THE COMPLETE MODULI SPACES OF DEGENERATE ABELIAN VARIETIES

IKU NAKAMURA

ABSTRACT. For any positive integers g, d, there is Alexeev's complete moduli $\overline{AP}_{g,d}$ of seminormal degenerate abelian varieties, each coupled with a semiabelian action and an ample divisor [A02], while there is our second geometric compactification $SQ_{g,K}^{\text{toric}}$ of the moduli of abelian varieties [N10] for any finite symplectic abelian group K. We prove that if $|K| = N^2 \geq 1$, there is a (N-1)-dimensional effective family of closed immersions of $SQ_{g,K}^{\text{toric}}$ into $\overline{AP}_{g,N}$. We also prove $SQ_{g,1}^{\text{toric}} \simeq \overline{AP}_{g,1}$.

1. INTRODUCTION

Let K be a finite abelian group with symplectic form e_K , and $\mathcal{G}(K)$ the nonabelian Heisenberg group associated with K. The polarized abelian varieties with classical level-K structure admit level- $\mathcal{G}(K)$ structure in the sense of [N99]. For K sufficiently large, the fine moduli $A_{g,K}$ of g-dimensional abelian varieties with level-K structure is compactified into $SQ_{g,K}$ over $\mathbf{Z}[\zeta_N, 1/N]$, the "fine" moduli of GIT-stable degenerate abelian schemes (called PSQASes) with level- $\mathcal{G}(K)$ structure [N99].

Another compactification $SQ_{g,K}^{\text{toric}}$ of $A_{g,K}$ is constructed in [N10] as the "coarse" moduli of *reduced degenerate abelian varieties* (called TSQASes) with level- $\mathcal{G}(K)$ structure. There is a bijective morphism sq : $SQ_{g,K}^{\text{toric}} \rightarrow SQ_{g,K}$ by [N10], which induces an isomorphism between their normalizations. In this sense, $SQ_{g,K}^{\text{toric}}$ is quite similar to $SQ_{g,K}$.

Alexeev [A02] constructs a complete moduli $\overline{AP}_{g,d}$ of seminormal degenerate abelian varieties, each coupled with semiabelian group action and an ample divisor. It is the compactification of the coarse moduli $AP_{g,d}$ of pairs (A, D) with A a g-dimensional abelian variety, D an ample divisor with $h^0(A, D) = d$. We note that the dimension of $\overline{AP}_{g,d}$ is equal to g(g+1)/2 + d - 1, while the dimension of $SQ_{g,K}^{\text{toric}}$ is equal to g(g+1)/2.

The purpose of this article is to define morphisms from [N10] to [A02], and consequently to indirectly define maps from [N99] to [A02]. We prove

Date: June 5, 2013.

Research was supported in part by the Grants-in-aid (No. 20340001, No. 23244001, No. 23224001 (S)) for Scientific Research, JSPS.

²⁰⁰⁰ Mathematics Subject Classification. Primary 14J10;Secondary 14K10, 14K25. Key words and phrases. Moduli, Heisenberg group, Abelian varieties, Level structure.

IKU NAKAMURA

Theorem 1.1. Let K be a finite symplectic abelian group, and $N = \sqrt{|K|}$. Then there exists an (N-1)-dimensional family of closed immersions of $SQ_{a,K}^{\text{toric}}$ into $\overline{AP}_{g,N}$ parametrized by a nonempty open subset of \mathbf{P}^{N-1} .

Corollary 1.2. $SQ_{g,1}^{\text{toric}} \simeq \overline{AP}_{g,1}$.

The present article is organized as follows. Section 2 reviews the functors $SQ_{g,K}^{\text{toric}}$ and $\overline{\mathcal{AP}}_{g,d}$. Section 3 proves that any TSQAS over a scheme has a canonical semi-abelian action. Section 4 proves Theorem 4.14, a more precise form of Theorem 1.1. Section 5 discusses the one dimensional case.

2. The functors
$$SQ_{g,K}^{\text{toric}}$$
 and $\overline{\mathcal{AP}}_{g,d}$

Definition 2.1. Let $H := H(e) := \bigoplus_{i=1}^{g} (\mathbf{Z}/e_i \mathbf{Z}) (e_i | e_{i+1})$ be a finite abelian group of order |H| = N, $K := K_H = H \oplus H^{\vee}$, H^{\vee} the Cartier dual of Hand $\mathcal{O}_N := \mathbf{Z}[\zeta_N, 1N]$, ζ_N a primitive N-th root of unity. We define central extensions $\mathcal{G}(K)$ (resp. G(K)) of K by \mathbf{G}_m (resp. by μ_N) with product \cdot and an alternating form e_K on $K \times K$ as follows:

$$\mathcal{G}(K) := \{(a, z, \alpha); a \in \mu_N, z \in H, \alpha \in H^{\vee}\},\$$

$$G(K) := \{(a, z, \alpha); a \in \mu_N, z \in H, \alpha \in H^{\vee}\},\$$

$$(a, z, \alpha) \cdot (b, w, \beta) = (ab\beta(z), z + w, \alpha + \beta),\$$

$$e_K((z, \alpha), (w, \beta)) = \beta(z)\alpha(w)^{-1}.$$

In what follows we denote (1, u) by $\omega(u)$ for $u \in K$. Therefore $(a, z, \alpha) = a \cdot \omega(\alpha) \cdot \omega(z)$. Let $V(K) := \mathcal{O}_N[H^{\vee}] = \mathcal{O}_N[v(\chi); \chi \in H^{\vee}]$ be the group algebra of H^{\vee} over \mathcal{O}_N , on which $\mathcal{G}(K)$ acts by U(K);

(1)
$$U(K)(a, z, \alpha)v(\chi) := a\chi(z)v(\chi + \alpha)$$

It is an irreducible module under both $\mathcal{G}(K)$ and G(K) [N10, § 4]. We denote $\mathcal{G}(K)$ (resp. G(K), V(K), U(K)) by \mathcal{G}_H (resp. G_H , V_H , U_H) to emphasize dependence on H. For any nonnegative integer m we define a \mathcal{G}_{H} module V_m by $V_m = V_H$ as a set, and $U_m(a, z, \alpha)v(\chi) = a^{mN+1}\chi(z)v(\chi+\alpha)$. Over \mathcal{O}_N , V_m is an irreducible \mathcal{G}_H -module of weight mN + 1, unique up to isomorphism, and any \mathcal{G}_H -module of weight mN + 1 is a direct sum of V_m because $U_m = U_H$ on G_H .

Definition 2.2. Let (Z, \mathcal{L}) be a polarized *T*-scheme. The set of isomorphisms $\Phi := \{(T_q, \phi_q)\}_{q \in \mathcal{G}_H}$ is called a \mathcal{G}_H -linearization of \mathcal{L} if

1. $T_g \in \operatorname{Aut}_T(Z)$ and $\phi_g : \mathcal{L} \simeq T_g^*(\mathcal{L})$ is a Z-isomorphism,

- 2. $T_g = \mathrm{id}_Z$ and ϕ_g is multiplication by g if $g \in \mu_N$,
- 3. $T_{gh} = T_g T_h$ and $\phi_{gh} = T_h^* \phi_g \cdot \phi_h \; (\forall g, h \in \mathcal{G}_H).$

Then we say that \mathcal{L} is \mathcal{G}_H -linearized by Φ . If \mathcal{L} is \mathcal{G}_H -linearized, then \mathcal{L} is $\mathcal{G}_{H'}$ -linearized for any subgroup H' of H. We say that \mathcal{L} is strictly \mathcal{G}_H -linearized if there is no group H'' such that $H \subset H''$, $H \neq H''$ and \mathcal{L} is $\mathcal{G}_{H''}$ -linearized. In what follows, we simply say that \mathcal{L} is \mathcal{G}_H -linearized instead of strictly \mathcal{G}_H -linearized if no confusion is possible.

Definition 2.3. For a \mathcal{G}_H -linearization Φ of \mathcal{L} , we define the maps $\tau := \tau_{\Phi}$, $\tau^{ab} := \tau_{\Phi}^{ab}$ and $\rho := \rho_{\Phi} : \mathcal{G}_H \to \operatorname{End}(\pi_*(\mathcal{L}))$ by

$$\tau(g)(x,\zeta) := (T_g(x),\phi_g(x)\zeta) \in \mathcal{L}, \ \tau^{ab}(g)(x) := T_g(x),$$

$$\rho(g)(\theta) := T_{g^{-1}}^*(\phi_g(\theta)), \quad (x \in Z, \zeta \in \mathcal{L}_x, \theta \in \pi_*(\mathcal{L}), g \in \mathcal{G}_H).$$

We see that τ , τ^{ab} and ρ are group scheme morphisms. We note $\tau(g) \in \operatorname{Aut}_T(\mathcal{L}/Z)$ is a scheme automorphism of \mathcal{L} . Conversely if we are given a group *T*-scheme morphism $\tau : \mathcal{G}_H \to \operatorname{Aut}_T(\mathcal{L}/Z)$, then \mathcal{L} is \mathcal{G}_H -linearized. See Lemma 3.6 for $\operatorname{Aut}_T(\mathcal{L}/Z)$.

Definition 2.4. Let k be an algebraically closed field over \mathcal{O}_N . A triple (P_0, ϕ, τ) or $(P_0, \mathcal{L}_0, \phi, \tau)$ is a k-TSQAS with rigid level- \mathcal{G}_H structure (or abbr. a rigid- \mathcal{G}_H k-TSQAS) if

- 1. \mathcal{L}_0 is an ample line bundle, \mathcal{G}_H -linearized by $\Phi = \{(T_g, \phi_g)\}_{g \in \mathcal{G}_H}$,
- 2. $\tau := \tau_{\Phi} : \mathcal{G}_H \to \mathcal{G}(P_0, \mathcal{L}_0)$ is an isomorphism, where (P_0, \mathcal{L}_0) is the closed fiber of a proper flat family (P, \mathcal{L}) over a complete discrete valuation ring with generic fiber an abelian variety [N99, pp. 669-681], [N10, pp. 74,78,79]
- 3. $\phi : P_0 \to \mathbf{P}(V_H)$ is a rational map such that $\phi^* : V_H \otimes_{O_N} k \simeq H^0(P_0, \mathcal{L}_0)$ is a \mathcal{G}_H -isomorphism via τ ,
- 4. $\rho(\phi,\tau) = U_H \otimes_{O_N} k$, where $\rho(\phi,\tau)(g) := (\phi^*)^{-1} \rho_{\Phi}(g) \phi^* \; (\forall g \in \mathcal{G}_H).$

It is clear from (2.4.2) that $\tau^{ab}(\mathcal{G}_H) = K(P_0, \mathcal{L}_0) \simeq K$.

Definition 2.5. Let T be any scheme over \mathcal{O}_N . The triple $(P \xrightarrow{\pi} T, \mathcal{L}, \phi, \tau)$ is a T-TSQAS with rigid level- \mathcal{G}_H structure [N10, 5.3 (ii)] (or abbr. *a rigid*- \mathcal{G}_H T-TSQAS) if

- 1. π is flat with \mathcal{L} π -ample and \mathcal{G}_H -linearized by $\Phi = \{(T_g, \phi_g)\}_{g \in \mathcal{G}_H}$,
- 2. $\tau := \tau_{\Phi} : (\mathcal{G}_H)_T \to \operatorname{Aut}_T(\mathcal{L}/P)$ is a closed *T*-immersion,
- 3. $\phi: P \to \mathbf{P}(V_H)_T$ is a rational map such that $\phi^*: V_H \otimes_{O_N} \mathcal{M} \simeq \pi_*(\mathcal{L})$ is a $(\mathcal{G}_H)_T$ -isomorphism for some trivial $(\mathcal{G}_H)_T$ -module $\mathcal{M} \in \operatorname{Pic}(T)$, 4. $\rho(\phi, \tau) := (\phi^*)^{-1} \rho_{\Phi} \phi^* = U_H \otimes_{O_N} O_T$,
- 5. any geometric fiber $(P_s, \mathcal{L}_s, \phi_s, \tau_s)$ is a rigid- $\mathcal{G}_H k(s)$ -TSQAS.

