The extended Dynkin diagram in McKay Correspondence

1

Iku Nakamura

2011 January 20

1 Reviews — Dynkin diagrams ADE

The following are related with Dynkin ADE (1) Finite subgroups of SL(2, C), Regular polyhedra (2) 2-dim simple sing. (deformation-stable critical pts) (3) simple Lie algebras ADE, II_1 -factors etc. (4) Partition func. of SL(2, Z)-inv. conformal field th. (5) Finite simple groups the derived group of the Fisher F_{24} , the Baby monster B, the Monster M, are related with (E_6, E_7, E_8) (McKay's 3rd observ.)

Dynkin diagrams ADE $A_n \bullet \bullet \bullet \cdots$

Partition function of SL(2, Z)-inv. CFTs

Definition:
$$Z = \text{Tr}(q^{L_0 + \overline{L}_0})$$
, where
 $q = e^{2\pi\sqrt{-1}\tau}, \ \tau \in \mathcal{H}$: upper half-plane

Assumptions

- ∃ Unique vacuum(∃1 state of min. energy)
 χ_k : a A₁⁽¹⁾-character corresp. to a particle (or an operator in a physical theory)
- 3. Partition func. Z is a sum of $\chi \overline{\chi'}$, $(\chi, \chi': A_1^{(1)}$ -characters)
- 4. Z is SL(2, Z)-inv., invariant under $\tau \mapsto -\tau^{-1}$

Classification of Z

Cappelli, Itzykson-Zuber, A.Kato

	Type	k+2	Partition function $Z(q, heta, ar q, ar heta)$				
,	A_n	n+1	$\sum_{\lambda=1}^n \chi_\lambda ^2$				
	D_{2r}	4r-2	$\sum_{\lambda=1}^{r-1} \chi_{2\lambda-1} + \chi_{4r+1-2\lambda} ^2 + 2 \chi_{2r-1} ^2$				
	D_{2r+1}	4r	$\sum_{\lambda=1}^{2r} \chi_{2\lambda-1} ^2 + \sum_{\lambda=1}^{r-1} (\chi_{2\lambda} ar{\chi}_{4r-2\lambda} + ar{\chi}_{2\lambda} \chi_{4r-2\lambda}) + \chi_{2r} ^2$				
	E_6	12	$ \chi_1+\chi_7 ^2+ \chi_4+\chi_8 ^2+ \chi_5+\chi_{11} ^2$				
	E_7	18	$ \chi_1+\chi_{17} ^2+ \chi_5+\chi_{13} ^2+ \chi_7+\chi_{11} ^2+ \chi_9 ^2$				
			$+(\chi_3+\chi_{15})ar{\chi}_9+\chi_9(ar{\chi}_3+ar{\chi}_{15})$				
	E_8	30	$ \chi_1+\chi_{11}+\chi_{19}+\chi_{29} ^2+ \chi_7+\chi_{13}+\chi_{17}+\chi_{23} ^2$				

Fact : Indices of χ = Coxeter exponents of ADE

Type	Partition function \boldsymbol{Z} and Coxeter exponents					
E_6	$ \chi_1+\chi_7 ^2+ \chi_4+\chi_8 ^2+ \chi_5+\chi_{11} ^2$					
	1, 4, 5, 7, 8, 11					
E_7	$ \chi_1+\chi_{17} ^2+ \chi_5+\chi_{13} ^2+ \chi_7+\chi_{11} ^2+ \chi_9 ^2$					
	$+(\chi_3+\chi_{15})ar{\chi}_9+\chi_9(ar{\chi}_3+ar{\chi}_{15})$					
	1, 5, 7, 9, 11, 13, 17					
E_8	$ \chi_1+\chi_{11}+\chi_{19}+\chi_{29} ^2+ \chi_7+\chi_{13}+\chi_{17}+\chi_{23} ^2$					
	1, 7, 11, 13, 17, 19, 23, 29					

(5) McKay's 3rd observation in the Monster case

- \exists only 2 conj. classes of involutions of Monster M. (Fischer) is one of the classes (Fischer involution).
- 1. {the conj. class of $a \cdot b$; $a, b \in (Fischer)$ } = 9 classes
- 2. {order of $a \cdot b$; $a, b \in (\text{Fischer})$ } = {1, 2, 2, 3, 3, 4, 4, 5, 6}, the same as mult. of vertices of \widetilde{E}_8 , extended E_8 .

