely many G-orbits,
4. the stabilizer subgroup of every point of P is connected, reduced and lies in the torus part of G,
5. \mathcal{L} is an ample line bundle on P with $h^{0}(P, \mathcal{L})=d$,
6. Θ is an effective Cartier divisor of P with $\mathcal{L}=O_{P}(\Theta)$ which does not contain any G-orbits.

Recall that a variety Z is said to be seminormal if any bijective morphism $f: W \rightarrow Z$ with W reduced is an isomorphism.

Definition 2.10. Let T be a scheme. A g-dimensional semiabelic T-pair of degree d is a quadruple $(G, P \xrightarrow{\pi} T, \mathcal{L}, \Theta)$ such that

1. G is a semi-abelian group T-scheme of relative dimension g,
2. P is a proper flat T-scheme, on which G acts,
3. \mathcal{L} is a π-ample line bundle on P with $\pi_{*}(\mathcal{L})$ locally free of rank d,
4. any geometric fiber $\left(G_{s}, P_{s}, \mathcal{L}_{s}, \Theta_{s}\right)(s \in T)$ is a stable semiabelic pair.

Definition 2.11. We define the functor $\mathcal{M}_{g, d}$ from schemes to sets by
$\mathcal{M}_{g, d}(T)=$ the set of g-dimensional semiabelic T-pairs of degree d / T-isom.
The functor $\overline{\mathcal{A P}}_{g, d}$ is a subfunctor of $\mathcal{M}_{g, d}$ of semiabelic T-pairs with any generic fibers $P_{\eta}=G_{\eta}$ abelian varieties. $\overline{\mathcal{A P}}_{g, d}$ has a coarse moduli algebraic space $\overline{A P}_{g, d}$ over \mathbf{Z} by [A02, 5.10.1].

3. The semi-abelian group action on a T-TSQAS

The purpose of this section to construct a semiabelian group action on any T-TSQAS. We freely use the notation in [N99, Sections 1-3].
3.1. Notation. Let R be a complete discrete valuation ring with q uniformizer, $k(0):=R / q R$ and $k(\eta)$ the fraction field. Let (P, \mathcal{L}) the oneparameter family of TSQASes over R such that the generic fiber P_{η} is an abelian variety, and the closed fiber P_{0} of P is a TSQAS. Let A_{0} the abelian variety part of P_{0}, T_{0} the torus part of $P_{0}, X=\operatorname{Hom}_{k}\left(T_{0}, \mathbf{G}_{m}\right), g^{\prime}=\operatorname{dim} T_{0}$, $g^{\prime \prime}=\operatorname{dim} A_{0}, g=g^{\prime}+g^{\prime \prime}$ and $\operatorname{Del}=\operatorname{Del}_{B}$ the Delaunay decomposition of P_{0} on the lattice X of rank g^{\prime} and B the integral positive bilinear form on $X \times X$ associated with P_{0}, which we abbreviate as $(x, y):=B(x, y)$. By choosing $q^{r(x)} w^{x}$ for w^{x} by taking a finite base change of Spec R in [N99, p. 671] we may assume that B is even, and $r(x)=0$ for any $x \in X$. This implies that P_{0} is reduced. Let $T_{0}^{t}:=T^{t} \otimes k(0)$ be the dual torus of T_{0}, and $Y=\operatorname{Hom}_{k}\left(T_{0}^{t}, \mathbf{G}_{m}\right)$ [ibid., p. 666].
Lemma 3.2. Let $\tau \in \operatorname{Del}(0)$ and $C(0, \tau)$ the closed cone over \mathbf{R}_{0} generated by τ. Let $X^{C}(\tau)$ be the sublattice of X generated by $C(0, \tau) \cap X$. Then $X / X^{C}(\tau)$ is torsion-free. In particular, $X^{C}(\sigma)=X$ if $\sigma \in \operatorname{Del}^{\left(g^{\prime}\right)}(0)$.

Proof. It suffices to prove $X^{C}(\tau)_{\mathbf{R}} \cap X=X^{C}(\tau)$. We suffice to prove $X^{C}(\tau)_{\mathbf{R}} \cap X \subset X^{C}(\tau)$ because the converse inclusion is clear. Let $f \in$ $X^{C}(\tau)_{\mathbf{R}} \cap X$. Then there exists $x \in C(0, \tau) \cap X$ such that $x+f \in C(0, \tau) \cap X$. Hence $f=(x+f)-x$ with $x+f, x \in C(0, \tau) \cap X$. Hence $f \in X^{C}(\tau)$, hence $X^{C}(\tau)_{\mathbf{R}} \cap X=X^{C}(\tau)$.
Lemma 3.3. Let $\tau \in \operatorname{Del}^{\left(g^{\prime}-1\right)}(c), \sigma_{i} \in \operatorname{Del}^{\left(g^{\prime}\right)}(c)(i=1,2)$ with $\tau=\sigma_{1} \cap \sigma_{2}$ and $Z\left(\sigma_{i}\right)=\overline{O\left(\sigma_{i}\right)}$ the irreducible component of P_{0} associated with σ_{i}. Then

1. $O(\tau)$ is a Cartier divisor of $Z\left(\sigma_{i}\right)$ defined by a single equation $\zeta_{x_{i}, c}=0$ for some generator $x_{i} \in C\left(c,-c+\sigma_{i}\right)$ of $X / X^{C}(\tau)$,
2. P_{0} is, along $O(\tau)$, defined by the single equation $\zeta_{x_{1}, c} \zeta_{x_{2}, c}=0$.

Proof. By [N99, 4.9], $O_{P_{0}}$ is isomorphic to

$$
O_{P_{0}, O(\tau)}:=O_{A_{0}}\left[\zeta_{x, c}, \zeta_{y, c}^{ \pm}\right]_{x \in C\left(0,-c+\sigma_{1} \cup \sigma_{2}\right) \cap X, y \in X^{C}(\tau)} .
$$

Since $X / X^{C}(\tau)$ is torsion free in view of Lemma 3.2, $X / X^{C}(\tau)$ is infinite cyclic. Since the subset $C\left(0, \sigma_{i}\right)+X^{C}(\tau)$ is a closed half space of $X_{\mathbf{R}}$, we can choose an element $x_{i} \in C\left(0, \sigma_{i}\right) \cap X$ such that $X / X^{C}(\tau)=\mathbf{Z} x_{i} \simeq \mathbf{Z}$. By choosing in addition a \mathbf{Z}-basis $y_{j}(2 \leq j \leq g)$ of $X^{C}(\tau)$, we may assume
(i) x_{i} generates $X / X^{C}(\tau)=X^{C}\left(\sigma_{1}\right) / X^{C}(\tau)=X^{C}\left(\sigma_{2}\right) / X^{C}(\tau)$,
(ii) x_{1} (resp. x_{2}) and $y_{j}(2 \leq j \leq g)$ is a \mathbf{Z}-basis of X.

Let $M=\sum_{i=1,2}\left(\alpha\left(\sigma_{i}\right)-\alpha(\tau), x_{i}\right)$. Then $M \in \mathbf{Z}$ from our assumption. We prove $M>0$. It follows from (i) that $x_{1}+x_{2} \in X^{C}(\tau)_{\mathbf{R}} \cap X$, hence $x_{1}+x_{2} \in X^{C}(\tau)$ by Lemma 3.2. Since $x_{i} \in C\left(0,-c+\sigma_{i}\right)$, there exists $r_{i, \lambda}>0$ and $z_{i, \lambda} \in\left(-c+\sigma_{i}\right) \cap X$ such that $x_{i}=\sum_{\lambda} r_{i, \lambda} z_{i, \lambda}$. For each λ,

$$
\left(\alpha\left(\sigma_{i}\right), z_{i \lambda}\right) \geq\left(z_{i \lambda}, z_{i \lambda}\right) / 2 \geq\left(\alpha\left(\sigma_{i}\right), z_{i \lambda}\right)
$$

by [N99, 1.3]. Hence $\left(\alpha\left(\sigma_{i}\right), x_{i}\right) \geq\left(\alpha(\tau), x_{i}\right)$ where equality holds iff any $z_{i \lambda} \in \tau$. Since x_{i} is a generator of $X / X^{C}(\tau)$, there is at least one $z_{i \lambda}$ such that $z_{i \lambda} \notin \tau$. Hence $M>0$ and $\zeta_{x_{1}, c} \zeta_{x_{2}, c}=q^{M} \zeta_{x_{1}+x_{2}, c}=0$ in $O_{P_{0}, O(\tau)}$.

For any $w_{i} \in C\left(0,-c+\sigma_{i}\right) \cap X$ with $w_{i} \notin C(0,-c+\tau)$, there are a positive integer n_{i} and $y_{i} \in X^{C}(\tau)$ such that $w_{i}=n_{i} x_{i}+y_{i}$, hence $\zeta_{w_{i}, c}=\zeta_{x_{i}, c}^{n_{i}} \zeta_{y_{i}, c} \in$ $O_{P_{0}, O(\tau)}$. Thus $\zeta_{x_{i}, c}=0$ (resp. $\zeta_{x_{1}, c} \zeta_{x_{2}, c}=0$) is a defning equation of $O(\tau)$ in $Z\left(\sigma_{i}\right)$ (resp. a defining equation of P_{0}).
Definition 3.4. Let Sing $\left(P_{0}\right)$ be the singular locus of P_{0}. Let $\Omega_{P_{0}}^{1}$ be the sheaf of germs of regular one-forms over P_{0}, and $\Theta_{P_{0}}:=\mathcal{H o m}_{O_{P_{0}}}\left(\Omega_{P_{0}}^{1}, O_{P_{0}}\right)=$ $\operatorname{Der}\left(O_{P_{0}}\right)$. Then we define $\widetilde{\Omega}_{P_{0}}$ to be the sheaf of germs of rational one forms ϕ over P_{0} such that

1. ϕ is regular outside $\operatorname{Sing}\left(P_{0}\right)$, and it has log poles along the codimensionone singularities (We say ϕ has \log poles on P_{0} for simplicity),
2. the sum of the residues of ϕ along any of Weil divisors of $\operatorname{Sing}\left(P_{0}\right)$ is equal to zero. (These conditions makes sense by Lemma 3.3.)
By $\left[\operatorname{Rim} 72\right.$, p. 112] the tangent space of automorphism $\operatorname{group} \operatorname{Aut}\left(P_{0}\right)$ is given by $H^{0}\left(P_{0}, \Theta_{P_{0}}\right)$. We define $\Theta_{P_{0}}^{\dagger}$ and $\Omega_{P_{0}}^{\dagger}$ by

$$
\Theta_{P_{0}}^{\dagger}:=\mathcal{H o m}_{O_{P_{0}}}\left(\widetilde{\Omega}_{P_{0}}, O_{P_{0}}\right), \quad \Omega_{P_{0}}^{\dagger}:=\mathcal{H o m}_{O_{P_{0}}}\left(\Theta_{P_{0}}^{\dagger}, O_{P_{0}}\right)
$$

Lemma 3.5. Let P_{0} be a $k(0)-T S Q A S$ of dimension g, A_{0} the abelian part of P_{0}, T_{0} the torus part of P_{0} and $X=\operatorname{Hom}\left(T_{0}, \mathbf{G}_{m, k(0)}\right)$ the lattice of rank g^{\prime}. Then

1. $\Theta_{P_{0}}^{\dagger} \simeq O_{P_{0}}^{\oplus g}, \Omega_{P_{0}}^{\dagger} \simeq O_{P_{0}}^{\oplus g}$, in particular if P_{0} is totally degenerate, then $\Theta_{P_{0}}^{\dagger} \simeq X \otimes_{\mathbf{z}} O_{P_{0}}, \Omega_{P_{0}}^{\dagger} \simeq X^{\vee} \otimes_{\mathbf{z}} O_{P_{0}}$,
2. $H^{0}\left(P_{0}, \Theta_{P_{0}}^{\dagger}\right) \simeq H^{0}\left(A_{0}, \Theta_{A_{0}}\right) \oplus X \otimes \mathbf{z} k(0)$, which is the tangent space of the action of $O(\sigma)$ for any $\sigma \in \operatorname{Del}^{\left(g^{\prime}\right)}\left(P_{0}\right)$.