(1, 3, 2, 3, 4, 5, 7, 5) = 0 = 1001 (1, 3, 2, 3, 4, 5, 7, 5) = 0 = 1001 (1, 3, 2, 3, 4, 5, 7, 5) = 0 = 0 = 0

Remark 2.6. For a *T*-TSQAS (P, \mathcal{L}) with \mathcal{L} \mathcal{G}_H -linearized, \mathcal{L} is strictly \mathcal{G}_H -linearized iff $h^0(P_s, \mathcal{L}_s) = \sqrt{|K|}$ for any geometric fiber (P_s, \mathcal{L}_s) .

Definition 2.7. We define the functor $SQ_{q,K}^{\text{toric}}$ from \mathcal{O}_N -schemes to sets by

 $\mathcal{SQ}_{g,K}^{\text{toric}}(T) = \text{the set of } T\text{-}\mathrm{TSQASes}(P,\phi,\tau) \text{ of relative dimension } g$ with rigid level- \mathcal{G}_H -structure modulo T-isomorphism

See [N10, 5.11, (i)-(iii)] for *T*-isomorphism between (P, ϕ_i, τ_i) . The condition (ii) in [*ibid.*] is replaced here by $\phi_1^* = f^* \phi_2^*$. See also [N99, 9.17]

Theorem 2.8. $SQ_{g,K}^{\text{toric}}$ has a separated reduced-coarse moduli algebraic space over \mathcal{O}_N , which we denote by $SQ_{a,K}^{\text{toric}}$.

Proof. See [N10, 11.4] for reduced-coarse moduli. We note that for any fixed nonnegative integer m, any \mathcal{G}_H -module of weight mN + 1 is a direct sum of a fixed \mathcal{G}_H -module V_m of the same weight. See Definition 2.1. Hence we can apply [N10, Sections 5-11] to prove Theorem 2.8 without any restriction on elementary divisors of K. The properness of the action of PGL × PGL [N10, p. 123] is proved by reducing to the case where every elementary divisor of K is at least 3. For this it suffices to prove the following

Claim 2.8.1. (cf. [N10, Lemma 6.7]) Let R be a complete discrete valuation ring, $k(\eta)$ the fraction field of R and S := Spec R. Let (Z_i, ϕ_i, τ_i) be rigid- \mathcal{G}_H S-TSQASes whose generic fibers are abelian varieties. If (Z_i, ϕ_i, τ_i) are $k(\eta)$ -isomorphic, then they are S-isomorphic.

Claim 2.8.1 follows from the following Claim 2.8.2 :

Claim 2.8.2. With the same notation as above, let (P, \mathcal{L}) be an S-TSQAS with generic fiber $(P_{\eta}, \mathcal{L}_{\eta})$ an abelian variety. Then (P, \mathcal{L}) is the normalization of a modified Mumford family for the generic fiber $(P_{\eta}, \mathcal{L}_{\eta})$.

Proof of Claim 2.8.2. Let P_{for} be the formal completion of P along P_0 . Since P_0 is reduced, by [SGA1, Corollaire 8.4], there is a category equivalence between étale coverings of P_0 and étale coverings of P_{for} . Let n be a positive integer prime to the characateristic of k(0) and |H|. Then it is easy to see that there exists an étale $H^{\dagger}/H \simeq (\mathbf{Z}/n\mathbf{Z})^g$ -covering $(P_0^{\dagger}, \mathcal{L}_0^{\dagger})$ of (P_0, \mathcal{L}_0) such that $K(P_0^{\dagger}, \mathcal{L}_0^{\dagger}) = H^{\dagger} \oplus (H^{\dagger})^{\vee}$. Hence there exists a formal scheme $(P_{\text{for}}^{\dagger}, \mathcal{L}_{\text{for}}^{\dagger})$ which is an étale $(\mathbf{Z}/n\mathbf{Z})^g$ -covering of $(P_{\text{for}}, \mathcal{L}_{\text{for}})$. Then there exists a projective S-scheme $(P^{\dagger}, \mathcal{L}^{\dagger})$ algebrizing $(P_{\text{for}}^{\dagger}, \mathcal{L}_{\text{for}}^{\dagger})$ which is an étale $(\mathbf{Z}/n\mathbf{Z})^g$ -covering of \mathcal{L} . It follows that $(P_{\eta}^{\dagger}, \mathcal{L}_{\eta}^{\dagger})$ is a polarized abelian variety, $(P_0^{\dagger}, \mathcal{L}_0^{\dagger})$ is a reduced k(0)-TSQAS and P^{\dagger} is normal by [N10, 10.2]. Since $n \geq 3$, by [N10, 10.4] $(P^{\dagger}, \mathcal{L}^{\dagger})$ is the normalization of a modified Mumford family for the generic fiber $(P_{\eta}^{\dagger}, \mathcal{L}_{\eta}^{\dagger})$.

This completes the proof of Theorem 2.8.

Definition 2.9. [A02] Let k be an algebraically closed field. A g-dimensional semiabelic k-pair of degree d is a quadruple $(G, P, \mathcal{L}, \Theta)$ such that

- 1. P is a connected seminormal *complete* k-variety, and any irreducible component of P is g-dimensional,
- 2. G is a semi-abelian k-scheme acting on P,
- 3. there are only finitely many G-orbits,
- 4. the stabilizer subgroup of every point of P is connected, reduced and lies in the torus part of G,
- 5. \mathcal{L} is an ample line bundle on P with $h^0(P, \mathcal{L}) = d$,
- 6. Θ is an effective Cartier divisor of P with $\mathcal{L} = O_P(\Theta)$ which does not contain any G-orbits.

Recall that a variety Z is said to be *seminormal* if any bijective morphism $f: W \to Z$ with W reduced is an isomorphism.

Definition 2.10. Let T be a scheme. A g-dimensional semiabelic T-pair of degree d is a quadruple $(G, P \xrightarrow{\pi} T, \mathcal{L}, \Theta)$ such that

- 1. G is a semi-abelian group T-scheme of relative dimension g,
- 2. P is a proper flat T-scheme, on which G acts,
- 3. \mathcal{L} is a π -ample line bundle on P with $\pi_*(\mathcal{L})$ locally free of rank d,
- 4. any geometric fiber $(G_s, P_s, \mathcal{L}_s, \Theta_s)$ $(s \in T)$ is a stable semiabelic pair.

Definition 2.11. We define the functor $\mathcal{M}_{q,d}$ from schemes to sets by

 $\mathcal{M}_{q,d}(T)$ = the set of g-dimensional semiabelic T-pairs of degree d/T-isom.

The functor $\overline{\mathcal{AP}}_{g,d}$ is a subfunctor of $\mathcal{M}_{g,d}$ of semiabelic *T*-pairs with any generic fibers $P_{\eta} = G_{\eta}$ abelian varieties. $\overline{\mathcal{AP}}_{g,d}$ has a coarse moduli algebraic space $\overline{\mathcal{AP}}_{g,d}$ over **Z** by [A02, 5.10.1].

3. The semi-abelian group action on a T-TSQAS

The purpose of this section to construct a semiabelian group action on any T-TSQAS. We freely use the notation in [N99, Sections 1-3].

3.1. Notation. Let R be a complete discrete valuation ring with q uniformizer, k(0) := R/qR and $k(\eta)$ the fraction field. Let (P, \mathcal{L}) the oneparameter family of TSQASes over R such that the generic fiber P_{η} is an abelian variety, and the closed fiber P_0 of P is a TSQAS. Let A_0 the abelian variety part of P_0, T_0 the torus part of $P_0, X = \operatorname{Hom}_k(T_0, \mathbf{G}_m), g' = \dim T_0,$ $g'' = \dim A_0, g = g' + g''$ and Del = Del_B the Delaunay decomposition of P_0 on the lattice X of rank g' and B the integral positive bilinear form on $X \times X$ associated with P_0 , which we abbreviate as (x, y) := B(x, y). By choosing $q^{r(x)}w^x$ for w^x by taking a finite base change of Spec R in [N99, p. 671] we may assume that B is even, and r(x) = 0 for any $x \in X$. This implies that P_0 is reduced. Let $T_0^t := T^t \otimes k(0)$ be the dual torus of T_0 , and $Y = \operatorname{Hom}_k(T_0^t, \mathbf{G}_m)$ [*ibid.*, p. 666].

Lemma 3.2. Let $\tau \in \text{Del}(0)$ and $C(0,\tau)$ the closed cone over \mathbf{R}_0 generated by τ . Let $X^C(\tau)$ be the sublattice of X generated by $C(0,\tau) \cap X$. Then $X/X^C(\tau)$ is torsion-free. In particular, $X^C(\sigma) = X$ if $\sigma \in \text{Del}^{(g')}(0)$.

Proof. It suffices to prove $X^{C}(\tau)_{\mathbf{R}} \cap X = X^{C}(\tau)$. We suffice to prove $X^{C}(\tau)_{\mathbf{R}} \cap X \subset X^{C}(\tau)$ because the converse inclusion is clear. Let $f \in X^{C}(\tau)_{\mathbf{R}} \cap X$. Then there exists $x \in C(0,\tau) \cap X$ such that $x+f \in C(0,\tau) \cap X$. Hence f = (x+f) - x with $x+f, x \in C(0,\tau) \cap X$. Hence $f \in X^{C}(\tau)$, hence $X^{C}(\tau)_{\mathbf{R}} \cap X = X^{C}(\tau)$.

Lemma 3.3. Let $\tau \in \text{Del}^{(g'-1)}(c)$, $\sigma_i \in \text{Del}^{(g')}(c)$ (i = 1, 2) with $\tau = \sigma_1 \cap \sigma_2$ and $Z(\sigma_i) = \overline{O(\sigma_i)}$ the irreducible component of P_0 associated with σ_i . Then

- 1. $O(\tau)$ is a Cartier divisor of $Z(\sigma_i)$ defined by a single equation $\zeta_{x_i,c} = 0$ for some generator $x_i \in C(c, -c + \sigma_i)$ of $X/X^C(\tau)$,
- 2. P_0 is, along $O(\tau)$, defined by the single equation $\zeta_{x_1,c}\zeta_{x_2,c} = 0$.

Proof. By [N99, 4.9], O_{P_0} is isomorphic to

$$O_{P_0,O(\tau)} := O_{A_0}[\zeta_{x,c}, \zeta_{y,c}^{\pm}]_{x \in C(0, -c + \sigma_1 \cup \sigma_2) \cap X, y \in X^C(\tau)}.$$

Since $X/X^{C}(\tau)$ is torsion free in view of Lemma 3.2, $X/X^{C}(\tau)$ is infinite cyclic. Since the subset $C(0,\sigma_i) + X^{C}(\tau)$ is a closed half space of $X_{\mathbf{R}}$, we can choose an element $x_i \in C(0,\sigma_i) \cap X$ such that $X/X^{C}(\tau) = \mathbf{Z}x_i \simeq \mathbf{Z}$. By choosing in addition a **Z**-basis y_j $(2 \le j \le g)$ of $X^{C}(\tau)$, we may assume

- (i) x_i generates $X/X^C(\tau) = X^C(\sigma_1)/X^C(\tau) = X^C(\sigma_2)/X^C(\tau)$,
- (ii) x_1 (resp. x_2) and y_j ($2 \le j \le g$) is a **Z**-basis of X.

Let $M = \sum_{i=1,2} (\alpha(\sigma_i) - \alpha(\tau), x_i)$. Then $M \in \mathbf{Z}$ from our assumption. We prove M > 0. It follows from (i) that $x_1 + x_2 \in X^C(\tau)_{\mathbf{R}} \cap X$, hence $x_1 + x_2 \in X^C(\tau)$ by Lemma 3.2. Since $x_i \in C(0, -c + \sigma_i)$, there exists $r_{i,\lambda} > 0$ and $z_{i,\lambda} \in (-c + \sigma_i) \cap X$ such that $x_i = \sum_{\lambda} r_{i,\lambda} z_{i,\lambda}$. For each λ ,

$$(\alpha(\sigma_i), z_{i\lambda}) \ge (z_{i\lambda}, z_{i\lambda})/2 \ge (\alpha(\sigma_i), z_{i\lambda})$$

by [N99, 1.3]. Hence $(\alpha(\sigma_i), x_i) \geq (\alpha(\tau), x_i)$ where equality holds iff any $z_{i\lambda} \in \tau$. Since x_i is a generator of $X/X^C(\tau)$, there is at least one $z_{i\lambda}$ such that $z_{i\lambda} \notin \tau$. Hence M > 0 and $\zeta_{x_1,c}\zeta_{x_2,c} = q^M \zeta_{x_1+x_2,c} = 0$ in $O_{P_0,O(\tau)}$.