Recent progress

Topic(4): Kawahigashi and other (Ann. Math.)

Topic(5): Conway, Miyamoto, Lam-Yamada-Yamauchi

For $G \subset SL(2)$

McKay correspondence $(1) \Longrightarrow (0)$

[Ito and N. 1999] explains McKay $(1) \Longrightarrow (0) + (2)$ by Hilbert scheme of G-orbits G-Hilb(C²)

Missing in [Ito and N. 1999] is the extended Dynkin

Today the extended Dynkin appears ([N, 2007; ϵ])

(0) Dynkin diagrams ADE

(1) Finite subgroups of SL(2, C)

(2) 2-dim. Simple sing. and their resol.

History well known and trivial results

1. From finite groups to singularities : $(1) \Longrightarrow (2)$

2. From singularities to Dynkin diag. : $(2) \Longrightarrow (0)$

(0) Dynkin diagrams ADE

(1) Finite subgroups of SL(2, C)

(2) 2-dim. Simple sing. and their resol.

(3) Simple Lie algebras ADE

History well known, but nontrivial results

- 1. From Lie algebra to singularities $:(3) \Rightarrow (2)$ Grothendieck, Brieskorn, Slodowy
- 2. From finite gps to Dynkin of reps : (1) \Rightarrow (0) (McKay)
- 3. Explanation for McKay $: (1) + (2) \Rightarrow (0) + (2)$

by vector bundles and their Chern classes

(Gonzalez-Sprinberg and Verdier 1984)

- 4. [Ito and N. 1999] explains McKay $(1) \Rightarrow (0) + (2)$ by Hilbert scheme of G-orbits : G-Hilb(C²)
- 5. Today we refine the item 4.

Today A relative form of [Ito and N. 1999] is given. Theorem Let X = G-Hilb, let \mathfrak{n}_X : the ideal defining the graph $X \to (A^2/G) \times X$, Define

 $\mathcal{V} := I_{\mathrm{univ}} / \mathfrak{m} I_{\mathrm{univ}} + \mathfrak{n}_X, \quad \mathcal{V}^\dagger := I_{\mathrm{univ}} / (\mathfrak{m} + \mathfrak{n}_X) I_{\mathrm{univ}},$

Then we have

$$\begin{split} \mathcal{V} &:= I_{\text{univ}} / (\mathfrak{m} I_{\text{univ}} + \mathfrak{n}_X) \simeq \bigoplus_{i=1}^r O_{E(\rho_i)}(-1) \otimes \rho_i \\ \mathcal{V}^{\dagger} &:= I_{\text{univ}} / (\mathfrak{m} + \mathfrak{n}_X) I_{\text{univ}} \simeq \bigoplus_{i=0}^r O_{E(\rho_i)}(-1) \otimes \rho_i \end{split}$$

2 Review : what is McKay correpondence ?

Ex 1 Let
$$\zeta_6 = e^{2\pi\sqrt{-1}/6}$$
.

 $G = G(D_5)$: the dihedral group of order 12

$$G: ext{generated by } \sigma ext{ and } au \ \sigma = egin{pmatrix} \zeta_6 & 0 \ 0 & \zeta_6^{-1} \end{pmatrix}, \ \ au = egin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}$$

Repres.	${ m Tr}(ho)$	e	-e	σ	σ^2	au	$ au^3$
$ ho_0$	X 0	1	1	1	1	1	1
$ ho_1$	χ_1	1	1	1	1	-1	-1
$ ho_2$	χ_2	2	-2	1	-1	0	0
$ ho_3$	χ_3	2	2	-1	-1	0	0
$ ho_4$	χ_4	1	-1	-1	1	i	-i
$ ho_5$	χ_5	1	-1	-1	1	-i	i

Let $\rho_{\text{nat}}: G \subset \text{SL}(2, \mathbb{C})$ (the natural inclusion) Then repres. ρ_i and their tensor products with ρ_{nat} $ho_2\otimes
ho_{
m nat}=
ho_0+
ho_1+
ho_3, \quad
ho_0\otimes
ho_{
m nat}=
ho_1\otimes
ho_{
m nat}=
ho_2,$ $ho_3\otimes
ho_{
m nat}=
ho_2+
ho_4+
ho_5,\quad
ho_4\otimes
ho_{
m nat}=
ho_3,$ $\rho_5 \otimes \rho_{\text{nat}} = \rho_3.$ Draw the graph Dynkin(Rep(G)): \widetilde{D}_5 $\rho_0 \circ \rho_2 \rho_3 \circ \rho_4$ Rule : Connect ρ_i and $\rho_j \iff \rho_i \otimes \rho_{nat} = \rho_j + \cdots$ Remove ρ_0 (triv. repres.). Then we get Dynkin D_5 .