Proof. Let $k=k(0)$. First we consider the case where P_{0} is totally degenerate, $g=g^{\prime}$. There is an exact sequence $0 \rightarrow \Omega_{P_{0}}^{1} \rightarrow \widetilde{\Omega}_{P_{0}} \rightarrow \mathcal{A} \rightarrow 0$ for some sheaf \mathcal{A} with $\operatorname{Supp}(\mathcal{A})$ one-codimensional. The sheaf $O_{P_{0}}$ is torsion free because P_{0} is reduced and Cohen-Macaulay by [AN99]. Hence $\operatorname{Hom}\left(\mathcal{A}, O_{P_{0}}\right)=0$. Hence $\Theta_{P_{0}}^{\dagger}$ is a subsheaf of $\Theta_{P_{0}}$. Let $\theta \in H^{0}\left(P_{0}, \Theta_{P_{0}}^{\dagger}\right)$. Then $\theta \in H^{0}\left(P_{0}, \Theta_{P_{0}}\right)$, which is a global infinitesimal automorphism of P_{0}.

Let $Z(\sigma)$ be the closure of $O(\sigma)$ in P_{0} with reduced structure. Since each $Z(\sigma)\left(\sigma \in \operatorname{Del}^{(g)}\left(P_{0}\right)\right)$ contains the torus $O(\sigma) \simeq \mathbf{G}_{m, k}^{\oplus g}=\operatorname{Spec} k\left[\zeta_{e_{\lambda}, \sigma}^{ \pm 1}\right]$, the restriction of θ to $O(\sigma)$ is of the form

$$
\sum_{\lambda} a_{e_{\lambda}, \sigma} \zeta_{e_{\lambda}, \sigma} \frac{\partial}{\partial \zeta_{e_{\lambda}, \sigma}}
$$

for some $a_{e_{\lambda}, \sigma} \in \Gamma\left(O(\sigma), O_{P_{0}}\right)$, where e_{λ} is a basis of X.
We shall prove that the restriction to $O(\tau)\left(a_{e_{\lambda}, \sigma}\right)_{\mid O(\tau)}$ of $a_{e_{\lambda}, \sigma}$ is independent of $\sigma \in \mathrm{Del}^{(g)}$. To prove this, it suffices to prove $\left(a_{e_{\lambda}, \sigma_{1}}\right)_{\mid O(\tau)}=$ $\left(a_{e_{\lambda}, \sigma_{2}}\right)_{\mid O(\tau)}$. For any element $\omega \in \widetilde{\Omega}_{P_{0}}$, and any pair $\sigma_{1}, \sigma_{2} \in \operatorname{Del}^{(g)}$ with $\tau=\sigma_{1} \cap \sigma_{2} \in \operatorname{Del}^{(g-1)}$, we have $\operatorname{Res}_{Z(\tau)}\left(\omega_{\mid Z\left(\sigma_{1}\right)}\right)+\operatorname{Res}_{Z(\tau)}\left(\omega_{\mid Z\left(\sigma_{2}\right)}\right)=0$. Since $\theta \in \Theta_{P_{0}}^{\dagger}$, we have

$$
\theta_{\mid Z\left(\sigma_{1}\right)}\left(\omega_{\mid Z\left(\sigma_{1}\right)}\right)=\theta_{\mid Z\left(\sigma_{2}\right)}\left(\omega_{\mid Z\left(\sigma_{2}\right)}\right) .
$$

By Lemma 3.3 (2), we may assume $x_{j}, e_{\lambda}(2 \leq \lambda \leq g)$ is a basis of $X=$ $X^{C}\left(\sigma_{j}\right)$, while $e_{\lambda}(2 \leq \lambda \leq g)$ is a basis of $X^{C}(\tau)$, where we may further assume $e_{1}=x_{1}=-x_{2}$. Hence $d \zeta_{e_{\lambda}, \sigma} / \zeta_{e_{\lambda}, \sigma} \in \widetilde{\Omega}_{P_{0}}$ for $2 \leq \lambda \leq g$. Hence we have $\left(a_{e_{\lambda}, \sigma_{1}}\right)_{\mid O(\tau)}=\left(a_{e_{\lambda}, \sigma_{2}}\right)_{\mid O(\tau)}$ for $2 \leq \lambda \leq g$. By (3.4.2), we choose $\omega:=d \zeta_{x_{1}, \sigma_{1}} / \zeta_{x_{1}, \sigma_{1}}=-d \zeta_{x_{2}, \sigma_{2}} / \zeta_{x_{2}, \sigma_{2}} \in \widetilde{\Omega}_{P_{0}}$. Then we introduce a coordinate on $Z\left(\sigma_{2}\right)$ as $\zeta_{e_{1}, \sigma_{2}}:=\zeta_{x_{2}, \sigma_{2}}^{-1}$ to infer

$$
\omega=d \zeta_{e_{1}, \sigma_{1}} / \zeta_{e_{1}, \sigma_{1}}=d \zeta_{e_{1}, \sigma_{2}} / \zeta_{e_{1}, \sigma_{2}},
$$

whence $\left(a_{e_{1}, \sigma_{1}}\right)_{\mid O(\tau)}=\left(a_{e_{1}, \sigma_{2}}\right)_{\mid O(\tau)}$, hence $\left(a_{e_{\lambda}, \sigma}\right)_{\mid O(\tau)}$ is independent of σ.
Let Z be the union of all $O(\rho)\left(\forall \rho \in \operatorname{Del}^{(k)}, \forall k \leq g-2\right)$. Then the above proves $\Theta_{P_{0} \backslash Z}^{\dagger} \simeq X \otimes O_{P_{0} \backslash Z}$. This implies that $\Theta_{P_{0}}^{\dagger} \simeq X \otimes O_{P_{0}}$. In fact, let $j: P_{0} \backslash Z \subset P_{0}$ be the inlcusion, $\phi \in \Theta_{P_{0} \backslash Z}^{\dagger}=\mathcal{H o m}\left(\widetilde{\Omega}_{P_{0} \backslash Z}, O_{P_{0} \backslash Z}\right)$ and $\omega \in \widetilde{\Omega}_{P_{0}}$. Then $\phi\left(\omega_{\mid P_{0} \backslash Z}\right) \in O_{P_{0} \backslash Z} \simeq j_{*}\left(O_{P_{0} \backslash Z}\right)=O_{P_{0}}$ because P_{0} is reduced, Cohen-Macaulay (depth g) and $\operatorname{codim}_{P_{0}}(Z) \geq 2$. Hence $\phi\left(\omega_{\mid P_{0} \backslash Z}\right)$ extends regularly to P_{0}, so that $\phi\left(\widetilde{\Omega}_{P_{0}}\right) \in O_{P_{0}}$, that is, $\phi \in \Theta_{P_{0}}^{\dagger}$. Since the extension of ϕ to P_{0} is unique by $j_{*}\left(O_{P_{0} \backslash Z}\right)=O_{P_{0}}$, we see

$$
\Theta_{P_{0}}^{\dagger} \simeq j_{*}\left(\Theta_{P_{0} \backslash Z}^{\dagger}\right) \simeq j_{*}\left(X \otimes O_{P_{0} \backslash Z}\right)=X \otimes O_{P_{0}}
$$

This proves (1) in the totally degenerate case.

Next we consider the general case $g=g^{\prime}+g^{\prime \prime}, g^{\prime \prime}>0$. See [N99, p. 678]. Let e_{λ} be a basis of $X, \sigma \in \operatorname{Del}^{\left(g^{\prime}\right)}$, and $O(\sigma)$ is a $T_{0}(\sigma)$-bundle over A_{0}, where $T_{0}(\sigma)=\operatorname{Spec} k\left[\zeta_{e_{\lambda}, \sigma}^{ \pm 1}\right] \simeq \mathbf{G}_{m}^{g^{\prime}}$. Let $\theta \in H^{0}\left(P_{0}, \Theta_{P_{0}}^{\dagger}\right)$. Then there exists a closed subscheme Z of P_{0} of codimension two such that the restriction of θ to $O(\sigma)$ is of the form

$$
\theta^{\prime}+\sum_{\lambda} a_{e_{\lambda}, \sigma} \zeta_{e_{\lambda}, \sigma} \frac{\partial}{\partial \zeta_{e_{\lambda}, \sigma}},
$$

where $\theta^{\prime} \in H^{0}\left(\Theta_{A_{0}}\right) \otimes_{k} H^{0}\left(P_{0} \backslash Z, O_{P_{0}}\right), \zeta_{\sigma, e_{\lambda}} \frac{\partial}{\partial \zeta_{e_{\lambda}, \sigma}}$ is a global log one form on P_{0}, hence $a_{e_{\lambda}, \sigma} \in H^{0}\left(P_{0} \backslash Z, O_{P_{0}}\right)$. Since P_{0} is reduced Cohen-Macaulay, $H^{0}\left(P_{0} \backslash Z, O_{P_{0}}\right)=H^{0}\left(P_{0}, O_{P_{0}}\right)=k$, hence we have (1) and (2).
Lemma 3.6. Let \mathcal{L} be a line bundle on a T-scheme Z (viewed as a Z scheme). Then $\operatorname{Aut}_{T}(\mathcal{L} / Z)$ is a group T-scheme over $\operatorname{Aut}_{T}(Z)$.
Proof. Let \mathbf{P} be a \mathbf{P}^{1}-bundle $\mathbf{P}\left(O_{Z} \oplus \mathcal{L}\right)$ which compactifies \mathcal{L} along infinity by $Z^{\infty}:=\mathbf{P}(0 \oplus \mathcal{L}) \simeq Z, \pi: \mathcal{L} \rightarrow Z$ the projection. Let 0 be the zero section of $\mathcal{L}, \infty=Z^{\infty}$ the infinity section of \mathbf{P}. We recall $\mathcal{A} u t_{T}(\mathcal{L} / Z)$ is the functor from T-schemes to sets

$$
\begin{aligned}
U \mapsto & \mathcal{A} u t_{T}(\mathcal{L} / Z)(U) \\
: & =\left\{(g, \phi) ; \begin{array}{l}
g \in \operatorname{Aut}_{T}(Z)(U) \text { and } \phi(0)=0 \\
\phi: \mathcal{L}_{U} \simeq g^{*}\left(\mathcal{L}_{U}\right) \text { fiberwise linear } Z_{U} \text {-isom. }
\end{array}\right\} \\
& =\left\{(g, \phi) ; \begin{array}{l}
g \in \operatorname{Aut}_{T}(Z)(U) \text { and } \phi(0)=0 \\
\phi: \operatorname{Aut}_{T}(\mathcal{L})(U) U \text {-isom. s.t. } \pi \phi=g \pi \\
\phi: \text { iberwise linear over } Z_{U}
\end{array}\right\}
\end{aligned}
$$

where the product $\left(g, \phi_{1}\right) \cdot\left(h, \phi_{2}\right)$ is defined by $\left(g h, h^{*} \phi_{1} \circ \phi_{2}\right)$. See Definition 2.3. Since any automorphism of \mathbf{P}^{1} which fixes 0 and ∞ is linear,

$$
\mathcal{A u t}_{T}(\mathcal{L} / Z)(U)=\left\{(g, \psi) ; \begin{array}{l}
g \in \operatorname{Aut}_{T}(Z)(U), \psi(0)=0, \psi(\infty)=\infty \\
\psi \in \operatorname{Aut}_{T}(\mathbf{P})(U) \text { s.t. } \pi \psi=g \pi
\end{array}\right\} .
$$

 scheme (denoted $\operatorname{Aut}_{T}(\mathcal{L} / Z)$) of $\operatorname{Aut}_{T}(Z) \times \operatorname{Aut}_{T}(\mathbf{P})$:

$$
\operatorname{Aut}_{T}(\mathcal{L} / Z)=\{(g, \psi) ; \psi(0)=0, \psi(\infty)=\infty, \pi \psi=g \pi\}
$$