For any $w_i \in C(0, -c+\sigma_i) \cap X$ with $w_i \notin C(0, -c+\tau)$, there are a positive integer n_i and $y_i \in X^C(\tau)$ such that $w_i = n_i x_i + y_i$, hence $\zeta_{w_i,c} = \zeta_{x_i,c}^{n_i} \zeta_{y_i,c} \in O_{P_0,O(\tau)}$. Thus $\zeta_{x_i,c} = 0$ (resp. $\zeta_{x_1,c} \zeta_{x_2,c} = 0$) is a defining equation of $O(\tau)$ in $Z(\sigma_i)$ (resp. a defining equation of P_0).

Definition 3.4. Let Sing (P_0) be the singular locus of P_0 . Let $\Omega_{P_0}^1$ be the sheaf of germs of regular one-forms over P_0 , and $\Theta_{P_0} := \mathcal{H}om_{O_{P_0}}(\Omega_{P_0}^1, O_{P_0}) = \mathcal{D}er(O_{P_0})$. Then we define $\widetilde{\Omega}_{P_0}$ to be the sheaf of germs of rational one forms ϕ over P_0 such that

- 1. ϕ is regular outside Sing (P_0) , and it has log poles along the codimensionone singularities (We say ϕ has log poles on P_0 for simplicity),
- 2. the sum of the residues of ϕ along any of Weil divisors of Sing (P_0) is equal to zero. (These conditions makes sense by Lemma 3.3.)

By [Rim72, p. 112] the tangent space of automorphism group $\operatorname{Aut}(P_0)$ is given by $H^0(P_0, \Theta_{P_0})$. We define $\Theta_{P_0}^{\dagger}$ and $\Omega_{P_0}^{\dagger}$ by

$$\Theta_{P_0}^{\dagger} := \mathcal{H}om_{O_{P_0}}(\widetilde{\Omega}_{P_0}, O_{P_0}), \quad \Omega_{P_0}^{\dagger} := \mathcal{H}om_{O_{P_0}}(\Theta_{P_0}^{\dagger}, O_{P_0}).$$

Lemma 3.5. Let P_0 be a k(0)-TSQAS of dimension g, A_0 the abelian part of P_0 , T_0 the torus part of P_0 and $X = \text{Hom}(T_0, \mathbf{G}_{m,k(0)})$ the lattice of rank g'. Then

1. $\Theta_{P_0}^{\dagger} \simeq O_{P_0}^{\oplus g}$, $\Omega_{P_0}^{\dagger} \simeq O_{P_0}^{\oplus g}$, in particular if P_0 is totally degenerate, then $\Theta_{P_0}^{\dagger} \simeq X \otimes_{\mathbf{Z}} O_{P_0}$, $\Omega_{P_0}^{\dagger} \simeq X^{\vee} \otimes_{\mathbf{Z}} O_{P_0}$, 2. $H^0(P_0, \Theta_{P_0}^{\dagger}) \simeq H^0(A_0, \Theta_{A_0}) \oplus X \otimes_{\mathbf{Z}} k(0)$, which is the tangent space of the action of $O(\sigma)$ for any $\sigma \in \text{Del}^{(g')}(P_0)$.

Proof. Let k = k(0). First we consider the case where P_0 is totally degenerate, g = g'. There is an exact sequence $0 \to \Omega_{P_0}^1 \to \widetilde{\Omega}_{P_0} \to \mathcal{A} \to 0$ for some sheaf \mathcal{A} with Supp (\mathcal{A}) one-codimensional. The sheaf O_{P_0} is torsion free because P_0 is reduced and Cohen-Macaulay by [AN99]. Hence $\operatorname{Hom}(\mathcal{A}, O_{P_0}) = 0$. Hence $\Theta_{P_0}^{\dagger}$ is a subsheaf of Θ_{P_0} . Let $\theta \in H^0(P_0, \Theta_{P_0}^{\dagger})$. Then $\theta \in H^0(P_0, \Theta_{P_0})$, which is a global infinitesimal automorphism of P_0 .

Let $Z(\sigma)$ be the closure of $O(\sigma)$ in P_0 with reduced structure. Since each $Z(\sigma)$ ($\sigma \in \text{Del}^{(g)}(P_0)$) contains the torus $O(\sigma) \simeq \mathbf{G}_{m,k}^{\oplus g} = \text{Spec } k[\zeta_{e_{\lambda},\sigma}^{\pm 1}]$, the restriction of θ to $O(\sigma)$ is of the form

$$\sum_{\lambda} a_{e_{\lambda},\sigma} \zeta_{e_{\lambda},\sigma} \frac{\partial}{\partial \zeta_{e_{\lambda},\sigma}}$$

for some $a_{e_{\lambda},\sigma} \in \Gamma(O(\sigma), O_{P_0})$, where e_{λ} is a basis of X.

We shall prove that the restriction to $O(\tau)$ $(a_{e_{\lambda},\sigma})|_{O(\tau)}$ of $a_{e_{\lambda},\sigma}$ is independent of $\sigma \in \text{Del}^{(g)}$. To prove this, it suffices to prove $(a_{e_{\lambda},\sigma_1})|_{O(\tau)} = (a_{e_{\lambda},\sigma_2})|_{O(\tau)}$. For any element $\omega \in \widetilde{\Omega}_{P_0}$, and any pair $\sigma_1, \sigma_2 \in \text{Del}^{(g)}$ with $\tau = \sigma_1 \cap \sigma_2 \in \text{Del}^{(g-1)}$, we have $\text{Res}_{Z(\tau)}(\omega|_{Z(\sigma_1)}) + \text{Res}_{Z(\tau)}(\omega|_{Z(\sigma_2)}) = 0$. Since $\theta \in \Theta_{P_0}^{\dagger}$, we have

$$\theta_{|Z(\sigma_1)}(\omega_{|Z(\sigma_1)}) = \theta_{|Z(\sigma_2)}(\omega_{|Z(\sigma_2)}).$$

By Lemma 3.3 (2), we may assume x_j , e_{λ} $(2 \leq \lambda \leq g)$ is a basis of $X = X^C(\sigma_j)$, while e_{λ} $(2 \leq \lambda \leq g)$ is a basis of $X^C(\tau)$, where we may further assume $e_1 = x_1 = -x_2$. Hence $d\zeta_{e_{\lambda},\sigma}/\zeta_{e_{\lambda},\sigma} \in \widetilde{\Omega}_{P_0}$ for $2 \leq \lambda \leq g$. Hence we have $(a_{e_{\lambda},\sigma_1})_{|O(\tau)} = (a_{e_{\lambda},\sigma_2})_{|O(\tau)}$ for $2 \leq \lambda \leq g$. By (3.4.2), we choose $\omega := d\zeta_{x_1,\sigma_1}/\zeta_{x_1,\sigma_1} = -d\zeta_{x_2,\sigma_2}/\zeta_{x_2,\sigma_2} \in \widetilde{\Omega}_{P_0}$. Then we introduce a coordinate on $Z(\sigma_2)$ as $\zeta_{e_1,\sigma_2} := \zeta_{x_2,\sigma_2}^{-1}$ to infer

$$\omega = d\zeta_{e_1,\sigma_1}/\zeta_{e_1,\sigma_1} = d\zeta_{e_1,\sigma_2}/\zeta_{e_1,\sigma_2},$$

whence $(a_{e_1,\sigma_1})_{|O(\tau)} = (a_{e_1,\sigma_2})_{|O(\tau)}$, hence $(a_{e_{\lambda},\sigma})_{|O(\tau)}$ is independent of σ .

Let Z be the union of all $O(\rho)$ ($\forall \rho \in \text{Del}^{(k)}$, $\forall k \leq g-2$). Then the above proves $\Theta_{P_0\setminus Z}^{\dagger} \simeq X \otimes O_{P_0\setminus Z}$. This implies that $\Theta_{P_0}^{\dagger} \simeq X \otimes O_{P_0}$. In fact, let $j: P_0 \setminus Z \subset P_0$ be the inlcusion, $\phi \in \Theta_{P_0\setminus Z}^{\dagger} = \mathcal{H}om(\widetilde{\Omega}_{P_0\setminus Z}, O_{P_0\setminus Z})$ and $\omega \in \widetilde{\Omega}_{P_0}$. Then $\phi(\omega_{|P_0\setminus Z}) \in O_{P_0\setminus Z} \simeq j_*(O_{P_0\setminus Z}) = O_{P_0}$ because P_0 is reduced, Cohen-Macaulay (depth g) and $\operatorname{codim}_{P_0}(Z) \geq 2$. Hence $\phi(\omega_{|P_0\setminus Z})$ extends regularly to P_0 , so that $\phi(\widetilde{\Omega}_{P_0}) \in O_{P_0}$, that is, $\phi \in \Theta_{P_0}^{\dagger}$. Since the extension of ϕ to P_0 is unique by $j_*(O_{P_0\setminus Z}) = O_{P_0}$, we see

$$\Theta_{P_0}^{\dagger} \simeq j_*(\Theta_{P_0 \setminus Z}^{\dagger}) \simeq j_*(X \otimes O_{P_0 \setminus Z}) = X \otimes O_{P_0}.$$

This proves (1) in the totally degenerate case.

Next we consider the general case g = g' + g'', g'' > 0. See [N99, p. 678]. Let e_{λ} be a basis of X, $\sigma \in \text{Del}^{(g')}$, and $O(\sigma)$ is a $T_0(\sigma)$ -bundle over A_0 , where $T_0(\sigma) = \text{Spec } k[\zeta_{e_{\lambda},\sigma}^{\pm 1}] \simeq \mathbf{G}_m^{g'}$. Let $\theta \in H^0(P_0, \Theta_{P_0}^{\dagger})$. Then there exists a closed subscheme Z of P_0 of codimension two such that the restriction of θ to $O(\sigma)$ is of the form

$$\theta' + \sum_{\lambda} a_{e_{\lambda},\sigma} \zeta_{e_{\lambda},\sigma} \frac{\partial}{\partial \zeta_{e_{\lambda},\sigma}},$$

where $\theta' \in H^0(\Theta_{A_0}) \otimes_k H^0(P_0 \setminus Z, O_{P_0}), \zeta_{\sigma, e_\lambda} \frac{\partial}{\partial \zeta_{e_\lambda, \sigma}}$ is a global log one form on P_0 , hence $a_{e_\lambda, \sigma} \in H^0(P_0 \setminus Z, O_{P_0})$. Since P_0 is reduced Cohen-Macaulay, $H^0(P_0 \setminus Z, O_{P_0}) = H^0(P_0, O_{P_0}) = k$, hence we have (1) and (2).

Lemma 3.6. Let \mathcal{L} be a line bundle on a T-scheme Z (viewed as a Z-scheme). Then $\operatorname{Aut}_T(\mathcal{L}/Z)$ is a group T-scheme over $\operatorname{Aut}_T(Z)$.

Proof. Let \mathbf{P} be a \mathbf{P}^1 -bundle $\mathbf{P}(O_Z \oplus \mathcal{L})$ which compactifies \mathcal{L} along infinity by $Z^{\infty} := \mathbf{P}(0 \oplus \mathcal{L}) \simeq Z, \ \pi : \mathcal{L} \to Z$ the projection. Let 0 be the zero section of $\mathcal{L}, \ \infty = Z^{\infty}$ the infinity section of \mathbf{P} . We recall $\mathcal{A}ut_T(\mathcal{L}/Z)$ is the functor from T-schemes to sets

$$\begin{aligned} U &\mapsto \mathcal{A}ut_T(\mathcal{L}/Z)(U) \\ &:= \left\{ (g,\phi); \begin{array}{l} g \in \operatorname{Aut}_T(Z)(U) \text{ and } \phi(0) = 0 \\ \phi : \mathcal{L}_U \simeq g^*(\mathcal{L}_U) \text{ fiberwise linear } Z_U \text{-isom.} \end{array} \right\} \\ &= \left\{ \begin{array}{l} g \in \operatorname{Aut}_T(Z)(U) \text{ and } \phi(0) = 0 \\ (g,\phi); \end{array} \right. \phi \in \operatorname{Aut}_T(\mathcal{L})(U) \text{ U-isom. s.t. } \pi\phi = g\pi \\ \phi : \text{ fiberwise linear over } Z_U \end{array} \right\} \end{aligned}$$

where the product $(g, \phi_1) \cdot (h, \phi_2)$ is defined by $(gh, h^*\phi_1 \circ \phi_2)$. See Definition 2.3. Since any automorphism of \mathbf{P}^1 which fixes 0 and ∞ is linear,

$$\mathcal{A}ut_T(\mathcal{L}/Z)(U) = \left\{ (g,\psi); \begin{array}{l} g \in \operatorname{Aut}_T(Z)(U), \ \psi(0) = 0, \psi(\infty) = \infty \\ \psi \in \operatorname{Aut}_T(\mathbf{P})(U) \text{ s.t. } \pi \psi = g\pi \end{array} \right\}$$

It follows that $Aut_T(\mathcal{L}/Z)$ is representable by the closed subgroup T-scheme (denoted $Aut_T(\mathcal{L}/Z)$) of $Aut_T(Z) \times Aut_T(\mathbf{P})$:

Aut_T(
$$\mathcal{L}/Z$$
) = {(g, ψ); ψ (0) = 0, ψ (∞) = ∞ , $\pi \psi = g\pi$ }.