17

 $G = G(D_5)$: a dihedral group of order 12

$$G:$$
 generated by σ and τ
 $\sigma = \begin{pmatrix} \zeta_6 & 0 \\ 0 & \zeta_6^{-1} \end{pmatrix}, \quad \tau = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$
The quotient \mathbf{C}^2/G has a unique sing.

Invariant polynomials of $G(D_5)$ and their relation are

$$F = x^6 + y^6, G = x^2 y^2, H = x y (x^6 - y^6)$$
 $G^4 - GF^2 + H^2 = 0$

Invariant polynomials of $G(D_5)$ and their relation are

$$G^4 - GF^2 + H^2 = 0$$

The equation of D_5 is usually referred to as

$$X^4 + XY^2 + Z^2 = 0$$

A unique singularity (X, Y, Z) = (0, 0, 0)

The exceptional set for the sing (0, 0, 0)

 C_i is P¹ (a line), intersecting at most transversely

The exceptional set for the sing (0, 0, 0)

 C_i is P¹ (a line), intersecting at most transv.

The dual graph of it is Dynkin diagram D_5

 ${
m Rule} \,\, {
m of} \,\, {
m dual} \,\, {
m graph} : \, C_i = {
m a} \,\, {
m vertex}, \, C_i \cap C_j = {
m an} \,\, {
m edge}$

Conclusion : Dynkin($\operatorname{Rep}(G)$)=Dynkin(C^2/G)

(McKay correspondence)

McKay corresp. asserts : \exists a deep relationship between (1) and (2) (1) Resolution of the sing. of C^2/G (2) Representation theory of G Invariant polynom. of $G(D_5)$ and relation :

$$G^4 - GF^2 + H^2 = 0$$

A unique singularity (F, G, H) = (0, 0, 0)

When resolve sing, take quotients $H/G = \frac{(x^6 - y^6)}{xy}$ etc.

 $x^6 - y^6$, xy are not $G(D_5)$ -invariant

But xy, $x^6 - y^6$ belong to the same repres. of $G(D_5)$

Therefore Resolution of C^2/G and

Repres. of G obviously relate each other.

3 Moduli-theoretic resolution of C^2/G

 $G = G(D_5)$, Regard C^2/G as a moduli space $C^2/G = \{a \text{ G-inv subset consisting of 12 points}\}$: moduli of geometric G-orbits, |G| = 12Resolution of $C^2/G =$ moduli of ring-theor. G-orbits

 $G - \operatorname{Hilb}(\mathbb{C}^2) := \{ \operatorname{an} O_{\mathbb{C}^2} - G - \operatorname{module} \text{ of length } 12 \}$

For a module $M \in G$ - Hilb(C²)

$$0 \rightarrow I \rightarrow O_{C^2} \rightarrow M \rightarrow 0 \text{ (exact)}$$

A G-module generating I is almost G-irreducible

Example of generators of I: $F_t = xy - t(x^6 - y^6)$

4 The Hilbert scheme of n points

What is

The Hilbert scheme of n points of the space X ?

Z: n points of X

"n points" Z is a formal sum

$$Z = n_1 P_1 + n_2 P_2 + \dots + n_r P_r \quad (P_i \neq P_j)$$

(where $n = n_1 + \dots + n_r$)