This proves Corollary.
Theorem 3.7. Let S be a scheme, $(P \xrightarrow{\pi} S, \mathcal{L})$ an S - $T S Q A S$. Let $\widetilde{\Omega}_{P / S}$ be the sheaf of germs over P of relative rational one forms with log poles (Definition 3.4), the sum of whose residues along any of one-codimensional singular loci of the fibers is equal to zero, $\Theta_{P / S}^{\dagger}$ the O_{P}-dual of $\widetilde{\Omega}_{P / S}$ and
 subgroup S-scheme of $\operatorname{Aut}_{S}(P)$ which keep $\Omega_{P / S}^{\dagger}$ stable, and $\operatorname{Aut}_{S}^{\dagger}(P)^{0}$ (resp. Aut $_{S}^{\dagger 0}(P)$) the identity component (resp. the fiberwise identity component, that is, the minimal open subgroup S-schme) of $\mathrm{Aut}_{S}^{\dagger}(P)$. Then

1. Aut ${ }_{S}^{\dagger}(P)$ is flat over S, and the fiber $\left(\operatorname{Aut}_{S}^{\dagger}(P)\right)_{s}$ has the tangent space $H^{0}\left(P_{s}, \Theta_{P_{s}}^{\dagger}\right)$ for any geometric point s of S,
2. Aut ${ }_{S}^{\dagger 0}(P)$ is a semi-abelian group scheme over S, flat over S, while Aut ${ }_{S}^{\dagger}(P)^{0}$ is a semi-abelian group scheme over S, flat over S, possibly with reducible geometric fibers.
Proof. Let $s:=\operatorname{Spec} k(s)$ be any geometric point of S. From its definition $\operatorname{Aut}_{S}^{\dagger}(P)$ is a closed subscheme of $\operatorname{Aut}_{S}(P)$, while $\operatorname{Aut}_{S}^{\dagger}(P)^{0}$ hence $\operatorname{Aut}_{S}^{\dagger 0}(P)$ is a closed subscheme of $\operatorname{Aut}_{S}(P)$ of finite type. Since $\operatorname{Aut}_{S}(P)$ commutes with base change (because $\operatorname{Aut}_{S}(P)$ represents the relative Aut functor), $\operatorname{Aut}_{S}(P)_{s}=\operatorname{Aut}_{k(s)}\left(P_{s}\right)$. Hence $\left(\operatorname{Aut}_{S}^{\dagger}(P)\right)_{s}=\operatorname{Aut}_{k(s)}^{\dagger}\left(P_{s}\right)$ because $\left(\Omega_{P / S}^{\dagger}\right)_{s} \simeq \Omega_{P_{s} / k(s)}^{\dagger}$. It follows that $\left(\operatorname{Aut}_{S}^{\dagger 0}(P)\right) \otimes k(s)=\operatorname{Aut}_{k(s)}^{\dagger 0}\left(P_{s}\right)$. The tangent space of $\left(\operatorname{Aut}_{S}^{\dagger}(P)\right)_{s}$ equals $H^{0}\left(P_{s}, \Theta_{P_{s}}^{\dagger}\right)$ by Lemma 3.5. $\pi_{*} \Theta_{P / S}^{\dagger}$ is a finite free O_{P}-module of rank g by Lemma 3.5. Hence $\left(\pi_{*} \Theta_{P / S}^{\dagger}\right)_{s} \simeq$ $H^{0}\left(\Theta_{P_{s} / k(s)}^{\dagger}\right)$, hence $\left(\pi_{*} \Omega_{P / S}^{\dagger}\right)_{s} \simeq H^{0}\left(\Omega_{P_{s} / k(s)}^{\dagger}\right)$. Hence $\left(\operatorname{Aut}_{S}^{\dagger}(P)\right)_{s}$ is smooth of dimension g, hence Aut $_{S}^{\dagger}(P)$ is $S_{\text {red- }}$-lat, hence S-flat because flatness is an open condition. This proves (1).

Since $\operatorname{Aut}_{S}^{\dagger}(P)$ is S-flat by (1), so are $\operatorname{Aut}_{S}^{\dagger 0}(P)$ and $\operatorname{Aut}_{S}^{\dagger}(P)^{0}$. In view of Lemma 3.5, $\left(\operatorname{Aut}_{S}^{\dagger 0}(P)\right)_{s}=\operatorname{Aut}_{k(s)}^{\dagger 0}\left(P_{s}\right)$ coincides with the action of a semi-abelian scheme $O(\sigma)$ on P_{s} [N99, 4.12, p .680]. Hence $\mathrm{Aut}_{S}^{\dagger 0}(P)$ is a semi-abelian scheme over S, which proves (2).

4. The closed immersions of $S Q_{g, K}^{\text {toric }}$ into $\overline{A P}_{g, N}$

In this section we prove that there is a natural family of closed immersions of $S Q_{g, K}^{\text {toric }}$ into $\overline{A P}_{g, N}$ parametrized by an open subset of $\mathbf{P}\left(V_{H}\right)$.
Definition 4.1. Let $H=H(e):=\oplus_{i=1}^{g}\left(\mathbf{Z} / e_{i} \mathbf{Z}\right)\left(e_{i} \mid e_{i+1}\right)$ and let $K=$ $H \oplus H^{\vee}$ be an abelian group with the symplectic form e_{K} in Section 2. $\operatorname{Aut}\left(K, e_{K}\right)$ is the group of automorphisms of K keeping the symplectic form e_{K} invariant. We call $g \in \operatorname{Aut}\left(K, e_{K}\right)$ a symplectic automorphism of K. Let $\overline{\operatorname{Aut}}\left(K, e_{K}\right):=\operatorname{Aut}\left(K, e_{K}\right) / \pm \operatorname{id}_{K}$.
Definition 4.2. We define $\operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$ to be the group consisting of all automorphisms of \mathcal{G}_{H} which fix the center of \mathcal{G}_{H} elementwise.
Lemma 4.3. Let $\pi: \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right) \rightarrow \operatorname{Aut}\left(K, e_{K}\right)$ be the natural homomorphism. Then the following are true :

1. there is an exact sequence over $\mathcal{O}_{N^{3}}$

$$
0 \rightarrow \operatorname{ker}(\pi) \rightarrow \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right) \xrightarrow{\pi} \operatorname{Aut}\left(K, e_{K}\right) \rightarrow 1,
$$

2. $\operatorname{ker}(\pi) \simeq K^{\vee}=\operatorname{Hom}\left(K, \mathbf{G}_{m}\right)$. This isomorphism is given explicitly as follows: for $\gamma \in K^{\vee}$, there exists $t \in K$ such that $\gamma(s)=e_{K}(t, s) \quad \forall s \in$ K). Let $\xi(\gamma)(g):=\omega(t) g \omega(t)^{-1}$. Then $\xi(\gamma) \in \operatorname{ker}(\pi)$ and $\xi(\gamma)(g)=$ $[\omega(t), g] g, \xi(\gamma)(\omega(u))=e_{K}(t, u) g$. Moreover $\xi(\gamma) \xi\left(\gamma^{\prime}\right)=\xi\left(\gamma+\gamma^{\prime}\right)$.

Proof. Since e_{K} is the commutator form of \mathcal{G}_{H} with values in the center, it is invariant by $\operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$. Hence any $\xi \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$ induces a symplectic automorphism $\pi(\xi)$ of K, which defines the natural homomorphism π : $\operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right) \rightarrow \operatorname{Aut}\left(K, e_{K}\right)$. It is easy to see $\operatorname{ker}(\pi) \simeq K^{\vee} \simeq K$.

We shall prove that π is surjective. For $\eta \in \operatorname{Aut}\left(K, e_{K}\right)$, we construct $\xi \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$ with $\pi(\xi)=\eta$ over $\mathcal{O}_{N^{3}}$. Let $s, t \in K, \omega(s):=(1, s) \in 1 \oplus K \subset$ \mathcal{G}_{H}, and $\phi(s, t):=\omega(s+t) \omega(s)^{-1} \omega(t)^{-1}$ and $f(s, t):=\phi(\eta(s), \eta(t)) / \phi(s, t)$. Then $\phi \in C^{2}\left(K, \mu_{N}\right), f \in C^{2}\left(K, \mu_{N}\right)$ and $e_{K}(s, t)=\phi(s, t) / \phi(t, s)$ by [M12, p. 206, (d)]. Then ϕ and f belong to $H^{2}\left(K, \mu_{N}\right)$. Since $\eta \in \operatorname{Aut}\left(K, e_{K}\right)$, we have $e_{K}(s, t)=e_{K}(\eta(s), \eta(t))$, hence $f(s, t)=f(t, s)$.

Then we shall prove $f=0$ in $H^{2}\left(K, \mu_{N^{3}}\right)$. Now we choose a symplectic basis e_{i}, f_{i} of K such that $e_{K}\left(e_{i}, f_{i}\right)=\zeta_{\delta_{i}}, e_{K}\left(e_{i}, f_{j}\right)=1(i \neq j), e_{K}\left(e_{i}, e_{j}\right)=$ $e_{K}\left(f_{i}, f_{j}\right)=1(\forall i, j)$, where e_{i} and f_{i} are of order $\delta_{i}, \sqrt{|K|}=N=\prod_{i=1}^{g} \delta_{i}$.

Then by the argument of [N99, 7.4, p.690], we can prove by the induction on the number of generators of K that there exists $\chi \in C^{1}\left(K, \mu_{N^{3}}\right)$ such that $f=\delta(\chi)$, that is, $f(s, t)=\chi(s+t) \chi(s)^{-1} \chi(t)^{-1}$. In fact, in the proof of [ibid.] each time when the number of (symplectic) generators increases, we need to multiply the denominator of the cochain χ by the order (say δ_{i}) of the new generator, hence need to multiply the denominator of χ by $N^{2}=\left(\prod_{i=1}^{g} \delta_{i}\right)^{2}$ in total to define χ, hence $\chi \in C^{1}\left(K, \mu_{N^{3}}\right)$.