This proves Corollary.

l

Theorem 3.7. Let S be a scheme, $(P \xrightarrow{\pi} S, \mathcal{L})$ an S-TSQAS. Let $\widetilde{\Omega}_{P/S}$ be the sheaf of germs over P of relative rational one forms with log poles (Definition 3.4), the sum of whose residues along any of one-codimensional singular loci of the fibers is equal to zero, $\Theta_{P/S}^{\dagger}$ the O_P -dual of $\widetilde{\Omega}_{P/S}$ and $\Omega_{P/S}^{\dagger}$ the O_P -dual of $\Theta_{P/S}^{\dagger}$. We define $\operatorname{Aut}_{S}^{\dagger}(P)$ to be the maximal closed subgroup S-scheme of $\operatorname{Aut}_{S}(P)$ which keep $\Omega_{P/S}^{\dagger}$ stable, and $\operatorname{Aut}_{S}^{\dagger}(P)^{0}$ (resp. $\operatorname{Aut}_{S}^{\dagger 0}(P)$) the identity component (resp. the fiberwise identity component, that is, the minimal open subgroup S-scheme) of $\operatorname{Aut}_{S}^{\dagger}(P)$. Then

- 1. $\operatorname{Aut}_{S}^{\dagger}(P)$ is flat over S, and the fiber $(\operatorname{Aut}_{S}^{\dagger}(P))_{s}$ has the tangent space $H^{0}(P_{s}, \Theta_{P}^{\dagger})$ for any geometric point s of S,
- 2. $\operatorname{Aut}_{S}^{\dagger 0}(P)$ is a semi-abelian group scheme over S, flat over S, while $\operatorname{Aut}_{S}^{\dagger}(P)^{0}$ is a semi-abelian group scheme over S, flat over S, possibly with reducible geometric fibers.

Proof. Let $s := \operatorname{Spec} k(s)$ be any geometric point of S. From its definition $\operatorname{Aut}_{S}^{\dagger}(P)$ is a closed subscheme of $\operatorname{Aut}_{S}(P)$, while $\operatorname{Aut}_{S}^{\dagger}(P)^{0}$ hence $\operatorname{Aut}_{S}^{\dagger 0}(P)$ is a closed subscheme of $\operatorname{Aut}_{S}(P)$ of finite type. Since $\operatorname{Aut}_{S}(P)$ commutes with base change (because $\operatorname{Aut}_{S}(P)$ represents the relative Aut functor), $\operatorname{Aut}_{S}(P)_{s} = \operatorname{Aut}_{k(s)}(P_{s})$. Hence $(\operatorname{Aut}_{S}^{\dagger}(P))_{s} = \operatorname{Aut}_{k(s)}^{\dagger}(P_{s})$ because $(\Omega_{P/S}^{\dagger})_{s} \simeq \Omega_{P_{s}/k(s)}^{\dagger}$. It follows that $(\operatorname{Aut}_{S}^{\dagger 0}(P)) \otimes k(s) = \operatorname{Aut}_{k(s)}^{\dagger 0}(P_{s})$. The tangent space of $(\operatorname{Aut}_{S}^{\dagger}(P))_{s}$ equals $H^{0}(P_{s}, \Theta_{P_{s}}^{\dagger})$ by Lemma 3.5. $\pi_{*}\Theta_{P/S}^{\dagger}$ is a finite free O_{P} -module of rank g by Lemma 3.5. Hence $(\pi_{*}\Theta_{P/S}^{\dagger})_{s} \simeq H^{0}(\Theta_{P_{s}/k(s)}^{\dagger})$, hence $(\pi_{*}\Omega_{P/S}^{\dagger})_{s} \simeq H^{0}(\Omega_{P_{s}/k(s)}^{\dagger})$. Hence $(\operatorname{Aut}_{S}^{\dagger}(P))_{s}$ is smooth of dimension g, hence $\operatorname{Aut}_{S}^{\dagger}(P)$ is S_{red} -flat, hence S-flat because flatness is an open condition. This proves (1).

Since $\operatorname{Aut}_{S}^{\dagger}(P)$ is S-flat by (1), so are $\operatorname{Aut}_{S}^{\dagger 0}(P)$ and $\operatorname{Aut}_{S}^{\dagger}(P)^{0}$. In view of Lemma 3.5, $(\operatorname{Aut}_{S}^{\dagger 0}(P))_{s} = \operatorname{Aut}_{k(s)}^{\dagger 0}(P_{s})$ coincides with the action of a semi-abelian scheme $O(\sigma)$ on P_{s} [N99, 4.12, p.680]. Hence $\operatorname{Aut}_{S}^{\dagger 0}(P)$ is a semi-abelian scheme over S, which proves (2).

4. The closed immersions of $SQ_{q,K}^{\text{toric}}$ into $\overline{AP}_{q,N}$

In this section we prove that there is a natural family of closed immersions of $SQ_{q,K}^{\text{toric}}$ into $\overline{AP}_{g,N}$ parametrized by an open subset of $\mathbf{P}(V_H)$.

Definition 4.1. Let $H = H(e) := \bigoplus_{i=1}^{g} (\mathbf{Z}/e_i \mathbf{Z})$ $(e_i|e_{i+1})$ and let $K = H \oplus H^{\vee}$ be an abelian group with the symplectic form e_K in Section 2. Aut (K, e_K) is the group of automorphisms of K keeping the symplectic form e_K invariant. We call $g \in \operatorname{Aut}(K, e_K)$ a symplectic automorphism of K. Let $\overline{\operatorname{Aut}}(K, e_K) := \operatorname{Aut}(K, e_K) / \pm \operatorname{id}_K$.

Definition 4.2. We define $\operatorname{Aut}_c(\mathcal{G}_H)$ to be the group consisting of all automorphisms of \mathcal{G}_H which fix the center of \mathcal{G}_H elementwise.

Lemma 4.3. Let π : Aut_c(\mathcal{G}_H) \rightarrow Aut(K, e_K) be the natural homomorphism. Then the following are true :

1. there is an exact sequence over \mathcal{O}_{N^3}

 $0 \to \ker(\pi) \to \operatorname{Aut}_c(\mathcal{G}_H) \xrightarrow{\pi} \operatorname{Aut}(K, e_K) \to 1,$

2. $\ker(\pi) \simeq K^{\vee} = \operatorname{Hom}(K, \mathbf{G}_m)$. This isomorphism is given explicitly as follows: for $\gamma \in K^{\vee}$, there exists $t \in K$ such that $\gamma(s) = e_K(t, s)$ ($\forall s \in K$). Let $\xi(\gamma)(g) := \omega(t)g\omega(t)^{-1}$. Then $\xi(\gamma) \in \ker(\pi)$ and $\xi(\gamma)(g) = [\omega(t), g]g, \ \xi(\gamma)(\omega(u)) = e_K(t, u)g$. Moreover $\xi(\gamma)\xi(\gamma') = \xi(\gamma + \gamma')$.

Proof. Since e_K is the commutator form of \mathcal{G}_H with values in the center, it is invariant by $\operatorname{Aut}_c(\mathcal{G}_H)$. Hence any $\xi \in \operatorname{Aut}_c(\mathcal{G}_H)$ induces a symplectic automorphism $\pi(\xi)$ of K, which defines the natural homomorphism π : $\operatorname{Aut}_c(\mathcal{G}_H) \to \operatorname{Aut}(K, e_K)$. It is easy to see $\operatorname{ker}(\pi) \simeq K^{\vee} \simeq K$.

We shall prove that π is surjective. For $\eta \in \operatorname{Aut}(K, e_K)$, we construct $\xi \in \operatorname{Aut}_c(\mathcal{G}_H)$ with $\pi(\xi) = \eta$ over \mathcal{O}_{N^3} . Let $s, t \in K$, $\omega(s) := (1, s) \in 1 \oplus K \subset \mathcal{G}_H$, and $\phi(s, t) := \omega(s+t)\omega(s)^{-1}\omega(t)^{-1}$ and $f(s, t) := \phi(\eta(s), \eta(t))/\phi(s, t)$. Then $\phi \in C^2(K, \mu_N)$, $f \in C^2(K, \mu_N)$ and $e_K(s, t) = \phi(s, t)/\phi(t, s)$ by [M12, p. 206, (d)]. Then ϕ and f belong to $H^2(K, \mu_N)$. Since $\eta \in \operatorname{Aut}(K, e_K)$, we have $e_K(s, t) = e_K(\eta(s), \eta(t))$, hence f(s, t) = f(t, s).

Then we shall prove f = 0 in $H^2(K, \mu_{N^3})$. Now we choose a symplectic basis e_i, f_i of K such that $e_K(e_i, f_i) = \zeta_{\delta_i}, e_K(e_i, f_j) = 1 \ (i \neq j), e_K(e_i, e_j) = e_K(f_i, f_j) = 1 \ (\forall i, j)$, where e_i and f_i are of order $\delta_i, \sqrt{|K|} = N = \prod_{j=1}^g \delta_i$.

Then by the argument of [N99, 7.4, p.690], we can prove by the induction on the number of generators of K that there exists $\chi \in C^1(K, \mu_{N^3})$ such that $f = \delta(\chi)$, that is, $f(s,t) = \chi(s+t)\chi(s)^{-1}\chi(t)^{-1}$. In fact, in the proof of [*ibid.*] each time when the number of (symplectic) generators increases, we need to multiply the denominator of the cochain χ by the order (say δ_i) of the new generator, hence need to multiply the denominator of χ by $N^2 = (\prod_{i=1}^g \delta_i)^2$ in total to define χ , hence $\chi \in C^1(K, \mu_{N^3})$.

By using χ we define $\xi(a\omega(s)) = a\chi(s)\omega(\eta(s))$ $(a \in \mathbf{G}_m, s \in K)$. It follows from $\eta \in \operatorname{Aut}(K)$ that $\xi \in \operatorname{Aut}_c(\mathcal{G}_H \otimes \mathcal{O}_{N^3})$. The rest is easy. \square

4.4. The action of $\operatorname{Aut}_c(\mathcal{G}_H)$ on $SQ_{g,K}^{\operatorname{toric}}$. Let $\xi \in \operatorname{Aut}_c(\mathcal{G}_H)$. Since $U_H \circ \xi$ is a representation of \mathcal{G}_H of weight one over O_N , it is equivalent to U_H over \mathcal{O}_N by [N10, p. 88]. It follows that there is $A(\xi) \in \operatorname{GL}(V_H)$, unique up to a constant multiple, such that

(2)
$$(U_H \circ \xi)A(\xi) = A(\xi)U_H$$
, equivalently,

(3)
$$U_H(\xi(a, z, \alpha))w(\beta) = a\beta(z)w(\alpha + \beta)$$

where $w(\beta) := A(\xi)v_H(\beta) =: \sum_{\gamma} a_{\beta,\gamma}(\xi)v_H(\gamma) \in V_H$. It is clear that $A(\xi\xi') = A(\xi)A(\xi')$ in $\mathrm{PGL}(V_H)$.