$\mathbf{Ex} \ \mathbf{2}$ Assume X = C. $I_Z :=$ the ideal of $Z = f_Z \cdot C[x]$ n points $Z = n_1 P_1 + \cdots + n_r P_r$, $P_i : x = \alpha_i$ $\stackrel{\text{equiv.}}{\iff} \quad \dim_{\mathcal{C}} \mathcal{C}[x]/I_Z = n \stackrel{\text{equiv.}}{\iff}$ $f_Z(x) = (x - \alpha_1)^{n_1} (x - \alpha_2)^{n_2} \cdots (x - \alpha_r)^{n_r}$ $= x^{n} + a_{1}x^{n-1} + \dots + a_{n-1}x + a_{n}$ e.g. if $z = n \cdot [0]$, then $I_Z = (x^n)$

$$\begin{aligned} \text{Hilb}^n(\mathbf{C}) &= \{n \text{ points of } X\} \\ &= \left\{ x^n + \sum_{j=0}^{n-1} a_{n-j} \; x^j; a_j \in \mathbf{C} \right\} \cong \mathbf{C}^n \end{aligned}$$

Ex 3 Assume $X = C^2$. Then $Z = n_1 P_1 + \cdots + n_r P_r$, (formal sum), $P_i \neq P_j$, namely, $Z \in X \underbrace{ imes \cdots imes}_{n} X / ext{order forgotten} =: X^{(n)}$ $X^{(n)} = X \underbrace{ imes \cdots imes}_{n} X / S_n$ $X^{(n)}$ is very singular, has a lot of sing. Caution $X^{(n)}$ is different from Hilbⁿ(C²).

Assume $X = C^2$. Let $X^{[n]} = Hilb^n(C^2)$.

$$egin{aligned} X^{[n]} &= \{ ext{an ideal} \ I \subset \mathrm{C}[x,y]; \dim \mathrm{C}[x,y]/I = n \} \ &= \left\{ egin{aligned} I \subset \mathrm{C}[x,y]; \ I : ext{a vector subsp of } \mathrm{C}[x,y] \ &xI \subset I, yI \subset I, \ & ext{dim } \mathrm{C}[x,y]/I = n \end{array}
ight\} \ & ext{dim } \mathrm{C}[x,y]/I = n \end{array}
ight\} \ & ext{Thm 1} \ & ext{(Fogarty 1968)} \quad X^{[n]} ext{ is a resolution of } X^{(n)}. \end{aligned}$$

A natural map $\pi: X^{[n]} \to X^{(n)}$ is defined, $\pi: Z \mapsto n_1 P_1 + \dots + n_r P_r$ where $|Z| = \{P_1, \dots, P_r\}, n_i =$ multiplicity of P_i in Z. Thm 1 (Fogarty 1968)(revisited) The natural morphism $X^{[N]} = \text{Hilb}^N(\mathbb{C}^2) \xrightarrow{\pi} X^{(N)}$ is a resol (minimal) of sing.

The map π sends G-fixed points to G-fixed points. where $G \subset SL(2)$, N = |G|. Then $\pi^{G-\text{inv.}} : (X^{[N]})^{G-\text{inv.}} \to (X^{(N)})^{G-\text{inv.}}$ By Theorem of Fogarty $(X^{[N]})^{G-\text{inv.}}$ is nonsing. G -inv. part of Fogarty = The Next Theorem 5 The G-orbit Hilbert scheme of C^2

$$\begin{array}{cc} \text{Lemma 2} & (X^{(N)})^{G\text{-inv.}} = \mathrm{C}^2/G. \end{array}$$

Def 3
$$G$$
-Hilb $(C^2) := (X^{[N]})^{G$ -inv.
 G -Hilb (C^2) is called the G -orbit Hilbert scheme of C^2 .

For $I \in G$ - Hilb(C²), C[x, y]/ $I \cong$ C[G] : regular repres.

Thm 4 (Ito and N. 1999)

G-Hilb(C²) is a minimal resol. of C²/G with enough information about repres. of G.

G-Hilb(C²) is a minimal resol. of C²/G with enough information about repres. of G.

This gives a new explanation for McKay corresp.

```
<sup>r</sup> Vertices of Dynkin diagram <sub>J</sub>
```

(bijective)

^rIrred. components of except. set _J

(bijective) (McKay corresp.)