By using χ we define $\xi(a \omega(s))=a \chi(s) \omega(\eta(s))\left(a \in \mathbf{G}_{m}, s \in K\right)$. It follows from $\eta \in \operatorname{Aut}(K)$ that $\xi \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H} \otimes \mathcal{O}_{N^{3}}\right)$. The rest is easy.
4.4. The action of $\operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$ on $S Q_{g, K}^{\text {toric }}$. Let $\xi \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$. Since $U_{H} \circ \xi$ is a representation of \mathcal{G}_{H} of weight one over O_{N}, it is equivalent to U_{H} over \mathcal{O}_{N} by [N10, p. 88]. It follows that there is $A(\xi) \in \mathrm{GL}\left(V_{H}\right)$, unique up to a constant multiple, such that

$$
\begin{gather*}
\left(U_{H} \circ \xi\right) A(\xi)=A(\xi) U_{H}, \quad \text { equivalently, } \tag{2}\\
U_{H}(\xi(a, z, \alpha)) w(\beta)=a \beta(z) w(\alpha+\beta), \tag{3}
\end{gather*}
$$

where $w(\beta):=A(\xi) v_{H}(\beta)=: \sum_{\gamma} a_{\beta, \gamma}(\xi) v_{H}(\gamma) \in V_{H}$. It is clear that $A\left(\xi \xi^{\prime}\right)=A(\xi) A\left(\xi^{\prime}\right)$ in $\operatorname{PGL}\left(V_{H}\right)$.

Let $p(\xi)$ be the automorphism of $\mathbf{P}\left(V_{H}\right)$ such that $p(\xi)^{*}=A(\xi)$. Let $\sigma:=$ $\left(P_{0}, \mathcal{L}_{0}, \phi, \tau\right)$ be any rigid- $\mathcal{G}_{H} T$-TSQAS, $\phi(\xi):=p(\xi) \circ \phi$, and $\tau(\xi):=\tau \circ \xi$. Then $\sigma(\xi):=\left(P_{0}, \mathcal{L}_{0}, \phi(\xi), \tau(\xi)\right)$ is a rigid- $\mathcal{G}_{H} T$-TSQAS.

Lemma 4.5. Let k be an algebraically closed field over $\mathcal{O}_{N}, \xi \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$ and $\sigma:=\left(P_{0}, \mathcal{L}_{0}, \phi, \tau\right) \in S Q_{g, K}^{\text {toric }}(k)$. Then the following are true :

1. for $\gamma \in K^{\vee}, \tau(h): \sigma \rightarrow \sigma(\xi(\gamma))$ is an isomorphism for some $h \in \omega(K)$,
2. $\sigma \simeq \sigma\left(\xi\left(-\mathrm{id}_{K}\right)\right)$, (see the proof below for $\xi\left(-\mathrm{id}_{K}\right)$)
3. Suppose $\sigma \in S Q_{g, K}^{\text {toric }}(k)$ is generic. Then $\sigma \simeq \sigma(\xi)$ if and only if $\xi=\xi(\gamma)$ or $\xi=\xi(\gamma) \cdot \xi\left(-\operatorname{id}_{K}\right)$ for some $\gamma \in K^{\vee}$.

Proof. First we shall prove (1). Let $\omega(s)=(1, s)$ for $s \in K$. For $\gamma \in K^{\vee}$, then there exists a unique $t \in K$ such that $\gamma(s)=e_{K}(t, s)=[\omega(t), \omega(s)]$.

Let $h=\omega(t)$. We define $\xi(\gamma) \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$ by $\xi(\gamma)(g):=h g h^{-1}=[\omega(t), g] g$ where $[\omega(t), g] \in \mathbf{G}_{m}$. Hence

$$
U_{H}(\xi(\gamma)(g)) U_{H}(h)=U_{H}(h) U_{H}(g),
$$

hence we can identify $A(\xi(\gamma))=U_{H}(h)$. In view of Definition 2.3, $U_{H}(h)$ on V_{H} induces the translation $T_{h^{-1}}$ of P_{0}. It follows that $\phi(\xi(\gamma))^{*}=$ $\phi^{*}(p(\xi(\gamma)))^{*}=\phi^{*} U_{H}(h)=T_{h^{-1}}^{*} \phi_{h} \phi^{*}$, hence $\phi=\phi(\xi(\gamma)) \cdot T_{h}$ because both ϕ and $\phi(\xi(\gamma))$ are the maps from P_{0} to $\mathbf{P}\left(V_{H}\right)$ so that we can ignore the unit ϕ_{h}. It is clear that $\tau(\xi(\gamma)(g)) \tau(h)=\tau(h) \tau(g)$. It follows that the map $\tau(h):\left(P_{0}, \mathcal{L}_{0}\right) \rightarrow\left(P_{0}, \mathcal{L}_{0}\right)$ induces a \mathcal{G}_{H}-isomorphism

$$
\sigma=\left(P_{0}, \mathcal{L}_{0}, \phi, \tau\right) \simeq \sigma(\xi(\gamma))=\left(P_{0}, \mathcal{L}_{0}, \phi(\xi(\gamma)), \tau(\xi(\gamma)) .\right.
$$

Next we shall prove (2). Any k-TSQAS $\left(P_{0}, \mathcal{L}_{0}\right)$ has an automorphism $\operatorname{inv}_{P_{0}}$ which is induced from the algebra endomorphism of \widetilde{R} [N99, p. 670] $\operatorname{inv}_{R}: a(x) w^{x} \vartheta \mapsto a(x) w^{-x} \vartheta$, or in other words, induced from $\left(-\mathrm{id}_{Z}\right)$ of an abelian variety $Z:=P_{\eta}$, the generic fibre of P in Definition 2.4 (by choosing an even $B, r=0$ in Subsec. 3.1 by some base change). Note that $-\operatorname{id}_{K} \in \operatorname{Aut}\left(K, e_{K}\right)$ lifts to an automorphism $\operatorname{inv}_{\mathcal{G}_{H}}$ as $\operatorname{inv}_{\mathcal{G}_{H}}(a, z, \alpha)=$ $(a,-z,-\alpha)$. We denote $\operatorname{inv}_{\mathcal{G}_{H}}$ by $\xi\left(-\operatorname{id}_{K}\right)$. The automorphism $\operatorname{inv}_{P_{0}}$ gives an isomorphism $\left(P_{0}, \phi, \tau\right) \simeq\left(P_{0}, \phi\left(\xi\left(-\mathrm{id}_{K}\right)\right), \tau\left(\xi\left(-\mathrm{id}_{K}\right)\right)\right)$. This proves (2).

Finally we shall prove (3). If $\sigma \simeq \sigma(\xi)$, then there exists an isomorphism $(f, \delta):\left(P_{0}, \mathcal{L}_{0}\right) \simeq\left(P_{0}, \mathcal{L}_{0}\right)$ such that $(f, \delta) \cdot \tau(g)=\tau(\xi(g)) \cdot(f, \delta)$ for any g. It follows that $f\left(T_{g}(x)\right)=T_{\xi(g)} f(x)$ and $\delta\left(T_{g}(x)\right) \phi_{g}(x)=\phi_{\xi(g)}(f(x)) \delta(x)$. Since σ is a general abelian variety over $k, f \in \operatorname{Aut}\left(P_{0}\right)$ is a translation T_{h}, or the composite of a translation T_{h} and $\operatorname{inv}_{P_{0}}$ for $h=\omega(t)$ and $t \in K$. If $f=T_{h}$, then $(f, \delta)=\left(T_{h}, \phi_{h}\right)=\tau(h)$. This case is reduced to (1). If $f=T_{h} \cdot\left(\operatorname{inv}_{P_{0}}\right)$, then $g:=f \cdot\left(\operatorname{inv}_{P_{0}}\right)$ is reduced to (1). This completes the proof.
Corollary 4.6. The action of $\operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$ on $S Q_{g, K}^{\text {toric }}$ reduces to $\overline{\operatorname{Aut}}\left(K, e_{K}\right)$.
Proof. The map $s(\xi): S Q_{g, K}^{\text {toric }} \rightarrow S Q_{g, K}^{\text {toric }}$ sending σ to $\sigma\left(\xi^{-1}\right)$ is an automorphism of $S Q_{g, K}^{\text {toric }}$. This defines an action of $\operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$ on $S Q_{g, K}^{\text {toric }}$, that is, $s\left(\xi \xi^{\prime}\right)=s(\xi) s\left(\xi^{\prime}\right)$. By Lemma $4.5(1), s(\xi(\gamma))\left(\gamma \in K^{\vee}\right)$ acts on $S Q_{g, K}^{\text {toric }}$ trivially. by Lemma 4.3, the action of $\operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$ reduces to $\overline{\operatorname{Aut}}\left(K, e_{K}\right)$.

Definition 4.7. Let $\xi \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$, and $G(\xi)$ be the subset of $\mathbf{P}\left(V_{H}\right)$ consisting of all eigenvectors of $A(\xi) \neq$ id. Let $G_{g, K}$ be the union of all $G(\xi)$ for $\xi \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right) . G_{g, K}$ is at most ($N-2$)-dimensional. See Subsec. 5.4.

Lemma 4.8. Let k be an algebraically closed field over \mathcal{O}_{N}, and $\left(P_{0}, \mathcal{L}_{0}, \phi, \tau\right)$ be a rigid- $\mathcal{G}_{H} k$-TSQAS, and $\left(P_{0}, \mathcal{L}_{0}, \psi, \sigma\right)$ be another rigid- $\mathcal{G}_{H} k$-TSQAS. Then there exists $\xi \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$ such that

$$
\left(P_{0}, \mathcal{L}_{0}, \psi, \sigma\right) \simeq\left(P_{0}, \mathcal{L}_{0}, \phi(\xi), \tau(\xi)\right) .
$$

Proof. We choose and fix a rigid- \mathcal{G}_{H} TSQAS $\left(P_{0}, \phi, \tau\right)$ and take another rigid- \mathcal{G}_{H} TSQAS $\left(P_{0}, \psi, \sigma\right)$ above $\left(P_{0}, \mathcal{L}_{0}\right)$. Let $\Phi:=\left\{\left(T_{g}, \phi_{g}\right)\right\}_{g \in \mathcal{G}_{H}}$ (resp.
$\left.\Psi:=\left\{\left(S_{g}, \psi_{g}\right)\right\}_{g \in \mathcal{G}_{H}}\right)$ be a \mathcal{G}_{H}-linearization of \mathcal{L}_{0} such that $\tau=\tau_{\Phi}, \sigma=\tau_{\Psi}$. Let $\tau^{a b}(g)=T_{g}$ and $\sigma^{a b}(g)=S_{g}$. By Definition 2.4 and by [N10, 2.19] $\tau^{a b}\left(\mathcal{G}_{H}\right)=\sigma^{a b}\left(\mathcal{G}_{H}\right)=K\left(P_{0}, \mathcal{L}_{0}\right)$. Hence via the isomorphisms $\tau^{a b}\left(\mathcal{G}_{H}\right) \simeq K$ and $=\sigma^{a b}\left(\mathcal{G}_{H}\right) \simeq K$ the identity of $K\left(P_{0}, \mathcal{L}_{0}\right)$ induces an isomorphism $\eta \in \operatorname{Aut}(K)$ such that $\eta\left(T_{g}\right)=S_{g}$ for $\forall g \in \mathcal{G}_{H}$, which keeps e_{K} invariant because $e_{K}\left(S_{g}, S_{h}\right)=[g, h]=e_{K}\left(T_{g}, T_{h}\right) \in k$. Hence $\eta \in \operatorname{Aut}\left(K, e_{K}\right)$. By Lemma 4.3η is lifted to $\xi(\eta) \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$ with $S_{g}=\eta\left(T_{g}\right)=T_{\xi(\eta)(g)}$.