Let $p(\xi)$ be the automorphism of $\mathbf{P}(V_H)$ such that $p(\xi)^* = A(\xi)$. Let $\sigma := (P_0, \mathcal{L}_0, \phi, \tau)$ be any rigid- \mathcal{G}_H T-TSQAS, $\phi(\xi) := p(\xi) \circ \phi$, and $\tau(\xi) := \tau \circ \xi$. Then $\sigma(\xi) := (P_0, \mathcal{L}_0, \phi(\xi), \tau(\xi))$ is a rigid- \mathcal{G}_H T-TSQAS.

Lemma 4.5. Let k be an algebraically closed field over \mathcal{O}_N , $\xi \in \operatorname{Aut}_c(\mathcal{G}_H)$ and $\sigma := (P_0, \mathcal{L}_0, \phi, \tau) \in SQ_{g,K}^{\operatorname{toric}}(k)$. Then the following are true :

- 1. for $\gamma \in K^{\vee}$, $\tau(h) : \sigma \to \sigma(\xi(\gamma))$ is an isomorphism for some $h \in \omega(K)$, 2. $\sigma \simeq \sigma(\xi(-\operatorname{id}_K))$, (see the proof below for $\xi(-\operatorname{id}_K)$)
- 3. Suppose $\sigma \in SQ_{g,K}^{\text{toric}}(k)$ is generic. Then $\sigma \simeq \sigma(\xi)$ if and only if $\xi = \xi(\gamma) \text{ or } \xi = \xi(\gamma) \cdot \xi(-\operatorname{id}_K)$ for some $\gamma \in K^{\vee}$.

Proof. First we shall prove (1). Let $\omega(s) = (1, s)$ for $s \in K$. For $\gamma \in K^{\vee}$, then there exists a unique $t \in K$ such that $\gamma(s) = e_K(t, s) = [\omega(t), \omega(s)]$.

Let $h = \omega(t)$. We define $\xi(\gamma) \in \operatorname{Aut}_c(\mathcal{G}_H)$ by $\xi(\gamma)(g) := hgh^{-1} = [\omega(t), g]g$ where $[\omega(t), g] \in \mathbf{G}_m$. Hence

$$U_H(\xi(\gamma)(g))U_H(h) = U_H(h)U_H(g),$$

hence we can identify $A(\xi(\gamma)) = U_H(h)$. In view of Definition 2.3, $U_H(h)$ on V_H induces the translation $T_{h^{-1}}$ of P_0 . It follows that $\phi(\xi(\gamma))^* = \phi^*(p(\xi(\gamma)))^* = \phi^*U_H(h) = T_{h^{-1}}^*\phi_h\phi^*$, hence $\phi = \phi(\xi(\gamma)) \cdot T_h$ because both ϕ and $\phi(\xi(\gamma))$ are the maps from P_0 to $\mathbf{P}(V_H)$ so that we can ignore the unit ϕ_h . It is clear that $\tau(\xi(\gamma)(g))\tau(h) = \tau(h)\tau(g)$. It follows that the map $\tau(h): (P_0, \mathcal{L}_0) \to (P_0, \mathcal{L}_0)$ induces a \mathcal{G}_H -isomorphism

$$\sigma = (P_0, \mathcal{L}_0, \phi, \tau) \simeq \sigma(\xi(\gamma)) = (P_0, \mathcal{L}_0, \phi(\xi(\gamma)), \tau(\xi(\gamma)))$$

Next we shall prove (2). Any k-TSQAS (P_0, \mathcal{L}_0) has an automorphism inv_{P0} which is induced from the algebra endomorphism of \widetilde{R} [N99, p. 670] inv_R : $a(x)w^x\vartheta \mapsto a(x)w^{-x}\vartheta$, or in other words, induced from $(-\mathrm{id}_Z)$ of an abelian variety $Z := P_\eta$, the generic fibre of P in Definition 2.4 (by choosing an even B, r = 0 in Subsec. 3.1 by some base change). Note that $-\mathrm{id}_K \in \mathrm{Aut}(K, e_K)$ lifts to an automorphism $\mathrm{inv}_{\mathcal{G}_H}$ as $\mathrm{inv}_{\mathcal{G}_H}(a, z, \alpha) =$ $(a, -z, -\alpha)$. We denote $\mathrm{inv}_{\mathcal{G}_H}$ by $\xi(-\mathrm{id}_K)$. The automorphism inv_{P_0} gives an isomorphism $(P_0, \phi, \tau) \simeq (P_0, \phi(\xi(-\mathrm{id}_K)), \tau(\xi(-\mathrm{id}_K)))$. This proves (2).

Finally we shall prove (3). If $\sigma \simeq \sigma(\xi)$, then there exists an isomorphism $(f, \delta) : (P_0, \mathcal{L}_0) \simeq (P_0, \mathcal{L}_0)$ such that $(f, \delta) \cdot \tau(g) = \tau(\xi(g)) \cdot (f, \delta)$ for any g. It follows that $f(T_g(x)) = T_{\xi(g)}f(x)$ and $\delta(T_g(x))\phi_g(x) = \phi_{\xi(g)}(f(x))\delta(x)$. Since σ is a general abelian variety over $k, f \in \operatorname{Aut}(P_0)$ is a translation T_h , or the composite of a translation T_h and inv_{P_0} for $h = \omega(t)$ and $t \in K$. If $f = T_h$, then $(f, \delta) = (T_h, \phi_h) = \tau(h)$. This case is reduced to (1). If $f = T_h \cdot (\operatorname{inv}_{P_0})$, then $g := f \cdot (\operatorname{inv}_{P_0})$ is reduced to (1). This completes the proof.

Corollary 4.6. The action of $\operatorname{Aut}_c(\mathcal{G}_H)$ on $SQ_{q,K}^{\operatorname{toric}}$ reduces to $\overline{\operatorname{Aut}}(K, e_K)$.

Proof. The map $s(\xi) : SQ_{g,K}^{\text{toric}} \to SQ_{g,K}^{\text{toric}}$ sending σ to $\sigma(\xi^{-1})$ is an automorphism of $SQ_{g,K}^{\text{toric}}$. This defines an action of $\operatorname{Aut}_c(\mathcal{G}_H)$ on $SQ_{g,K}^{\text{toric}}$, that is, $s(\xi\xi') = s(\xi)s(\xi')$. By Lemma 4.5 (1), $s(\xi(\gamma))$ ($\gamma \in K^{\vee}$) acts on $SQ_{g,K}^{\text{toric}}$ trivially. by Lemma 4.3, the action of $\operatorname{Aut}_c(\mathcal{G}_H)$ reduces to $\overline{\operatorname{Aut}}(K, e_K)$. \Box

Definition 4.7. Let $\xi \in \operatorname{Aut}_c(\mathcal{G}_H)$, and $G(\xi)$ be the subset of $\mathbf{P}(V_H)$ consisting of all eigenvectors of $A(\xi) \neq \operatorname{id}$. Let $G_{g,K}$ be the union of all $G(\xi)$ for $\xi \in \operatorname{Aut}_c(\mathcal{G}_H)$. $G_{g,K}$ is at most (N-2)-dimensional. See Subsec. 5.4.

Lemma 4.8. Let k be an algebraically closed field over \mathcal{O}_N , and $(P_0, \mathcal{L}_0, \phi, \tau)$ be a rigid- \mathcal{G}_H k-TSQAS, and $(P_0, \mathcal{L}_0, \psi, \sigma)$ be another rigid- \mathcal{G}_H k-TSQAS. Then there exists $\xi \in \operatorname{Aut}_c(\mathcal{G}_H)$ such that

$$(P_0, \mathcal{L}_0, \psi, \sigma) \simeq (P_0, \mathcal{L}_0, \phi(\xi), \tau(\xi)).$$

Proof. We choose and fix a rigid- \mathcal{G}_H TSQAS (P_0, ϕ, τ) and take another rigid- \mathcal{G}_H TSQAS (P_0, ψ, σ) above (P_0, \mathcal{L}_0) . Let $\Phi := \{(T_q, \phi_q)\}_{q \in \mathcal{G}_H}$ (resp. $\Psi := \{(S_g, \psi_g)\}_{g \in \mathcal{G}_H}\} \text{ be a } \mathcal{G}_H\text{-linearization of } \mathcal{L}_0 \text{ such that } \tau = \tau_{\Phi}, \sigma = \tau_{\Psi}.$ Let $\tau^{ab}(g) = T_g$ and $\sigma^{ab}(g) = S_g$. By Definition 2.4 and by [N10, 2.19] $\tau^{ab}(\mathcal{G}_H) = \sigma^{ab}(\mathcal{G}_H) = K(P_0, \mathcal{L}_0).$ Hence via the isomorphisms $\tau^{ab}(\mathcal{G}_H) \simeq K$ and $= \sigma^{ab}(\mathcal{G}_H) \simeq K$ the identity of $K(P_0, \mathcal{L}_0)$ induces an isomorphism $\eta \in \text{Aut}(K)$ such that $\eta(T_g) = S_g$ for $\forall g \in \mathcal{G}_H$, which keeps e_K invariant because $e_K(S_g, S_h) = [g, h] = e_K(T_g, T_h) \in k$. Hence $\eta \in \text{Aut}(K, e_K).$ By Lemma 4.3 η is lifted to $\xi(\eta) \in \text{Aut}_c(\mathcal{G}_H)$ with $S_g = \eta(T_g) = T_{\xi(\eta)(g)}.$

It follows $\gamma(g) := \psi_g \cdot \phi_{\xi(\eta)(g)}^{-1} \in \operatorname{Aut}_{P_0}(\mathcal{L}_0) = \operatorname{Hom}_{O_{P_0}}(\mathcal{L}_0, \mathcal{L}_0)^{\times} = k^{\times}$. Then γ is a character of \mathcal{G}_H because

$$\gamma(gh) = \psi_{gh} \cdot \phi_{\xi(\eta)(g)\xi(\eta)(h)}^{-1} = (S_h^* \psi_g \cdot \psi_h) (T_{\xi(\eta)(h)}^* \phi_{\xi(\eta)(g)} \cdot \phi_{\xi(\eta)(h)})^{-1}$$

= $(S_h^* \psi_g \cdot \psi_h) (S_h^* \phi_{\xi(\eta)(g)} \cdot \phi_{\xi(\eta)(h)})^{-1} = S_h^* \gamma(g) \gamma(h) = \gamma(g) \gamma(h).$

Let $\xi(g) := \gamma(g)\xi(\eta)(g) \in \mathcal{G}_H$. Then $\xi \in \operatorname{Aut}_c(\mathcal{G}_H)$. Hence

$$\phi_{\xi(g)} = \phi_{\xi(\eta)(g)\gamma(g)} = T^*_{\gamma(g)}\phi_{\xi(\eta)(g)}\phi_{\gamma(g)} = \phi_{\xi(\eta)(g)}\gamma(g) = \psi_g,$$

$$\tau(\xi(g)) = (T_{\xi(g)}, \phi_{\xi(g)}) = (T_{\xi(\eta)(g)}, \psi_g) = (S_g, \psi_g) = \tau_{\Psi}(g) = \sigma(g)$$

Hence $\sigma = \tau \xi$. Let $A := (\phi^*)^{-1}(\psi^*) \in \operatorname{GL}(V_H \otimes k)$. Then

$$U_H(g) = \rho(\psi, \sigma)(g) = (\psi^*)^{-1} S_{g^{-1}}^* \psi_g \psi^* = (\psi^*)^{-1} T_{\xi(g)^{-1}}^* \phi_{\xi(g)} \psi^*$$
$$= A^{-1} \rho(\phi, \tau)(\xi(g)) A = A^{-1} U_H(\xi(g)) A$$

by Definition 2.4 (3). We can identify $A = A(\xi)$ so that $\psi = p(\xi)\phi$, $\sigma = \tau\xi$, hence $(P_0, \psi, \sigma) = (P_0, \phi(\xi), \tau(\xi))$.

Lemma 4.9. Let k be a local ring with N = |H| invertible, R a local kalgebra, I an ideal of R with $I^2 = 0$ such that k = R/I. Let $\sigma_0 = (P_0, \mathcal{L}_0, \phi_0, \tau_0)$ be a rigid- \mathcal{G}_H k-TSQAS, and $\sigma := (P, \mathcal{L}, \phi, \tau)$ a rigid- \mathcal{G}_H R-TSQAS such that $\sigma \otimes_R (R/I) \simeq \sigma_0$, If (P, \mathcal{L}) is the pull back of (P_0, \mathcal{L}_0) to R, then σ is the pull back of σ_0 to R.