^r Equiv. classes of irred. reps(\neq trivial) of G_{\perp}

6 McKay correspondence

For $I \in E$: (except. set), we define $V(I) := I/(\mathfrak{m}I + \mathfrak{n})$

Then V(I) is either irred. or $\rho \oplus \rho'(\rho, \rho' \text{ irred.})$

For ρ, ρ' irred rep of $G, \rho \neq \rho'$, define subsets of E by

 $E(
ho):=\{I\in E;V(I)\supset
ho\}$ $P(
ho,
ho'):=\{I\in E;V(I)\supset
ho\oplus
ho'\}$

Thm 5 (Ito-Nakamura 1999)

- Let G be a finite subgroup of SL(2, C). Then
 (1) G-Hilb(C²) is a min. resol. of C²/G.
 (2) For any irred rep. ρ of G, ρ ≠ trivial, E(ρ) = P¹, The map ρ ↦ E(ρ) is McKay corresp.
- (3) the intersections $P(\rho, \rho')$ = the arrows of Dynkin of rep.

7 The exceptional set $-D_5$ case

 $\pi: G\operatorname{-Hilb}(\mathrm{C}^2) \to \mathrm{C}^2/G \text{ the natural map}$: isomorphism over $\mathrm{C}^2/G \setminus \{0\}$

Let $E = \pi^{-1}(0)$ be the exceptional set. Then

 $E = \{I \in G \operatorname{-Hilb}(X); I \subset \mathfrak{m}\}$

where For $I \in G$ -Hilb, C[x, y]/I = C[G]: Regular rep. $\mathfrak{m} = (x, y)C[x, y]$: the maximal ideal.

For $I \in E$, we set $V(I) = I/(\mathfrak{m}I + \mathfrak{n})$

where $\mathfrak{n} = (F, G, H)C[x, y]$. V(I) is a G-module of generators of I other than G-inv.

Define subsets of E by

$$egin{aligned} E_1 &:= \{I \in E; \
ho_1 \subset V(I)\} \ &= \{I \in G ext{-Hilb}; \ \mathfrak{m} \subset I,
ho_1 \subset V(I)\} \ &E_2 &:= \{I \in E; \ V(I) \supset
ho_2\} \ &E_1 \cap E_2 &:= \{I \in E; \
ho_1 \oplus
ho_2 \subset V(I)\}. \end{aligned}$$

Want to show

Have defined

 $egin{aligned} E_1 &:= \{I \in E; \
ho_1 \subset V(I)\} \ &= \{I \in G ext{-Hilb}; \ \mathfrak{m} \subset I,
ho_1 \subset V(I)\} \ &E_2 &:= \{I \in E; \ V(I) \supset
ho_2\}. \end{aligned}$

We will see for $I_1(s)$, $I_2(s)$ explicit

 $egin{aligned} & E_1 = \{I_1(s); s \in {f C}\} \cup I_1(\infty) \simeq {f P}^1, \ & E_2 = \{I_2(s); s \in {f C}^*\} \cup I_2(0) \cup I_2(\infty) \simeq {f P}^1, \ & E_1 \cap E_2 = I_1(\infty) = I_2(0) \ (ext{one point}) \end{aligned}$

We will see

 $I_1(\infty) = I_2(0)$

The coinv. algebra of G gets involved in computing E_i .

m	$V_m(ho) \; (: \mathrm{deg} \; m, \mathrm{type} \; ho)$	Eq. class
1	$\{x,y\}_{ ho_2}$	$ ho_2$
2	$\{xy\}_{oldsymbol{ ho_1}}\oplus\{x^2,y^2\}_{oldsymbol{ ho_3}}$	$ ho_1 + ho_3$
3	$\{x^2y,-xy^2\}_{m{ ho}_2}\oplus\{x^3\pm iy^3\}$	$ ho_2+ ho_4^++ ho_5^-$
4	$\{y^4,x^4\}_{oldsymbol{ ho_3}}\oplus\{x^3y,-xy^3\}_{oldsymbol{ ho_3}}$	$ ho_3^{\oplus 2}$
5	$\{y^5,-x^5\}_{m{ ho}_2}\oplus\{xy(x^3\pm(-iy^3))\}$	$\rho_2+\rho_4^++\rho_5^-$
6	$\{x^6-y^6\}_{m ho_1}\oplus\{x^5y,-xy^5\}_{m ho_3}$	$ ho_1 + ho_3$
7	$\{xy^6,x^6y\}_{m ho_2}$	$ ho_2$