It follows $\gamma(g):=\psi_{g} \cdot \phi_{\xi(\eta)(g)}^{-1} \in \operatorname{Aut}_{P_{0}}\left(\mathcal{L}_{0}\right)=\operatorname{Hom}_{O_{P_{0}}}\left(\mathcal{L}_{0}, \mathcal{L}_{0}\right)^{\times}=k^{\times}$. Then γ is a character of \mathcal{G}_{H} because

$$
\begin{aligned}
\gamma(g h) & =\psi_{g h} \cdot \phi_{\xi(\eta)(g) \xi(\eta)(h)}^{-1}=\left(S_{h}^{*} \psi_{g} \cdot \psi_{h}\right)\left(T_{\xi(\eta)(h)}^{*} \phi_{\xi(\eta)(g)} \cdot \phi_{\xi(\eta)(h)}\right)^{-1} \\
& =\left(S_{h}^{*} \psi_{g} \cdot \psi_{h}\right)\left(S_{h}^{*} \phi_{\xi(\eta)(g)} \cdot \phi_{\xi(\eta)(h)}\right)^{-1}=S_{h}^{*} \gamma(g) \gamma(h)=\gamma(g) \gamma(h) .
\end{aligned}
$$

Let $\xi(g):=\gamma(g) \xi(\eta)(g) \in \mathcal{G}_{H}$. Then $\xi \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$. Hence

$$
\begin{aligned}
\phi_{\xi(g)} & =\phi_{\xi(\eta)(g) \gamma(g)}=T_{\gamma(g)}^{*} \phi_{\xi(\eta)(g)} \phi_{\gamma(g)}=\phi_{\xi(\eta)(g)} \gamma(g)=\psi_{g}, \\
\tau(\xi(g)) & =\left(T_{\xi(g)}, \phi_{\xi(g)}\right)=\left(T_{\xi(\eta)(g)}, \psi_{g}\right)=\left(S_{g}, \psi_{g}\right)=\tau_{\Psi}(g)=\sigma(g) .
\end{aligned}
$$

Hence $\sigma=\tau \xi$. Let $A:=\left(\phi^{*}\right)^{-1}\left(\psi^{*}\right) \in \mathrm{GL}\left(V_{H} \otimes k\right)$. Then

$$
\begin{aligned}
U_{H}(g) & =\rho(\psi, \sigma)(g)=\left(\psi^{*}\right)^{-1} S_{g^{-1}}^{*} \psi_{g} \psi^{*}=\left(\psi^{*}\right)^{-1} T_{\xi(g)^{-1}}^{*} \phi_{\xi(g)} \psi^{*} \\
& =A^{-1} \rho(\phi, \tau)(\xi(g)) A=A^{-1} U_{H}(\xi(g)) A
\end{aligned}
$$

by Definition $2.4(3)$. We can identify $A=A(\xi)$ so that $\psi=p(\xi) \phi, \sigma=\tau \xi$, hence $\left(P_{0}, \psi, \sigma\right)=\left(P_{0}, \phi(\xi), \tau(\xi)\right)$.

Lemma 4.9. Let k be a local ring with $N=|H|$ invertible, R a local k algebra, I an ideal of R with $I^{2}=0$ such that $k=R / I$. Let $\sigma_{0}=$ $\left(P_{0}, \mathcal{L}_{0}, \phi_{0}, \tau_{0}\right)$ be a rigid- $\mathcal{G}_{H} k-T S Q A S$, and $\sigma:=(P, \mathcal{L}, \phi, \tau)$ a rigid- \mathcal{G}_{H} R-TSQAS such that $\sigma \otimes_{R}(R / I) \simeq \sigma_{0}$, If (P, \mathcal{L}) is the pull back of $\left(P_{0}, \mathcal{L}_{0}\right)$ to R, then σ is the pull back of σ_{0} to R.
Proof. By the assumption, $(P, \mathcal{L}) \simeq \operatorname{Spec} R \times_{k}\left(P_{0}, \mathcal{L}_{0}\right)$, and R is a k-algebra with $R=k \oplus I$, and $H^{0}(P, \mathcal{L}) \simeq H^{0}\left(P_{0}, \mathcal{L}_{0}\right) \otimes_{k} R$ is an R-isomorphism with \mathcal{G}_{H}-action. Hence there exists $B \in I \cdot \operatorname{End}\left(V_{H} \otimes R\right)$ such that

$$
\phi^{*}=\phi_{0}^{*}+\phi_{0}^{*} \cdot B, \phi_{0}^{*}: V_{H} \otimes k \simeq H^{0}\left(P_{0}, \mathcal{L}_{0}\right) .
$$

Moreover τ maps \mathcal{G}_{H} into $\operatorname{Aut}_{R}(\mathcal{L} / P) \simeq \operatorname{Spec} R \times_{k} \operatorname{Aut}_{k}\left(\mathcal{L}_{0} / P_{0}\right)$. Hence $\tau^{a b}\left(\mathcal{G}_{H}\right) \subset \operatorname{Aut}^{\dagger}(P)=\operatorname{Spec} R \times_{k} \operatorname{Aut}^{\dagger}\left(P_{0}\right)$. Let $\tau^{a b}=T^{0}+T^{1}, T^{0}=$ $\tau^{a b} \otimes k$ and $T^{1}=\left\{T_{g}^{1}\right\} \in C^{1}\left(\mathcal{G}_{H}, I H^{0}\left(\Theta_{P_{0}}^{\dagger}\right)\right)$ where $\tau^{a b}(g):=T_{g}^{0}+T_{g}^{1}$, $T_{g}^{0} \in \operatorname{Aut}^{\dagger}\left(P_{0}\right), T_{g}^{1} \in I H^{0}\left(\Theta_{P_{0}}^{\dagger}\right)$. Let $\epsilon_{g}=T_{g^{-1}}^{0} T_{g}^{1}$. Since $\tau^{a b}$ is a group homomorphism, we have $\epsilon_{g h}=\operatorname{Ad}\left(T_{h^{-1}}^{0}\right) \epsilon_{g}+\epsilon_{h}$. Thus $\epsilon:=\left\{\epsilon_{g}\right\}_{g \in \mathcal{G}_{H}} \in$ $H^{1}\left(\mathcal{G}_{H}, I H^{0}\left(\Theta_{P_{0}}^{\dagger}\right)\right)$. Let $W:=H^{0}\left(P_{0}, \Theta_{P_{0}}^{\dagger}\right)$. Then $W \simeq k^{\oplus g}$ by Lemma 3.5 and Nakayama's lemma. Since $T_{h}\left(h \in \mathcal{G}_{H}\right)$ acts on P_{0} as translation by $K\left(P_{0}, \mathcal{L}_{0}\right) \simeq K, T_{h}^{0}$ keeps any $\theta \in W$ invariant. Hence $\epsilon_{g h}=\epsilon_{g}+\epsilon_{h}$, and $\epsilon \in \operatorname{Hom}(K, I W)=\operatorname{Hom}\left(K, I^{\oplus g}\right)=0$ because N is invertible in R, hence $\epsilon=0, \tau^{a b}=T^{0}$.

Let $\phi_{g}=\phi_{g}^{0}+\phi_{g}^{1}$ and $\varepsilon_{g}:=\left(\phi_{g}^{0}\right)^{-1} \cdot \phi_{g}^{1}$. Then $\varepsilon_{g} \in I H^{0}\left(O_{P_{0}}\right)$. In fact, we can write ϕ_{g} in down-to-earth terms as follows. Since $(P, \mathcal{L}) \simeq\left(P_{0}, \mathcal{L}_{0}\right)_{R}$, we can choose, by [N10, p. 94], a \mathcal{G}_{H}-invariant affine open covering U_{j} of P and a one-cycle $A_{i j}(x)$ of \mathcal{L}_{0} such that \mathcal{L}_{0} is trivial over U_{j}. Then we obtain $\phi_{i}^{\nu}(g, x)=\frac{A_{i j}(g x)}{A_{i j}(x)} \phi_{j}^{\nu}(g, x)(\nu=0,1)$, where $\left(\phi_{g}^{\nu}\right)_{\mid U_{i}}=: \phi_{i}^{\nu}(g, x)$. Hence $\phi_{i}^{0}(g, x)^{-1} \phi_{i}^{1}(g, x)=\phi_{j}^{0}(g, x)^{-1} \phi_{j}^{1}(g, x)$. This implies $\varepsilon_{g} \in I H^{0}\left(O_{P_{0}}\right)$.

Since ϕ_{g} is a \mathcal{G}_{H}-linearization of \mathcal{L},

$$
\phi_{g h}^{0}=\left(T_{h}^{0}\right)^{*} \phi_{g}^{0} \cdot \phi_{h}^{0}, \phi_{g h}^{1}=\left(T_{h}^{0}\right)^{*} \phi_{g}^{0} \cdot \phi_{h}^{1}+\left(T_{h}^{0}\right)^{*} \phi_{g}^{1} \cdot \phi_{h}^{0},
$$

whence $\varepsilon_{g h}=\left(T_{h}^{0}\right)^{*} \varepsilon_{g}+\varepsilon_{h}=\varepsilon_{g}+\varepsilon_{h}$ because $\left(T_{h}^{0}\right)^{*} \varepsilon_{g}=\varepsilon_{g} \in I H^{0}\left(O_{P_{0}}\right)$. It follows $\varepsilon:=\left\{\varepsilon_{g}\right\} \in \operatorname{Hom}\left(\mathcal{G}_{H}, I H^{0}\left(O_{P_{0}}\right)\right)=\operatorname{Hom}\left(K, I H^{0}\left(O_{P_{0}}\right)\right)=0$ because N is invertible in R and $I H^{0}\left(O_{P_{0}}\right)=I$ by $H^{0}\left(O_{P_{0}}\right)=k$. Hence $\varepsilon=0$, $\phi_{g}=\phi_{g}^{0}\left(\forall g \in \mathcal{G}_{H}\right)$, and $\tau=\tau_{0}$. Hence we see

$$
U_{H}=\rho(\phi, \tau)=\rho\left(\phi, \tau_{0}\right)=\rho\left(\phi_{0}, \tau_{0}\right)+\left[\rho\left(\phi_{0}, \tau_{0}\right), B\right]=U_{H}+\left[U_{H}, B\right],
$$

whence $\left[U_{H}, B\right]=0$. Since U_{H} is an irreducible representation of \mathcal{G}_{H}, B is a scalar. Hence $\sigma \simeq\left(\sigma_{0}\right)_{R}$.

Definition 4.10. Let $\left(P_{0}, \mathcal{L}_{0}\right)$ be a k-TSQAS with $\mathcal{L}_{0} \mathcal{G}_{H}$-linearized. Then a maximal isotropic subgroup H of K is said to be hereditary for $\left(P_{0}, \phi_{0}, \tau_{0}\right)$ if $\tau_{0}^{a b}(H) \subset G_{0}:=\operatorname{Aut}_{k}^{\dagger 0}\left(P_{0}\right)$. Therefore if P_{0} is an abelian variety, then any maximal isotropic subgroup is hereditary. If $\left(P_{0}, \mathcal{L}_{0}\right)$ is totally degenerate, then a maximal isotropic subgroup H (denoted $H_{\text {hd }}$) of K is hereditary iff $H \subset G_{0}:=\operatorname{Aut}_{k}^{\dagger 0}\left(P_{0}\right)=\operatorname{Hom}_{k}\left(X, \mathbf{G}_{m}\right)$.
Definition 4.11. We freely use the notation of [N99, pp.670-671]. Let $\left(P_{0}, \mathcal{L}_{0}\right)$ be a totally degenerate k-TSQAS with $\mathcal{L}_{0} \mathcal{G}_{H}$-linearized, $H_{\text {hd }}$ a hereditary maximal isotropic subgroup of K for $\left(P_{0}, \mathcal{L}_{0}\right)$ with $H_{\mathrm{hd}}^{\vee}=X / Y$.