Proof. By the assumption, $(P, \mathcal{L}) \simeq \text{Spec } R \times_k (P_0, \mathcal{L}_0)$, and R is a k-algebra with $R = k \oplus I$, and $H^0(P, \mathcal{L}) \simeq H^0(P_0, \mathcal{L}_0) \otimes_k R$ is an R-isomorphism with \mathcal{G}_H -action. Hence there exists $B \in I \cdot \text{End}(V_H \otimes R)$ such that

$$\phi^* = \phi_0^* + \phi_0^* \cdot B, \ \phi_0^* : V_H \otimes k \simeq H^0(P_0, \mathcal{L}_0).$$

Moreover τ maps \mathcal{G}_H into $\operatorname{Aut}_R(\mathcal{L}/P) \simeq \operatorname{Spec} R \times_k \operatorname{Aut}_k(\mathcal{L}_0/P_0)$. Hence $\tau^{ab}(\mathcal{G}_H) \subset \operatorname{Aut}^{\dagger}(P) = \operatorname{Spec} R \times_k \operatorname{Aut}^{\dagger}(P_0)$. Let $\tau^{ab} = T^0 + T^1$, $T^0 = \tau^{ab} \otimes k$ and $T^1 = \{T_g^1\} \in C^1(\mathcal{G}_H, IH^0(\Theta_{P_0}^{\dagger}))$ where $\tau^{ab}(g) := T_g^0 + T_g^1$, $T_g^0 \in \operatorname{Aut}^{\dagger}(P_0), T_g^1 \in IH^0(\Theta_{P_0}^{\dagger})$. Let $\epsilon_g = T_{g^{-1}}^0 T_g^1$. Since τ^{ab} is a group homomorphism, we have $\epsilon_{gh} = \operatorname{Ad}(T_{h^{-1}}^0)\epsilon_g + \epsilon_h$. Thus $\epsilon := \{\epsilon_g\}_{g \in \mathcal{G}_H} \in H^1(\mathcal{G}_H, IH^0(\Theta_{P_0}^{\dagger}))$. Let $W := H^0(P_0, \Theta_{P_0}^{\dagger})$. Then $W \simeq k^{\oplus g}$ by Lemma 3.5 and Nakayama's lemma. Since T_h $(h \in \mathcal{G}_H)$ acts on P_0 as translation by $K(P_0, \mathcal{L}_0) \simeq K$, T_h^0 keeps any $\theta \in W$ invariant. Hence $\epsilon_{gh} = \epsilon_g + \epsilon_h$, and $\epsilon \in \operatorname{Hom}(K, IW) = \operatorname{Hom}(K, I^{\oplus g}) = 0$ because N is invertible in R, hence $\epsilon = 0, \tau^{ab} = T^0$.

Let $\phi_g = \phi_g^0 + \phi_g^1$ and $\varepsilon_g := (\phi_g^0)^{-1} \cdot \phi_g^1$. Then $\varepsilon_g \in IH^0(O_{P_0})$. In fact, we can write ϕ_q in down-to-earth terms as follows. Since $(P, \mathcal{L}) \simeq (P_0, \mathcal{L}_0)_R$, we can choose, by [N10, p. 94], a \mathcal{G}_H -invariant affine open covering U_i of P and a one-cycle $A_{ij}(x)$ of \mathcal{L}_0 such that \mathcal{L}_0 is trivial over U_j . Then we obtain $\phi_i^{\nu}(g, x) = \frac{A_{ij}(gx)}{A_{ij}(x)} \phi_j^{\nu}(g, x) \ (\nu = 0, 1), \text{ where } (\phi_g^{\nu})_{|U_i} =: \phi_i^{\nu}(g, x). \text{ Hence}$ $\phi_i^0(g,x)^{-1}\phi_i^1(g,x) = \phi_i^0(g,x)^{-1}\phi_i^1(g,x)$. This implies $\varepsilon_g \in IH^0(O_{P_0})$.

Since ϕ_q is a \mathcal{G}_H -linearization of \mathcal{L} ,

$$\phi_{gh}^0 = (T_h^0)^* \phi_g^0 \cdot \phi_h^0, \ \phi_{gh}^1 = (T_h^0)^* \phi_g^0 \cdot \phi_h^1 + (T_h^0)^* \phi_g^1 \cdot \phi_h^0,$$

whence $\varepsilon_{gh} = (T_h^0)^* \varepsilon_g + \varepsilon_h = \varepsilon_g + \varepsilon_h$ because $(T_h^0)^* \varepsilon_g = \varepsilon_g \in IH^0(O_{P_0})$. It follows $\varepsilon := {\varepsilon_g} \in \operatorname{Hom}(\mathcal{G}_H, IH^0(O_{P_0})) = \operatorname{Hom}(K, IH^0(O_{P_0})) = 0$ because N is invertible in R and $IH^0(O_{P_0}) = I$ by $H^0(O_{P_0}) = k$. Hence $\varepsilon = 0$, $\phi_g = \phi_g^0 \ (\forall g \in \mathcal{G}_H), \text{ and } \tau = \tau_0.$ Hence we see

$$U_H = \rho(\phi, \tau) = \rho(\phi, \tau_0) = \rho(\phi_0, \tau_0) + [\rho(\phi_0, \tau_0), B] = U_H + [U_H, B],$$

whence $[U_H, B] = 0$. Since U_H is an irreducible representation of \mathcal{G}_H , B is a scalar. Hence $\sigma \simeq (\sigma_0)_R$.

Definition 4.10. Let (P_0, \mathcal{L}_0) be a k-TSQAS with $\mathcal{L}_0 \mathcal{G}_H$ -linearized. Then a maximal isotropic subgroup H of K is said to be hereditary for (P_0, ϕ_0, τ_0) if $\tau_0^{ab}(H) \subset G_0 := \operatorname{Aut}_k^{\dagger 0}(P_0)$. Therefore if P_0 is an abelian variety, then any maximal isotropic subgroup is hereditary. If (P_0, \mathcal{L}_0) is totally degenerate, then a maximal isotropic subgroup H (denoted H_{hd}) of K is hereditary iff $H \subset G_0 := \operatorname{Aut}_k^{\dagger 0}(P_0) = \operatorname{Hom}_k(X, \mathbf{G}_m).$

Definition 4.11. We freely use the notation of [N99, pp.670-671]. Let (P_0, \mathcal{L}_0) be a totally degenerate k-TSQAS with \mathcal{L}_0 \mathcal{G}_H -linearized, H_{hd} a hereditary maximal isotropic subgroup of K for (P_0, \mathcal{L}_0) with $H_{hd}^{\vee} = X/Y$.

Let $\phi_{\text{hd}}: P_0 \to \mathbf{P}(V_{H_{\text{hd}}})$ be

$$\phi_{\mathrm{hd}}^*(v_{H_{\mathrm{hd}}}(\alpha)) = \theta(\alpha) := \sum_{y \in Y} a(x+y)w^{x+y},$$

where $x \equiv \alpha \in H_{hd}^{\vee} = X/Y$. We define

$$\begin{aligned} \tau_{\rm hd}(a,z,u)(a(x)w^x\vartheta) &:= a\alpha(z)a(x+u)w^{x+u}\vartheta, \\ \tau_{\rm hd}(a,z,\alpha) &= \tau_{\rm hd}^R(a,z,u) \bmod Y, \\ \rho_{\rm hd}(a,z,\alpha)\theta(\beta) &= a\beta(z)\theta(\alpha+\beta), \end{aligned}$$

where $u \in X$, $\alpha \equiv u \in H_{hd}^{\vee}$, and $(a, z, \alpha) \in \mathcal{G}_H$. It is clear that

$$\rho(\phi_{\rm hd}, \tau_{\rm hd}) = (\phi_{\rm hd}^*)^{-1} \rho_{\rm hd} \phi_{\rm hd}^* = U_{H_{\rm hd}}$$

Lemma 4.12. Let (P_0, \mathcal{L}_0) be a totally degenerate k-TSQAS with \mathcal{L}_0 strictly \mathcal{G}_H -linearized and $G_0 = \operatorname{Aut}_k^{\dagger 0}(P_0)$. Let D = (f) and $f = \sum_{x \in X/Y} a_x \theta(x)$, $a_x \in k$. Then D contain no G_0 -orbits iff $a_x \neq 0$ for any $x \in X/Y$.

IKU NAKAMURA

Proof. Let (Q_0, \mathcal{L}_0) be the unique PSQAS associated with (P_0, \mathcal{L}_0) via sq [N10, p.71]. By [NS06, Theorem 2] and [N99, 4.2] $H^0(P_0, \mathcal{L}_0) = H^0(Q_0, \mathcal{L}_0)$ and there is a bijective correspondence between G_0 -orbits $O(\sigma)$ of P_0 and $O_Q(\sigma)$ of Q_0 . Any zero-dimensional G_0 -orbit of Q_0 is $O_Q(c) \in W_0(c)$ $(c \in V_0(c))$ X), which is defined by $\xi_{x,c} = 0$ for all $x \neq 0, x \in \text{Star}(0)$ by [N99, § 3, § 5]. By [N99, 4.2], $H^0(P_0, \mathcal{L}_0) = H^0(Q_0, \mathcal{L}_0)$ is spanned by

$$\theta(x) := \sum_{y \in Y} a_0(x+y)\xi_{x+y} \quad (x \in X/Y).$$

Suppose that any of g elementary divisor of $X/Y = H_{hd}^{\vee}$ is at least 3. Then by [N99, 6.3], The restriction of $\theta(x)/\xi_c$ to $W_0(c)$ is equal to

$$\theta(x)/\xi_c = \begin{cases} a_0(x+y)(\xi_{x+y}/\xi_c) & \text{if } \exists \ y \in Y \text{ with } x+y \in \text{Star}(c), \\ 0 & \text{otherwise} \end{cases}$$

where $\xi_c/\xi_c = 1$. Hence $(\theta(x)/\xi_c)_{|W_0(c)}$ is at most a single term, and $\theta(x)$ is zero at $O_Q(c)$ if $x \notin c + Y$. It follows that $\theta(c)$ is the unique element of $H^0(Q_0, \mathcal{L}_0)$ that does not vanish at O(c). Hence $\theta(c)$ is the unique element of $H^0(P_0, \mathcal{L}_0)$ that does not vanish at O(c).

Let D = (f) and $f = \sum_{x \in X/Y} a_x \theta(x), a_x \in k$. Thus we see that the divisor D does not contain O(c) iff $a_x \neq 0$ for $x \equiv c \mod Y$. Hence D contains no O(c) $(c \in X/Y)$ iff $a_x \neq 0$ for any $x \in X/Y$. Meanwhile, D contains no G_0 -orbits iff D contains no zero-dimensional G_0 -orbits iff D contains no O(c) ($c \in X/Y$). This proves the lemma in this case.

In the general case, let D = (f), and $f = \sum_{\alpha \in X/Y} a_{\alpha} \theta(\alpha) \in H^0(P_0, \mathcal{L}_0)$. There exists an étale Y/3Y-covering $\pi: P'_0 \to P_0$. Let $\mathcal{L}'_0 := \pi^*(\mathcal{L}_0)$. Then $\pi^* f = \sum_{\alpha' \in X/3Y} b_{\alpha'} \vartheta(\alpha') \in H^0(P'_0, \mathcal{L}'_0), \text{ where } \vartheta(\alpha') = \sum_{x \in \alpha'} a(x) w^x \in \mathcal{H}^0(P'_0, \mathcal{L}'_0)$ $H^0(P'_0,\mathcal{L}'_0), \ b_{\alpha'} = a_{\alpha} \text{ for } \alpha' \equiv \alpha \mod Y.$ Then D contains no $O_{P_0}(c)$ $(c \in X/Y)$ iff π^*D contains no $O_{P'_0}(c)$ $(c \in X/3Y)$ iff $b_{\alpha'} \neq 0$ for any $\alpha' \in X/3Y$ iff $a_{\alpha} \neq 0$ for any $\alpha \in X/Y$. This proves the lemma.