Coinv. alg. : $C[x,y]/\mathfrak{n} = C[x,y]/(F,G,H)$

The exceptional set E,

How to compute E_1 , an irred. comp. of E

Consider *G*-submodules of $\{xy\}_{\rho_2} \oplus \{x^6 - y^6\}_{\rho_2}$ $I_1(s) := (\{xy + s(x^6 - y^6)\}) + \mathfrak{n} \quad (s \in \mathbb{C})$

where $\mathfrak{n}:=(F,G,H)=(x^6+y^6,x^2y^2,xy(x^6-y^6))\mathbf{C}[x,y].$ We see,

$$\dim \mathrm{C}[x,y]/I_1(s) = 12,$$

 $\therefore \quad I_1(s) \in G\operatorname{-Hilb}(\mathrm{C}^2) \quad (\forall s \in \mathrm{C})$

As
$$s \to \infty$$
, $E = \pi^{-1}(0)$
If $E \ni I$, we have $I \supset \mathfrak{n} = (F, G, H)$. Hence
 $C[x, y]/\mathfrak{n} \to C[x, y]/I$ (surjective)
 $\therefore E \subset Grass.(C[x, y]/\mathfrak{n}, codim 11)$

Grass is compact, so that the sequence $I_1(s)$ $(s \to \infty)$ converges. Now we define $I_1(\infty)$ by:

$$I_1(\infty)/\mathfrak{n} = \lim_{s o \infty} I_1(s)/\mathfrak{n}$$

To compute $I_1(\infty) \Longrightarrow$ McKay corresp. appears !

$$\begin{split} I_1(s) &= (\{xy + s(x^6 - y^6)\}_{\rho_1}) + \mathfrak{n} \ (s \neq 0) \\ &= (\{\frac{1}{s}xy + (x^6 - y^6)\}_{\rho_1}) + \mathfrak{n} \ (s \neq 0) \\ \text{What happens when } s &= \infty ? \text{ Let } \frac{1}{s} = 0. \\ \text{But } I_1(\infty) &\neq (\{x^6 - y^6\}_{\rho_1}) + \mathfrak{n}, \text{ A Correct Answer is} \\ I_1(\infty) &= (\{x^6 - y^6\}_{\rho_1}) + (\{x^2y, xy^2\}_{\rho_2}) + \mathfrak{n} \\ &= (\{x^6 - y^6\}_{\rho_1}) + (\{x, y\}_{\rho_2} \cdot \{xy\}_{\rho_1}) + \mathfrak{n} \\ V_3(\rho_2) &= \{x^2y, xy^2\}_{\rho_2} = \\ &\{x, y\}_{\rho_2} \cdot \{xy\}_{\rho_1} = \rho_{\text{nat}} \cdot (V_2(\rho_1)) \\ \\ \text{This reminds us of the McKay rule : } \rho_2 = \rho_{\text{nat}} \otimes \rho_1 \\ I_1(\infty) &= E_1 \cap E_2 \text{ comes out from the McKay rule !} \end{split}$$

We have just computed

Next we will compute $I_2(0)$ to see $I_1(\infty) = I_2(0)$

Recall $E_i = \{I \in E; \ \rho_i \subset V(I)\} =: E(\rho_i).$ We saw

$$egin{aligned} m{E}(m{
ho}_1) &= \{I_1(s); s\in \mathrm{C}\}\cup I_1(\infty) \ &= \mathrm{P}(\{xy\}_{
ho_1}\oplus\{x^6-y^6\}_{
ho_1})\simeq \mathrm{P}^1 \ & ext{ (the set of all irred. G-submod.)} \end{aligned}$$

We will see $I_2(0) = I_1(\infty)$ and

 $egin{aligned} m{E}(
ho_2) &= I_2(0) \cup \{I_2(t); 0
eq t \in \mathrm{C}\} \cup I_2(\infty) \ &= \mathrm{P}(\{x^2y, xy^2\}_{
ho_2} \oplus \{-y^5, x^5\}_{
ho_2}) \simeq \mathrm{P}^1 \ & ext{(the set of all irred. G-submod.)} \end{aligned}$