Let $\phi_{\text {hd }}: P_{0} \rightarrow \mathbf{P}\left(V_{H_{\text {hd }}}\right)$ be

$$
\phi_{\mathrm{hd}}^{*}\left(v_{H_{\mathrm{hd}}}(\alpha)\right)=\theta(\alpha):=\sum_{y \in Y} a(x+y) w^{x+y},
$$

where $x \equiv \alpha \in H_{\mathrm{hd}}^{\vee}=X / Y$. We define

$$
\begin{gathered}
\tau_{\text {hd }}(a, z, u)\left(a(x) w^{x} \vartheta\right):=a \alpha(z) a(x+u) w^{x+u} \vartheta, \\
\tau_{\text {hd }}(a, z, \alpha)=\tau_{\text {hd }}^{R}(a, z, u) \bmod Y, \\
\rho_{\mathrm{hd}}(a, z, \alpha) \theta(\beta)=a \beta(z) \theta(\alpha+\beta),
\end{gathered}
$$

where $u \in X, \alpha \equiv u \in H_{\mathrm{hd}}^{\vee}$, and $(a, z, \alpha) \in \mathcal{G}_{H}$. It is clear that

$$
\rho\left(\phi_{\mathrm{hd}}, \tau_{\mathrm{hd}}\right)=\left(\phi_{\mathrm{hd}}^{*}\right)^{-1} \rho_{\mathrm{hd}} \phi_{\mathrm{hd}}^{*}=U_{H_{\mathrm{hd}}} .
$$

Lemma 4.12. Let $\left(P_{0}, \mathcal{L}_{0}\right)$ be a totally degenerate k-TSQAS with \mathcal{L}_{0} strictly \mathcal{G}_{H}-linearized and $G_{0}=\operatorname{Aut}_{k}^{\dagger 0}\left(P_{0}\right)$. Let $D=(f)$ and $f=\sum_{x \in X / Y} a_{x} \theta(x)$, $a_{x} \in k$. Then D contain no G_{0}-orbits iff $a_{x} \neq 0$ for any $x \in X / Y$.

Proof. Let $\left(Q_{0}, \mathcal{L}_{0}\right)$ be the unique PSQAS associated with $\left(P_{0}, \mathcal{L}_{0}\right)$ via sq [N10, p.71]. By [NS06, Theorem 2] and [N99, 4.2] $H^{0}\left(P_{0}, \mathcal{L}_{0}\right)=H^{0}\left(Q_{0}, \mathcal{L}_{0}\right)$ and there is a bijective correspondence between G_{0}-orbits $O(\sigma)$ of P_{0} and $O_{Q}(\sigma)$ of Q_{0}. Any zero-dimensional G_{0}-orbit of Q_{0} is $O_{Q}(c) \in W_{0}(c)(c \in$ X), which is defined by $\xi_{x, c}=0$ for all $x \neq 0, x \in \operatorname{Star}(0)$ by [N99, § 3, §5]. By [N99, 4.2], $H^{0}\left(P_{0}, \mathcal{L}_{0}\right)=H^{0}\left(Q_{0}, \mathcal{L}_{0}\right)$ is spanned by

$$
\theta(x):=\sum_{y \in Y} a_{0}(x+y) \xi_{x+y} \quad(x \in X / Y) .
$$

Suppose that any of g elementary divisor of $X / Y=H_{\mathrm{hd}}^{\vee}$ is at least 3 . Then by [$\mathrm{N} 99,6.3$], The restriction of $\theta(x) / \xi_{c}$ to $W_{0}(c)$ is equal to

$$
\theta(x) / \xi_{c}= \begin{cases}a_{0}(x+y)\left(\xi_{x+y} / \xi_{c}\right) & \text { if } \exists y \in Y \text { with } x+y \in \operatorname{Star}(c), \\ 0 & \text { otherwise }\end{cases}
$$

where $\xi_{c} / \xi_{c}=1$. Hence $\left(\theta(x) / \xi_{c}\right)_{\mid W_{0}(c)}$ is at most a single term, and $\theta(x)$ is zero at $O_{Q}(c)$ if $x \notin c+Y$. It follows that $\theta(c)$ is the unique element of $H^{0}\left(Q_{0}, \mathcal{L}_{0}\right)$ that does not vanish at $O(c)$. Hence $\theta(c)$ is the unique element of $H^{0}\left(P_{0}, \mathcal{L}_{0}\right)$ that does not vanish at $O(c)$.

Let $D=(f)$ and $f=\sum_{x \in X / Y} a_{x} \theta(x), a_{x} \in k$. Thus we see that the divisor D does not contain $O(c)$ iff $a_{x} \neq 0$ for $x \equiv c \bmod Y$. Hence D contains no $O(c)(c \in X / Y)$ iff $a_{x} \neq 0$ for any $x \in X / Y$. Meanwhile, D contains no G_{0}-orbits iff D contains no zero-dimensional G_{0}-orbits iff D contains no $O(c)(c \in X / Y)$. This proves the lemma in this case.

In the general case, let $D=(f)$, and $f=\sum_{\alpha \in X / Y} a_{\alpha} \theta(\alpha) \in H^{0}\left(P_{0}, \mathcal{L}_{0}\right)$. There exists an étale $Y / 3 Y$-covering $\pi: P_{0}^{\prime} \rightarrow P_{0}$. Let $\mathcal{L}_{0}^{\prime}:=\pi^{*}\left(\mathcal{L}_{0}\right)$. Then $\pi^{*} f=\sum_{\alpha^{\prime} \in X / 3 Y} b_{\alpha^{\prime}} \vartheta\left(\alpha^{\prime}\right) \in H^{0}\left(P_{0}^{\prime}, \mathcal{L}_{0}^{\prime}\right)$, where $\vartheta\left(\alpha^{\prime}\right)=\sum_{x \in \alpha^{\prime}} a(x) w^{x} \in$ $H^{0}\left(P_{0}^{\prime}, \mathcal{L}_{0}^{\prime}\right), b_{\alpha^{\prime}}=a_{\alpha}$ for $\alpha^{\prime} \equiv \alpha \bmod Y$. Then D contains no $O_{P_{0}}(c)$ $(c \in X / Y)$ iff $\pi^{*} D$ contains no $O_{P_{0}^{\prime}}(c)(c \in X / 3 Y)$ iff $b_{\alpha^{\prime}} \neq 0$ for any $\alpha^{\prime} \in X / 3 Y$ iff $a_{\alpha} \neq 0$ for any $\alpha \in X / Y$. This proves the lemma.

Lemma 4.13. Let H be a maximal isotropic subgroup of $\left(K, e_{K}\right)$, and $v:=$ $\sum_{\beta \in H^{\vee}} a_{\beta} v_{H}(\beta) \in V_{H}$. Then the following are equivalent:

1. $\left(\operatorname{Aut}_{k}^{\dagger 0}\left(P_{0}\right), P_{0}, \mathcal{L}_{0}, \operatorname{div} \phi^{*}(v)\right)$ is a semiabelic pair for any rigid- \mathcal{G}_{H} k-TSQAS $\left(P_{0}, \mathcal{L}_{0}, \phi, \tau\right)$,
2. $\sum_{\alpha \in H^{\vee}} a_{\alpha} a_{\alpha, \beta}(\xi) \neq 0$ for $\forall \beta \in H^{\vee}, \forall \xi \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$,
3. $\sum_{\alpha \in H^{\vee}} a_{\alpha} a_{\alpha, \beta}(\xi(\eta)) \neq 0$ for $\forall \beta \in H^{\vee}$, and some $\xi(\eta)$ with $\pi(\xi(\eta))=\eta$ for $\forall \eta \in \operatorname{Aut}\left(K, e_{K}\right)$.

Proof. First we assume that P_{0} is totally degenerate and then we may assume $H=H_{\text {hd }}$. By Lemma 4.8, $(P, \phi, \tau) \simeq\left(P, \phi_{\mathrm{hd}}(\xi), \tau_{\mathrm{hd}}(\xi)\right)$ for some $\xi \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$. Since $H_{\mathrm{hd}}^{\vee}=X / Y$,

$$
\phi^{*}(v)=\phi_{\mathrm{hd}}^{*} A(\xi)\left(\sum_{\alpha \in X / Y} a_{\alpha} v_{H_{\mathrm{hd}}}(\alpha)\right)=\sum_{\beta \in X / Y}\left(\sum_{\alpha \in X / Y} a_{\alpha} a_{\alpha, \beta}(\xi)\right) \theta(\beta)
$$

whence (1) and (2) are equivalent by Lemma 4.12.

If P_{0} is partially degenerate with A_{0} (resp. T_{0}) its abelian part (resp. torus part), then we choose a hereditary maximal isotropic subgroup H_{hd} of K for $\left(P_{0}, \mathcal{L}_{0}\right)$ such that X / Y is a direct summand of H_{hd}^{\vee}. See Subsec. 3.1. Assume for simplicity $Y \subset e X$ for some $e \geq 3$. Let $G_{0}=\operatorname{Aut}_{k}^{\dagger 0}\left(P_{0}\right)$ and $F=\phi^{*}(v) \in H^{0}\left(P_{0}, \mathcal{L}_{0}\right)$. Then F is of the form $F=\sum_{\alpha \in H_{\mathrm{hd}}^{\vee}} a_{\alpha} \theta(\alpha)$, $\theta(\alpha)=\phi^{*}\left(v_{H}(\alpha)\right)=\sum_{x \equiv \bar{x} \bmod Y} \theta_{x} \zeta_{x}$ for some $0 \neq \theta_{x} \in H^{0}\left(A_{0}, \mathcal{M}_{x}\right)$, by [N99, 4.10], where $a_{\alpha} \in k, \alpha=(a, \bar{x}), \bar{x} \in X / Y$. Since $e X \subset Y$ for some $e \geq 3$, by [N99, 6.3], for $c \in X,\left(\theta(\alpha) / \zeta_{c}\right)_{O(c)}=\theta_{c} \neq 0$ if $c \in \bar{x}$, and $\left(\theta(\alpha) / \zeta_{c}\right)_{O(c)}=0$ otherwise. Since $O(c)$ is an abelian variety A_{0}, and since θ_{c} is not identically zero, $a_{\alpha} \neq 0$ iff $\operatorname{div}(F)$ does not contains $O(c)$. Hence $a_{\alpha} \neq 0$ for any α iff $\operatorname{div}(F)$ contains no G_{0}-orbits. By Lemma 4.8, any (P, ϕ, τ) is isomorphic to $\left(P, \phi_{\mathrm{hd}}(\xi), \tau_{\mathrm{hd}}(\xi)\right)$ for some $\xi \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$. Hence by the same argument as in the totally degenerate case, (1) and (2) are equivalent. By Lemma 4.5, $\left(P_{0}, \phi\left(\xi \cdot \xi_{0}\right), \tau\left(\xi \cdot \xi_{0}\right)\right) \simeq\left(P_{0}, \phi(\xi), \tau(\xi)\right)$ if $\xi_{0}=\xi(\gamma)$ or $\xi_{0}=\xi\left(-\operatorname{id}_{K}\right)$. Hence $\left(\operatorname{Aut}_{k}^{\dagger 0}\left(P_{0}\right), P_{0}, \operatorname{div} \phi\left(\xi \cdot \xi_{0}\right)^{*}(v)\right)$ is semiabelic if $\left(\operatorname{Aut}_{k}^{\dagger 0}\left(P_{0}\right), P_{0}, \operatorname{div} \phi(\xi)^{*}(v)\right)$ is semiabelic. Hence (2) and (3) are equivalent.