Lemma 4.13. Let H be a maximal isotropic subgroup of (K, e_K) , and v := $\sum_{\beta \in H^{\vee}} a_{\beta} v_H(\beta) \in V_H$. Then the following are equivalent :

- 1. $(\operatorname{Aut}_{k}^{\dagger 0}(P_{0}), P_{0}, \mathcal{L}_{0}, \operatorname{div} \phi^{*}(v))$ is a semiabelic pair for any rigid- \mathcal{G}_{H} k-TSQAS ($P_0, \mathcal{L}_0, \phi, \tau$),
- 2. $\sum_{\alpha \in H^{\vee}} a_{\alpha} a_{\alpha,\beta}(\xi) \neq 0 \text{ for } \forall \beta \in H^{\vee}, \forall \xi \in \operatorname{Aut}_{c}(\mathcal{G}_{H}),$ 3. $\sum_{\alpha \in H^{\vee}} a_{\alpha} a_{\alpha,\beta}(\xi(\eta)) \neq 0 \text{ for } \forall \beta \in H^{\vee}, \text{ and some } \xi(\eta) \text{ with } \pi(\xi(\eta)) = \eta$ for $\forall \eta \in \operatorname{Aut}(K, e_K)$.

Proof. First we assume that P_0 is totally degenerate and then we may assume $H = H_{\rm hd}$. By Lemma 4.8, $(P, \phi, \tau) \simeq (P, \phi_{\rm hd}(\xi), \tau_{\rm hd}(\xi))$ for some $\xi \in \operatorname{Aut}_c(\mathcal{G}_H)$. Since $H_{\operatorname{hd}}^{\vee} = X/Y$,

$$\phi^*(v) = \phi^*_{\mathrm{hd}} A(\xi) (\sum_{\alpha \in X/Y} a_\alpha v_{H_{\mathrm{hd}}}(\alpha)) = \sum_{\beta \in X/Y} (\sum_{\alpha \in X/Y} a_\alpha a_{\alpha,\beta}(\xi)) \theta(\beta)$$

whence (1) and (2) are equivalent by Lemma 4.12.

If P_0 is partially degenerate with A_0 (resp. T_0) its abelian part (resp. torus part), then we choose a hereditary maximal isotropic subgroup H_{hd} of K for (P_0, \mathcal{L}_0) such that X/Y is a direct summand of H_{hd}^{\vee} . See Subsec. 3.1. Assume for simplicity $Y \subset eX$ for some $e \geq 3$. Let $G_0 = \operatorname{Aut}_k^{\dagger 0}(P_0)$ and $F = \phi^*(v) \in H^0(P_0, \mathcal{L}_0)$. Then F is of the form $F = \sum_{\alpha \in H_{hd}^{\vee}} a_\alpha \theta(\alpha)$, $\theta(\alpha) = \phi^*(v_H(\alpha)) = \sum_{x \equiv \bar{x} \mod Y} \theta_x \zeta_x$ for some $0 \neq \theta_x \in H^0(\mathcal{A}_0, \mathcal{M}_x)$, by [N99, 4.10], where $a_\alpha \in k$, $\alpha = (a, \bar{x}), \ \bar{x} \in X/Y$. Since $eX \subset Y$ for some $e \geq 3$, by [N99, 6.3], for $c \in X$, $(\theta(\alpha)/\zeta_c)_{O(c)} = \theta_c \neq 0$ if $c \in \bar{x}$, and $(\theta(\alpha)/\zeta_c)_{O(c)} = 0$ otherwise. Since O(c) is an abelian variety \mathcal{A}_0 , and since θ_c is not identically zero, $a_\alpha \neq 0$ iff div(F) does not contains O(c). Hence $a_\alpha \neq 0$ for any α iff div(F) contains no G_0 -orbits. By Lemma 4.8, any (P, ϕ, τ) is isomorphic to $(P, \phi_{hd}(\xi), \tau_{hd}(\xi))$ for some $\xi \in \operatorname{Aut}_c(\mathcal{G}_H)$. Hence by the same argument as in the totally degenerate case, (1) and (2) are equivalent. By Lemma 4.5, $(P_0, \phi(\xi \cdot \xi_0), \tau(\xi \cdot \xi_0)) \simeq (P_0, \phi(\xi), \tau(\xi))$ if $\xi_0 = \xi(\gamma)$ or $\xi_0 = \xi(-\operatorname{id}_K)$. Hence $(\operatorname{Aut}_k^{\dagger 0}(P_0), P_0, \operatorname{div} \phi(\xi \cdot \xi_0)^*(v))$ is semiabelic if $(\operatorname{Aut}_k^{\dagger 0}(P_0), P_0, \operatorname{div} \phi(\xi)^*(v))$ is semiabelic. Hence (2) and (3) are equivalent.

Theorem 4.14. Let $K = H \oplus H^{\vee}$ be a finite symplectic group, H a maximal isotropic subgroup of K, $F_{g,K}$ a hypersurface of $\mathbf{P}((V_H)^{\vee})$

(4)
$$F_{g,K}: \prod_{\beta \in H^{\vee}, \eta \in \overline{\operatorname{Aut}}(K, e_K)} \left(\sum_{\alpha \in H^{\vee}} a_{\alpha} a_{\alpha, \beta}(\xi(\eta))\right) = 0.$$

and $D_{g,K} = \mathbf{P}((V_H)^{\vee}) \setminus (F_{g,K} \cup G_{g,K})$. (See Definition 4.7 for $G_{g,K}$.) We define the map sqap by

sqap :
$$SQ_{g,K}^{\text{toric}} \times D_{g,K} \to \overline{AP}_{g,N}$$

 $(P, \mathcal{L}, \phi, \tau) \times [v] \mapsto (\operatorname{Aut}^{\dagger 0}(P), P, \mathcal{L}, \operatorname{div} \phi^{*}(v)).$

Then the following are true :

- 1. sqap $\otimes \mathcal{O}_{N^3}$ is an étale Galois covering with Gal(sqap) $\simeq \operatorname{Aut}_c(\mathcal{G}_H)$,
- 2. $\operatorname{sqap}_{v} := \operatorname{sqap}_{|SQ_{g,K}^{\operatorname{toric}}\times[v]}$ is a closed immersion for any fixed $[v] \in D_{g,K}(k)$, where k is any field over \mathcal{O}_N .

Proof. First we prove that sqap is well-defined. Since any k-TSQAS is seminormal by [N10, 3.3, 3.8] for any algebraically closed field k over \mathcal{O}_N , we have sqap $(\sigma \times v) \in \overline{AP}_{g,N}(T)$ by Lemma 4.13. Let T be any \mathcal{O}_N -scheme and $v \in D_{g,K}(T)$. If $\sigma := (P, \mathcal{L}, \phi, \tau) \simeq (P', \mathcal{L}', \phi, \tau')$ in $SQ_{g,K}^{\text{toric}}(T)$, then there exists an isomorphism $(f, \delta) : \sigma \to \sigma'$ such that $\phi' \cdot f = \phi$ and $(f, \delta)\tau(g) = \tau'(g)(f, \delta) \ (g \in \mathcal{G}_H)$. Hence $\phi^*v = f^*(\phi')^*v$ for any $v \in V_H$, hence $(f^*)^{-1} \operatorname{div}(\phi^*v) = \operatorname{div}((\phi')^*v)$. Hence the map $(\operatorname{Ad}(f), f, \delta, (f^*)^{-1})$ is an isomorphism from $\operatorname{sqap}(\sigma, [v])$ to $\operatorname{sqap}(\sigma', [v])$ where $\operatorname{Ad}(f)(g) = fgf^{-1}$ for $g \in \operatorname{Aut}^{\dagger 0}(P)$. Thus sqap is a well-defined \mathcal{O}_N -morphism. For $\xi \in \operatorname{Aut}_c(\mathcal{G}_H)$, $\sigma := (P, \mathcal{L}, \phi, \tau) \in SQ_{g,K}^{\operatorname{toric}}(T)$ and $[v] \in D_{g,K}$, let $\sigma(\xi) := (P, \mathcal{L}, \phi(\xi), \tau(\xi))$. We define an action of ξ by

$$\xi \cdot (\sigma, [v]) := (\sigma(\xi^{-1}), [A(\xi)v]).$$

This is also well-defined. We see

- (i) $(\xi\xi') \cdot (\sigma, [v]) = \xi \cdot (\xi' \cdot (\sigma, [v]))$ for $\forall \xi, \xi' \in \operatorname{Aut}_c(\mathcal{G}_H)$,
- (ii) $\operatorname{sqap}(\xi \cdot (\sigma, [v])) = \operatorname{sqap}(\sigma, [v]) \text{ for } \forall \xi \in \operatorname{Aut}_c(\mathcal{G}_H).$

Next we prove

(5)
$$\operatorname{sqap}^{-1}(\operatorname{sqap}(\sigma, [v])) = \operatorname{Aut}_{c}(\mathcal{G}_{H}) \cdot (\sigma, [v])$$

for any $v \in D_{g,K}(k)$ and any field k over \mathcal{O}_{N^3} . The inclusion LHS \supset RHS is clear. Conversely by Lemma 4.8, LHS \subset RHS. By Lemma 4.9, ϕ and τ are rigid for a fixed (P, \mathcal{L}) over a local ring k, while $\operatorname{Aut}^{\dagger 0}(P, \mathcal{L})$ is uniquely determined by (P, \mathcal{L}) . Hence the tangent space of $SQ_{g,K}^{\operatorname{toric}} \times D_{g,K}$ at $(\sigma, [v])$ is isomorphic to the tangent space of $\overline{AP}_{g,N}$ at $\operatorname{sqap}(\sigma, [v])$. Hence sqap is étale. Le k be any field over \mathcal{O}_{N^3} and $(\sigma, [v]) \in SQ_{g,K}(k) \times D_{g,K}(k)$. $A(\xi)[v]$ are all distinct because $[v] \in G_{g,K}^c$, hence $\xi \cdot (\sigma, [v])$ are all distinct for $\xi \in \operatorname{Aut}_c(\mathcal{G}_H)$. This proves (1) by Equality (5).

Next we prove (2). Let k be any field over \mathcal{O}_N and we prove $\operatorname{sqap}_v(k)$ is injective. Suppose $\operatorname{sqap}(\sigma \times [v]) = \operatorname{sqap}(\sigma' \times [v])$ for some $\sigma = (P, \phi, \tau)$, $\sigma' = (P, \phi', \tau') \in SQ_{g,K}^{\operatorname{toric}}(k)$ and $[v] \in D_{g,K}(k)$. By Lemma 4.8, there exists $\xi \in \operatorname{Aut}_c(\mathcal{G}_H)$ such that $(\phi', \tau') \simeq (\phi(\xi), \tau(\xi))$ and $p(\xi)^* = A(\xi)$. It follows that $[\phi^*p(\xi)^*(v)] = [\phi^*v]$, hence $[A(\xi)(v)] = [v]$ because ϕ^* is injective. Hence v is an eigenvector of $A(\xi)$. Since $v \in D_{g,K} \subset G_{g,K}^c$, we have $A(\xi) = \operatorname{id}_{V_H}$. It follows that $\operatorname{sqap}_v(k)$ is injective.

In order to prove that sqap_v is a closed immersion, it suffices to prove

$$\operatorname{sqap}_{v}(R): SQ_{q,K}^{\operatorname{toric}}(R) \times \{v\} \to \overline{AP}_{g,N}(R)$$

is injective for R an Artin local k-ring, I the maximal ideal of R with $I^2 = 0$, R/I = k. Since the set of all R-deformations of a given $\sigma \in SQ_{g,K}^{\text{toric}}(k)$ (resp. $\operatorname{sqap}_v(\sigma) \in \overline{AP}_{g,N}(k)$) with R/I = k admits a k-vector space structure, it suffices to prove that if $\sigma \in SQ_{g,K}^{\text{toric}}(R)$ and if $\operatorname{sqap}_v(\sigma)$ is trivial in $\overline{AP}_{g,N}(R)$, then σ is trivial. Let $\sigma = (P, \mathcal{L}, \phi, \tau) \in SQ_{g,K}^{\text{toric}}(R)$. Suppose $\operatorname{sqap}_v(\sigma)$ is trivial in $\overline{AP}_{g,N}(R)$. Then $(P, \mathcal{L}) = (P_0, \mathcal{L}_0) \times \operatorname{Spec} R$. By Lemma 4.9, σ is trivial. This proves the injectivity of $\operatorname{sqap}_v(R)$, hence sqap_v is a closed immersion. \Box

Corollary 4.15. $SQ_{g,1}^{\text{toric}} \simeq \overline{AP}_{g,1}$.

Proof. We note that $SQ_{g,1}^{\text{toric}}$ is the reduced-coarse-moduli of $(P, \mathcal{L}, \phi, \tau)$ with ϕ and τ trivial. By Lemma 4.13 (2), $(\operatorname{Aut}_{k}^{\dagger 0}(P_{0}), P_{0}, \mathcal{L}_{0}, \operatorname{div} \phi^{*}(v_{0}))$ is semiabelic if (P_{0}, \mathcal{L}_{0}) is any k(0)-TSQAS with $K = \{1\}$ and v_{0} the generator of $V_{H} = V_{\{1\}} \simeq k(0)$. Hence sqap : $SQ_{g,1}^{\text{toric}} \to \overline{AP}_{g,1}$ is a birational morphism defined everywhere. Let T be any scheme and $(P, \mathcal{L}) \in SQ_{g,1}^{\text{toric}}(T)$ any T-TSQAS. Hence $h^0(P_s, \mathcal{L}_s) = 1$ for any geometric point $s \in T$. Therefore sqap $(P, \mathcal{L}) = (\operatorname{Aut}^{\dagger 0}(P), P, \mathcal{L}, \Theta)$ is a semiabelic T-pair where Θ is the divisor defined by a unique generator of the invertible sheaf $\pi_*(\mathcal{L})$. Since sqap : $A_{g,1} \to AP_{g,1}$ is an isomorphism and $SQ_{g,1}^{\text{toric}}$ is proper, sqap is surjective. Hence if $(G, P, \mathcal{L}, \Theta)$ is a semi-abelic T-pair, then (P, \mathcal{L}) is a T-TSQAS. Hence the forgetful map $(G, P, \mathcal{L}, \Theta) \mapsto (P, \mathcal{L})$ is the inverse of sqap. Since $\overline{AP}_{g,1}$ is the closure of a reduced scheme $AP_{g,1}$, it is reduced. $SQ_{g,1}^{\text{toric}}$ is also reduced by the same reason. This proves $SQ_{g,1}^{\text{toric}} \simeq \overline{AP}_{g,1}$.

5. The one-dimensional case

We use the notation in Subsec. 2.1 and 4.4. Let $H = \mu_3 \simeq \mathbb{Z}/3\mathbb{Z}$, $H^{\vee} = \mathbb{Z}/3\mathbb{Z}$, $K := K(H) = H \oplus H^{\vee}$ and $\mathcal{O} := \mathbb{Z}[\zeta_3, 1/3]$. Let $e_0 \in H$, $f_0 \in H^{\vee}$ be a standard basis of K_H with $e_K(e_0, f_0) = \zeta_3$. Let $C(\mu)$ be a Hesse cubic

$$x_0^3 + x_1^3 + x_2^3 - 3\mu x_0 x_1 x_2 = 0$$

Let $\phi : C(\mu) \to \mathbf{P}(V_H)$ be $\phi^*(v_H(\beta f_0)) = x_\beta$ and $\tau = U_H$. Then $\sigma := (C(\mu), \phi, \tau)$ is a rigid- \mathcal{G}_H TSQAS of dimension one and conversely. By abuse of notation we use the same symbol ϕ ad τ for any $C(\mu)$.

Let $\xi \in \operatorname{Aut}_c(\mathcal{G}_H)$. Then $\sigma(\xi) := (C(\mu), \phi(\xi), \tau(\xi))$ is another Hesse cubic $(C(\mu'), \phi, \tau)$, and the action of H^{\vee} on σ is transformed into the action of $\xi(H^{\vee})$ on $\sigma(\xi)$, which is just the action of H^{\vee} on $(C(\mu'), \phi, \tau)$ by Subsec. 4.4 Eq.(3).

5.1. The case $\eta_1(e_0) = -f_0$ and $\eta_1(f_0) = e_0$. Let $\xi_1 \in \operatorname{Aut}_c(\mathcal{G}_H)$ be

$$\xi_1(\omega(e_0)) := \omega(-f_0), \ \xi_1(\omega(f_0)) := \omega(e_0)$$

Let $A(\xi_1) = (a_{\beta,\gamma})$ and $w(\beta) = v_H(\xi_1(\beta f_0))$. Then since $\omega(-f_0) \cdot w(\beta) = \zeta_3^\beta w(\beta)$, $\omega(e_0) \cdot w(\beta) = w(\beta + 1)$ by Subsec. 4.4 Eq.(3), we see $A(\xi_1) = a_{0,0}(\zeta_3^{\beta\gamma})$. Let $P = C(\mu)$ and let $(P, \phi, \tau) := (C(\mu), \phi, \tau)$. Let $y_\beta := \phi(\xi_1)^*(v_H(\beta f_0)) = \sum_{\gamma} a_{\beta,\gamma} x_{\gamma}$. Then $(P, \phi(\xi_1), \tau(\xi_1))$ is a Hesse cubic

$$(\mu - 1)(y_0^3 + y_1^3 + y_2^3) - 3(\mu + 2)y_0y_1y_2 = 0.$$

5.2. The case $\eta_2(e_0) = e_0$ and $\eta_2(f_0) = e_0 + f_0$. Let $\xi_2 \in \text{Aut}_c(\mathcal{G}_H)$ be

$$\xi_2(\omega(e_0)) = \omega(e_0), \ \xi_2(\omega(f_0)) = \zeta_3\omega(e_0)\omega(f_0) = \zeta_3^2\omega(e_0 + f_0).$$

Since $\xi_2(\omega(e_0)) \cdot w(\beta) = \zeta_3^\beta w(\beta)$, $\xi_2(\omega(f_0)) \cdot w(\beta) = w(\beta + 1)$, we see $A(\xi_2) = a_{11} \operatorname{diag}(\zeta_3, 1, 1)$. Let $(P, \phi, \tau) := (C(\mu), \phi, \tau)$ as before, and $z_\beta := \phi(\xi_2)^*(v_H(\beta f_0))$. Then $(P, \phi(\xi_2), \tau(\xi_2))$ is a Hesse cubic

$$(z_0^3 + z_1^3 + z_2^3) - 3\zeta_3\mu z_0 z_1 z_2 = 0.$$

IKU NAKAMURA

5.3. The group $\overline{\operatorname{Aut}}(K, e_K)$. Let $SQ_{1,3} := SQ_{1,K} \simeq SQ_{1,K}^{\operatorname{toric}}$. $SQ_{1,3}$ is the reduced-fine-moduli scheme over \mathcal{O} of Hesse cubics $(C(\mu), \phi, \tau)$.

Let $b_0 = [0, 1, -1]$, $b_1 = [0, 1, -\zeta_3]$, $b_2 = [-1, 0, 1]$. Hence $-b_2 = [1, -1, 0]$. We define $g_i \in PGL(3, \mathcal{O}_3)$ by

$$g_1 := A(\xi_1) : (x_0, x_1, x_2) \mapsto (y_0, y_1, y_2),$$

$$g_2 := A(\xi_2) : (y_0, y_1, y_2) \mapsto (z_0, z_1, z_2),$$

where

$$\begin{pmatrix} y_0 \\ y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \zeta_3 & \zeta_3^2 \\ 1 & \zeta_3^2 & \zeta_3 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix}, \ \begin{pmatrix} z_0 \\ z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} \zeta_3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} y_0 \\ y_1 \\ y_2 \end{pmatrix}.$$

Each g_i induces a transformation on the group of 3-torsions $C(\mu)[3]$:

$$\begin{cases} g_1(b_0) = b_0, \\ g_1(b_1) = -b_2, \\ g_1(b_2) = b_1 \end{cases} \qquad \begin{cases} g_2(b_0) = b_0, \\ g_2(b_1) = b_1, \\ g_2(b_2) = b_1 + b_2. \end{cases}$$

We note that $g_1^2 = \operatorname{inv}_{C(\mu)} = A(\xi(-\operatorname{id}_K))$ is 3 times the permutation of x_1 and x_2 . $\operatorname{Aut}(K, e_K)$ is generated by g_1 and g_2 with g_1^2 regaded as trivial, whence $\operatorname{Aut}(K, e_K) \simeq \operatorname{PSL}(2, \mathbf{F}_3) \simeq A_4$. Let $\mathbf{P}^1 = SQ_{1,1}$:=the coarse moduli of one-pointed smooth cubics and a one-pointed nodal cubic. Then $\operatorname{Aut}(K, e_K)$ is the Galois group of $SQ_{1,3}$ over $\mathbf{P}^1 = SQ_{1,1}$ under the map $(C(\mu), \phi, \tau) \mapsto (C(\mu), b_0)$.

5.4. The subset $G_{1,K}$. Let $K = (\mathbb{Z}/3\mathbb{Z})^{\oplus 2}$. Let $v_i = v_H(if_0)$. Let $G_{1,K}$ be the union of all eigenvectors of nontrivial $A(\xi) \in \mathrm{PGL}(V_H)$ for $\xi \in \mathrm{Aut}_c(\mathcal{G}_H)$ and $F_{1,K}$ the hypersurface of $\mathbb{P}(V_H^{\vee})$ of degree 12

$$F_{1,K}: a_0 a_1 a_2 \prod_{j,k \in \mathbf{Z}/3\mathbf{Z}} (a_0 + \zeta_3^j a_1 + \zeta_3^k a_2) = 0.$$

The above g_2 has eigenvectors $a_1v_1 + a_2v_2$ with a_i arbitrary. This implies that $G_{1,K}$ contains the hypersurface $a_0 = 0$. Since $G_{1,K}$ is $\operatorname{Aut}_c(\mathcal{G}_H)$ invariant, $G_{1,K}$ contains $F_{1,K} = \operatorname{Aut}_c(\mathcal{G}_H) \cdot \{a_0 = 0\}$. The eigenvectors of g_1 are $w_0 := v_1 - v_2$ and $w_{\pm} := (1 \pm \sqrt{3})v_0 + v_1 + v_2$, where $w_0 \in F_{1,K}$. Let $H_{1,K} = G_{1,K} \setminus F_{1,K} = \operatorname{Aut}_c(\mathcal{G}_H)\{w_{\pm}\}$. Hence

$$H_{1,K} = \{ [(1 \pm \sqrt{3})v_i + \zeta_3^j v_{i+1} + \zeta_3^k v_{i+2}]; i, j, k \in \mathbb{Z}/3\mathbb{Z} \}.$$

References

[A02] V. Alexeev, Complete moduli in the presence of semiabelian group action, Ann. of Math. 155 (2002), 611–708.

[AN99] V. Alexeev and I. Nakamura, On Mumford's construction of degenerating abelian varieties, Tôhoku Math. J. 51 (1999) 399–420.

- [M12] D. Mumford, Abelian varieties, Tata Institute of Fundamental Research, Hindustan Book Agency, 2012.
- [N99] I. Nakamura, Stability of degenerate abelian varieties, Invent. Math. 136 (1999), 659–715.

- [N04] I. Nakamura, Planar cubic curves, from Hesse to Mumford, Sugaku Expositions 17 (2004), 73-101.
- [N10] I. Nakamura, Another canonical compactification of the moduli space of abelian varieties, Algebraic and arithemtic structures of moduli spaces (Sapporo, 2007), Advanced Studies in Pure Math., 58 (2010), 69-135. (arXivmath 0107158)
- [NS06] I. Nakamura and K. Sugawara, The cohomology groups of stable quasi-abelian schemes and degenerations associated with the E_8 lattice, Moduli Spaces and Arithmetic Geometry (Kyoto, 2004), Advanced Studies in Pure Math., **45** (2006) 223–281.
- [Rim72] D.S. Rim, Formal deformation theory, in Groupes de Monodromie en Géométrie Algébrique (SGA 7 I), Lecture Notes in Math. 288, Springer-Verlag, Berlin Heidelberg New York, 1972, exp. VI, 32-132.
- [SGA1] A. Grothendieck, Revêtements Etales et Groupe Fondamentale (SGA 1), Lecture Notes in Math. 224, Springer-Verlag, Berlin Heidelberg New York, 1971.

DEPARTMENT OF MATHEMATICS, HOKKAIDO UNIVERSITY, SAPPORO, 060-0810, JAPAN *E-mail address*: nakamura@math.sci.hokudai.ac.jp