Theorem 4.14. Let $K=H \oplus H^{\vee}$ be a finite symplectic group, H a maximal isotropic subgroup of $K, F_{g, K}$ a hypersurface of $\mathbf{P}\left(\left(V_{H}\right)^{\vee}\right)$

$$
\begin{equation*}
F_{g, K}: \prod_{\beta \in H^{\vee}, \eta \in \overline{\operatorname{Aut}\left(K, e_{K}\right)}}\left(\sum_{\alpha \in H^{\vee}} a_{\alpha} a_{\alpha, \beta}(\xi(\eta))\right)=0, \tag{4}
\end{equation*}
$$

and $D_{g, K}=\mathbf{P}\left(\left(V_{H}\right)^{\vee}\right) \backslash\left(F_{g, K} \cup G_{g, K}\right)$. (See Definition 4.7 for $G_{g, K}$.) We define the map sqap by

$$
\begin{aligned}
\text { sqap }: & S Q_{g, K}^{\text {toric }} \times D_{g, K}
\end{aligned} \rightarrow \overline{A P}_{g, N}, ~(P, \mathcal{L}, \phi, \tau) \times[v] \mapsto\left(\operatorname{Aut}^{\dagger 0}(P), P, \mathcal{L}, \operatorname{div} \phi^{*}(v)\right) .
$$

Then the following are true :

1. $\operatorname{sqap} \otimes \mathcal{O}_{N^{3}}$ is an étale Galois covering with $\operatorname{Gal}(\mathrm{sqap}) \simeq \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$,
2. $\operatorname{sqap}_{v}:=\operatorname{sqap}_{\mid S Q_{g, K}^{\text {toric }} \times[v]}$ is a closed immersion for any fixed $[v] \in$ $D_{g, K}(k)$, where k is any field over \mathcal{O}_{N}.

Proof. First we prove that sqap is well-defined. Since any k-TSQAS is seminormal by $[\mathrm{N} 10,3.3,3.8]$ for any algebraically closed field k over \mathcal{O}_{N}, we have $\operatorname{sqap}(\sigma \times v) \in \overline{A P}_{g, N}(T)$ by Lemma 4.13 . Let T be any \mathcal{O}_{N}-scheme and $v \in D_{g, K}(T)$. If $\sigma:=(P, \mathcal{L}, \phi, \tau) \simeq\left(P^{\prime}, \mathcal{L}^{\prime}, \phi, \tau^{\prime}\right)$ in $S Q_{g, K}^{\text {toric }}(T)$, then there exists an isomorphism $(f, \delta): \sigma \rightarrow \sigma^{\prime}$ such that $\phi^{\prime} \cdot f=\phi$ and $(f, \delta) \tau(g)=\tau^{\prime}(g)(f, \delta)\left(g \in \mathcal{G}_{H}\right)$. Hence $\phi^{*} v=f^{*}\left(\phi^{\prime}\right)^{*} v$ for any $v \in V_{H}$, hence $\left(f^{*}\right)^{-1} \operatorname{div}\left(\phi^{*} v\right)=\operatorname{div}\left(\left(\phi^{\prime}\right)^{*} v\right)$. Hence the map $\left(\operatorname{Ad}(f), f, \delta,\left(f^{*}\right)^{-1}\right)$ is an isomorphism from $\operatorname{sqap}(\sigma,[v])$ to $\operatorname{sqap}\left(\sigma^{\prime},[v]\right)$ where $\operatorname{Ad}(f)(g)=f g f^{-1}$ for $g \in$ Aut $^{\dagger 0}(P)$. Thus sqap is a well-defined \mathcal{O}_{N}-morphism.

For $\xi \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right), \sigma:=(P, \mathcal{L}, \phi, \tau) \in S Q_{g, K}^{\text {toric }}(T)$ and $[v] \in D_{g, K}$, let $\sigma(\xi):=(P, \mathcal{L}, \phi(\xi), \tau(\xi))$. We define an action of ξ by

$$
\xi \cdot(\sigma,[v]):=\left(\sigma\left(\xi^{-1}\right),[A(\xi) v]\right)
$$

This is also well-defined. We see
(i) $\left(\xi \xi^{\prime}\right) \cdot(\sigma,[v])=\xi \cdot\left(\xi^{\prime} \cdot(\sigma,[v])\right)$ for $\forall \xi, \xi^{\prime} \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$,
(ii) $\operatorname{sqap}(\xi \cdot(\sigma,[v]))=\operatorname{sqap}(\sigma,[v])$ for $\forall \xi \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$.

Next we prove

$$
\begin{equation*}
\operatorname{sqap}^{-1}(\operatorname{sqap}(\sigma,[v]))=\operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right) \cdot(\sigma,[v]) \tag{5}
\end{equation*}
$$

for any $v \in D_{g, K}(k)$ and any field k over $\mathcal{O}_{N^{3}}$. The inclusion LHS \supset RHS is clear. Conversely by Lemma 4.8, LHS \subset RHS. By Lemma 4.9, ϕ and τ are rigid for a fixed (P, \mathcal{L}) over a local ring k, while $\operatorname{Aut}^{\dagger 0}(P, \mathcal{L})$ is uniquely determined by (P, \mathcal{L}). Hence the tangent space of $S Q_{g, K}^{\text {toric }} \times D_{g, K}$ at $(\sigma,[v])$ is isomorphic to the tangent space of $\overline{A P}_{g, N}$ at $\operatorname{sqap}(\sigma,[v])$. Hence sqap is étale. Le k be any field over $\mathcal{O}_{N^{3}}$ and $(\sigma,[v]) \in S Q_{g, K}(k) \times D_{g, K}(k)$. $A(\xi)[v]$ are all distinct because $[v] \in G_{g, K}^{c}$, hence $\xi \cdot(\sigma,[v])$ are all distinct for $\xi \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$. This proves (1) by Equality (5).

Next we prove (2). Let k be any field over \mathcal{O}_{N} and we prove $\operatorname{sqap}_{v}(k)$ is injective. Suppose $\operatorname{sqap}(\sigma \times[v])=\operatorname{sqap}\left(\sigma^{\prime} \times[v]\right)$ for some $\sigma=(P, \phi, \tau)$, $\sigma^{\prime}=\left(P, \phi^{\prime}, \tau^{\prime}\right) \in S Q_{g, K}^{\text {toric }}(k)$ and $[v] \in D_{g, K}(k)$. By Lemma 4.8, there exists $\xi \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$ such that $\left(\phi^{\prime}, \tau^{\prime}\right) \simeq(\phi(\xi), \tau(\xi))$ and $p(\xi)^{*}=A(\xi)$. It follows that $\left[\phi^{*} p(\xi)^{*}(v)\right]=\left[\phi^{*} v\right]$, hence $[A(\xi)(v)]=[v]$ because ϕ^{*} is injective. Hence v is an eigenvector of $A(\xi)$. Since $v \in D_{g, K} \subset G_{g, K}^{c}$, we have $A(\xi)=\mathrm{id}_{V_{H}}$. It follows that $\operatorname{sqap}_{v}(k)$ is injective.

In order to prove that sqap_{v} is a closed immersion, it suffices to prove

$$
\operatorname{sqap}_{v}(R): S Q_{g, K}^{\text {toric }}(R) \times\{v\} \rightarrow \overline{A P}_{g, N}(R)
$$

is injective for R an Artin local k-ring, I the maximal ideal of R with $I^{2}=0$, $R / I=k$. Since the set of all R-deformations of a given $\sigma \in S Q_{g, K}^{\text {toric }}(k)$ (resp. $\left.\operatorname{sqap}_{v}(\sigma) \in \overline{A P}_{g, N}(k)\right)$ with $R / I=k$ admits a k-vector space structure, it suffices to prove that if $\sigma \in S Q_{g, K}^{\text {toric }}(R)$ and if $\operatorname{sqap}_{v}(\sigma)$ is trivial in $\overline{A P}_{g, N}(R)$, then σ is trivial. Let $\sigma=(P, \mathcal{L}, \phi, \tau) \in S Q_{g, K}^{\text {toric }}(R)$. Suppose $\operatorname{sqap}_{v}(\sigma)$ is trivial in $\overline{A P}_{g, N}(R)$. Then $(P, \mathcal{L})=\left(P_{0}, \mathcal{L}_{0}\right) \times$ Spec R. By Lemma 4.9, σ is trivial. This proves the injectivity of $\operatorname{sqap}_{v}(R)$, hence sqap_{v} is a closed immersion.

Corollary 4.15. $S Q_{g, 1}^{\text {toric }} \simeq \overline{A P}_{g, 1}$.
Proof. We note that $S Q_{g, 1}^{\text {toric }}$ is the reduced-coarse-moduli of $(P, \mathcal{L}, \phi, \tau)$ with ϕ and τ trivial. By Lemma 4.13 (2), ($\left.\operatorname{Aut}_{k}^{\dagger 0}\left(P_{0}\right), P_{0}, \mathcal{L}_{0}, \operatorname{div} \phi^{*}\left(v_{0}\right)\right)$ is semiabelic if $\left(P_{0}, \mathcal{L}_{0}\right)$ is any $k(0)$-TSQAS with $K=\{1\}$ and v_{0} the generator of $V_{H}=V_{\{1\}} \simeq k(0)$. Hence sqap : $S Q_{g, 1}^{\text {toric }} \rightarrow \overline{A P}_{g, 1}$ is a birational morphism defined everywhere. Let T be any scheme and $(P, \mathcal{L}) \in S Q_{g, 1}^{\text {toric }}(T)$
any T-TSQAS. Hence $h^{0}\left(P_{s}, \mathcal{L}_{s}\right)=1$ for any geometric point $s \in T$. Therefore $\operatorname{sqap}(P, \mathcal{L})=\left(\operatorname{Aut}^{\dagger 0}(P), P, \mathcal{L}, \Theta\right)$ is a semiabelic T-pair where Θ is the divisor defined by a unique generator of the invertible sheaf $\pi_{*}(\mathcal{L})$. Since sqap : $A_{g, 1} \rightarrow A P_{g, 1}$ is an isomorphism and $S Q_{g, 1}^{\text {toric }}$ is proper, sqap is surjective. Hence if $(G, P, \mathcal{L}, \Theta)$ is a semi-abelic T-pair, then (P, \mathcal{L}) is a T-TSQAS. Hence the forgetful map $(G, P, \mathcal{L}, \Theta) \mapsto(P, \mathcal{L})$ is the inverse of sqap. Since $\overline{A P}_{g, 1}$ is the closure of a reduced scheme $A P_{g, 1}$, it is reduced. $S Q_{g, 1}^{\text {toric }}$ is also reduced by the same reason. This proves $S Q_{g, 1}^{\text {toric }} \simeq \overline{A P}_{g, 1}$.

5. The one-dimensional case

We use the notation in Subsec. 2.1 and 4.4. Let $H=\mu_{3} \simeq \mathbf{Z} / 3 \mathbf{Z}, H^{\vee}=$ $\mathbf{Z} / 3 \mathbf{Z}, K:=K(H)=H \oplus H^{\vee}$ and $\mathcal{O}:=\mathbf{Z}\left[\zeta_{3}, 1 / 3\right]$. Let $e_{0} \in H, f_{0} \in H^{\vee}$ be a standard basis of K_{H} with $e_{K}\left(e_{0}, f_{0}\right)=\zeta_{3}$. Let $C(\mu)$ be a Hesse cubic

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0 .
$$

Let $\phi: C(\mu) \rightarrow \mathbf{P}\left(V_{H}\right)$ be $\phi^{*}\left(v_{H}\left(\beta f_{0}\right)\right)=x_{\beta}$ and $\tau=U_{H}$. Then $\sigma:=$ $(C(\mu), \phi, \tau)$ is a rigid- \mathcal{G}_{H} TSQAS of dimension one and conversely. By abuse of notation we use the same symbol ϕ ad τ for any $C(\mu)$.

Let $\xi \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$. Then $\sigma(\xi):=(C(\mu), \phi(\xi), \tau(\xi))$ is another Hesse cubic $\left(C\left(\mu^{\prime}\right), \phi, \tau\right)$, and the action of H^{\vee} on σ is transformed into the action of $\xi\left(H^{\vee}\right)$ on $\sigma(\xi)$, which is just the action of H^{\vee} on $\left(C\left(\mu^{\prime}\right), \phi, \tau\right)$ by Subsec. 4.4 Eq .(3).
5.1. The case $\eta_{1}\left(e_{0}\right)=-f_{0}$ and $\eta_{1}\left(f_{0}\right)=e_{0}$. Let $\xi_{1} \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$ be

$$
\xi_{1}\left(\omega\left(e_{0}\right)\right):=\omega\left(-f_{0}\right), \xi_{1}\left(\omega\left(f_{0}\right)\right):=\omega\left(e_{0}\right) .
$$

Let $A\left(\xi_{1}\right)=\left(a_{\beta, \gamma}\right)$ and $w(\beta)=v_{H}\left(\xi_{1}\left(\beta f_{0}\right)\right)$. Then since $\omega\left(-f_{0}\right) \cdot w(\beta)=$ $\zeta_{3}^{\beta} w(\beta), \omega\left(e_{0}\right) \cdot w(\beta)=w(\beta+1)$ by Subsec. 4.4 Eq.(3), we see $A\left(\xi_{1}\right)=$ $a_{0,0}\left(\zeta_{3}^{\beta \gamma}\right)$. Let $P=C(\mu)$ and let $(P, \phi, \tau):=(C(\mu), \phi, \tau)$. Let $y_{\beta}:=$ $\phi\left(\xi_{1}\right)^{*}\left(v_{H}\left(\beta f_{0}\right)\right)=\sum_{\gamma} a_{\beta, \gamma} x_{\gamma}$. Then $\left(P, \phi\left(\xi_{1}\right), \tau\left(\xi_{1}\right)\right)$ is a Hesse cubic

$$
(\mu-1)\left(y_{0}^{3}+y_{1}^{3}+y_{2}^{3}\right)-3(\mu+2) y_{0} y_{1} y_{2}=0 .
$$

5.2. The case $\eta_{2}\left(e_{0}\right)=e_{0}$ and $\eta_{2}\left(f_{0}\right)=e_{0}+f_{0}$. Let $\xi_{2} \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$ be

$$
\xi_{2}\left(\omega\left(e_{0}\right)\right)=\omega\left(e_{0}\right), \xi_{2}\left(\omega\left(f_{0}\right)\right)=\zeta_{3} \omega\left(e_{0}\right) \omega\left(f_{0}\right)=\zeta_{3}^{2} \omega\left(e_{0}+f_{0}\right) .
$$

Since $\xi_{2}\left(\omega\left(e_{0}\right)\right) \cdot w(\beta)=\zeta_{3}^{\beta} w(\beta), \xi_{2}\left(\omega\left(f_{0}\right)\right) \cdot w(\beta)=w(\beta+1)$, we see $A\left(\xi_{2}\right)=a_{11} \operatorname{diag}\left(\zeta_{3}, 1,1\right)$. Let $(P, \phi, \tau):=(C(\mu), \phi, \tau)$ as before, and $z_{\beta}:=$ $\phi\left(\xi_{2}\right)^{*}\left(v_{H}\left(\beta f_{0}\right)\right)$. Then $\left(P, \phi\left(\xi_{2}\right), \tau\left(\xi_{2}\right)\right)$ is a Hesse cubic

$$
\left(z_{0}^{3}+z_{1}^{3}+z_{2}^{3}\right)-3 \zeta_{3} \mu z_{0} z_{1} z_{2}=0 .
$$

5.3. The group $\overline{\operatorname{Aut}}\left(K, e_{K}\right)$. Let $S Q_{1,3}:=S Q_{1, K} \simeq S Q_{1, K}^{\text {toric }} . S Q_{1,3}$ is the reduced-fine-moduli scheme over \mathcal{O} of Hesse cubics $(C(\mu), \phi, \tau)$.

Let $b_{0}=[0,1,-1], b_{1}=\left[0,1,-\zeta_{3}\right], b_{2}=[-1,0,1]$. Hence $-b_{2}=[1,-1,0]$. We define $g_{i} \in \operatorname{PGL}\left(3, \mathcal{O}_{3}\right)$ by

$$
\begin{aligned}
& g_{1}:=A\left(\xi_{1}\right):\left(x_{0}, x_{1}, x_{2}\right) \mapsto\left(y_{0}, y_{1}, y_{2}\right), \\
& g_{2}:=A\left(\xi_{2}\right):\left(y_{0}, y_{1}, y_{2}\right) \mapsto\left(z_{0}, z_{1}, z_{2}\right),
\end{aligned}
$$

where

$$
\left(\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \zeta_{3} & \zeta_{3}^{2} \\
1 & \zeta_{3}^{2} & \zeta_{3}
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right),\left(\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right)=\left(\begin{array}{ccc}
\zeta_{3} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right) .
$$

Each g_{i} induces a transformation on the group of 3-torsions $C(\mu)[3]$:

$$
\left\{\begin{array} { l }
{ g _ { 1 } (b _ { 0 }) = b _ { 0 } , } \\
{ g _ { 1 } (b _ { 1 }) = - b _ { 2 } , } \\
{ g _ { 1 } (b _ { 2 }) = b _ { 1 } }
\end{array} \quad \left\{\begin{array}{l}
g_{2}\left(b_{0}\right)=b_{0}, \\
g_{2}\left(b_{1}\right)=b_{1}, \\
g_{2}\left(b_{2}\right)=b_{1}+b_{2} .
\end{array}\right.\right.
$$

We note that $g_{1}^{2}=\operatorname{inv}_{C(\mu)}=A\left(\xi\left(-\operatorname{id}_{K}\right)\right)$ is 3 times the permutation of x_{1} and $x_{2} . \overline{\operatorname{Aut}}\left(K, e_{K}\right)$ is generated by g_{1} and g_{2} with g_{1}^{2} regaded as trivial, whence $\overline{\operatorname{Aut}}\left(K, e_{K}\right) \simeq \operatorname{PSL}\left(2, \mathbf{F}_{3}\right) \simeq A_{4}$. Let $\mathbf{P}^{1}=S Q_{1,1}:=$ the coarse moduli of one-pointed smooth cubics and a one-pointed nodal cubic. Then $\overline{\operatorname{Aut}}\left(K, e_{K}\right)$ is the Galois group of $S Q_{1,3}$ over $\mathbf{P}^{1}=S Q_{1,1}$ under the map $(C(\mu), \phi, \tau) \mapsto\left(C(\mu), b_{0}\right)$.
5.4. The subset $G_{1, K}$. Let $K=(\mathbf{Z} / 3 \mathbf{Z})^{\oplus 2}$. Let $v_{i}=v_{H}\left(i f_{0}\right)$. Let $G_{1, K}$ be the union of all eigenvectors of nontrivial $A(\xi) \in \operatorname{PGL}\left(V_{H}\right)$ for $\xi \in \operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$ and $F_{1, K}$ the hypersurface of $\mathbf{P}\left(V_{H}^{\vee}\right)$ of degree 12

$$
F_{1, K}: a_{0} a_{1} a_{2} \prod_{j, k \in \mathbf{Z} / 3 \mathbf{Z}}\left(a_{0}+\zeta_{3}^{j} a_{1}+\zeta_{3}^{k} a_{2}\right)=0 .
$$

The above g_{2} has eigenvectors $a_{1} v_{1}+a_{2} v_{2}$ with a_{i} arbitrary. This implies that $G_{1, K}$ contains the hypersurface $a_{0}=0$. Since $G_{1, K}$ is $\operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)$ invariant, $G_{1, K}$ contains $F_{1, K}=\operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right) \cdot\left\{a_{0}=0\right\}$. The eigenvectors of g_{1} are $w_{0}:=v_{1}-v_{2}$ and $w_{ \pm}:=(1 \pm \sqrt{3}) v_{0}+v_{1}+v_{2}$, where $w_{0} \in F_{1, K}$. Let $H_{1, K}=G_{1, K} \backslash F_{1, K}=\operatorname{Aut}_{c}\left(\mathcal{G}_{H}\right)\left\{w_{ \pm}\right\}$. Hence

$$
H_{1, K}=\left\{\left[(1 \pm \sqrt{3}) v_{i}+\zeta_{3}^{j} v_{i+1}+\zeta_{3}^{k} v_{i+2}\right] ; i, j, k \in \mathbf{Z} / 3 \mathbf{Z}\right\} .
$$

References

[A02] V. Alexeev, Complete moduli in the presence of semiabelian group action, Ann. of Math. 155 (2002), 611-708.
[AN99] V. Alexeev and I. Nakamura, On Mumford's construction of degenerating abelian varieties, Tôhoku Math. J. 51 (1999) 399-420.
[M12] D. Mumford, Abelian varieties, Tata Institute of Fundamental Research, Hindustan Book Agency, 2012.
[N99] I. Nakamura, Stability of degenerate abelian varieties, Invent. Math. 136 (1999), 659-715.
[N04] I. Nakamura, Planar cubic curves, from Hesse to Mumford, Sugaku Expositions 17 (2004), 73-101.
[N10] I. Nakamura, Another canonical compactification of the moduli space of abelian varieties, Algebraic and arithemtic structures of moduli spaces (Sapporo, 2007), Advanced Studies in Pure Math., 58 (2010), 69-135. (arXivmath 0107158)
[NS06] I. Nakamura and K. Sugawara, The cohomology groups of stable quasi-abelian schemes and degenerations associated with the E_{8} lattice, Moduli Spaces and Arithmetic Geometry (Kyoto, 2004), Advanced Studies in Pure Math., 45 (2006) 223-281.
[Rim72] D.S. Rim, Formal deformaion theory, in Groupes de Monodromie en Géométrie Algébrique (SGA 7 I), Lecture Notes in Math. 288, Springer-Verlag, Berlin Heidelberg New York, 1972, exp. VI, 32-132.
[SGA1] A. Grothendieck, Revêtements Etales et Groupe Fondamentale (SGA 1), Lecture Notes in Math. 224, Springer-Verlag, Berlin Heidelberg New York, 1971.

Department of Mathematics, Hokkaido University,Sapporo, 060-0810, Japan
E-mail address: nakamura@math.sci.hokudai.ac.jp

[^0]: Date: June 5, 2013.
 Research was supported in part by the Grants-in-aid (No. 20340001, No. 23244001, No. 23224001 (S)) for Scientific Research, JSPS.

 2000 Mathematics Subject Classification. Primary 14J10;Secondary 14K10, 14K25.
 Key words and phrases. Moduli, Heisenberg group, Abelian varieties, Level structure.