$$\begin{split} V_3(\rho_2) &= \{x^2y, xy^2\}_{\rho_2}, \ V_5(\rho_2) = \{-y^5, x^5\}_{\rho_2} \\ &\text{Similarly for } t \neq 0, \text{ we define} \\ I_2(t) &:= (x^2y - ty^5, xy^2 + tx^5) + \mathfrak{n} \\ V(I_2(t)) &:= I_2(t)/(\mathfrak{m}I_2(t) + \mathfrak{n}) \simeq \rho_2. \text{ Then we see,} \\ I_2(0) &= (\{x^2y, xy^2\}_{\rho_2}) + (\{x^6 - y^6\}_{\rho_1}) + \mathfrak{n} \\ &= (\{x^2y, xy^2\}_{\rho_2}) + (\{x, y\}_{\rho_2} \cdot \{-y^5, x^5\}_{\rho_2}) + \mathfrak{n} \\ &= I_1(\infty) + \mathfrak{n}, \quad \text{because} \\ I_1(\infty) &= (\{x^6 - y^6\}_{\rho_1}) + (\{x^2y, xy^2\}_{\rho_2}) + \mathfrak{n}, \\ &\mathfrak{n} = (F, G, H) = (x^6 + y^6, x^2y^2, xy(x^6 - y^6)) \end{split}$$

$$I_2(0) = (\{x^2y, xy^2\}_{
ho_2}) + (\{x^6 - y^6\}_{
ho_1}) + \mathfrak{n} = I_1(\infty)$$

Intersection of E_1 and E_2 !!

This comes from McKay rule because

$$egin{aligned} V_6(
ho_1) &= \{x^6 - y^6\} \ &= \{x,y\} \cdot \{-y^5,x^5\} \mod \mathfrak{n} + (x^2y,xy^2) \ &=
ho_{ ext{nat}} \cdot V_5(
ho_2) \mod \mathfrak{n} + (x^2y,xy^2) \end{aligned}$$

This reminds us of McKay rule : $\rho_1 + \cdots = \rho_{\text{nat}} \otimes \rho_2$

 $egin{aligned} V(I_1(s)) &\simeq
ho_1, \, V(I_2(t)) \simeq
ho_2, \ V(I_1(\infty)) &= V(I_2(0)) \simeq
ho_1 \oplus
ho_2 \ s \in \mathrm{C}, \, t \in \mathrm{C} \, \, (s
eq 0) \end{aligned}$ where $V(I) = I/(\mathfrak{m}I + \mathfrak{n})$: generators of I

m	$V_m(ho) \;(: { m deg} \; m, { m type} \; ho)$	Eq. class
1	$\{x,y\}_{ ho_2}$	$ ho_2$
2	$\{xy\}_{oldsymbol{ ho}_1}\oplus\{x^2,y^2\}_{oldsymbol{ ho}_3}$	$ ho_1 + ho_3$
3	$\{x^2y,-xy^2\}_{m{ ho}_2}\oplus\{x^3\pm iy^3\}$	$ ho_2+ ho_4^++ ho_5^-$
4	$\{y^4,x^4\}_{m ho_3}\oplus\{x^3y,-xy^3\}_{m ho_3}$	$ ho_3^{\oplus 2}$
5	$\{y^5,-x^5\}_{m{ ho}_2}\oplus\{xy(x^3\pm(-iy^3))\}$	$ ho_2+ ho_4^++ ho_5^-$
6	$\{x^6-y^6\}_{m ho_1}\oplus\{x^5y,-xy^5\}_{m ho_3}$	$ ho_1 + ho_3$
7	$\{xy^{6},x^{6}y\}_{m{ ho}_{2}}$	$ ho_2$

Decomposition of the coinv. alg. into repres. of $G(D_5)$ Coinv. alg. : $\mathrm{C}[x,y]/\mathfrak{n} = \mathrm{C}[x,y]/(F,G,H)$

Deg.	1	2	3	4
Rep.	$ ho_2$	$ ho_1 + ho_3$	$ ho_2+ ho_4+ ho_5$	$ ho_3^{\oplus 2}$
Deg.	7	6	5	
Rep.	$ ho_2$	$ ho_1 + ho_3$	$ ho_2+ ho_4+ ho_5$	

The Quiver str. of the Red part determ. the Dynkin diag. Quiver str. of Coinv alg. connects the irred. comp. of E $\{x, y\} \cdot \{xy\}_{\rho_1} = \{x^2y, -xy^2\}_{\rho_2} \mod (*),$ $\{x, y\} \cdot \{y^5, -x^5\}_{\rho_2} = \{x^6 - y^6\}_{\rho_1} \mod (*)$

connects $E(\rho_1)$ and $E(\rho_2)$.

Deg.	1	2	3	4
Rep.		$ ho_1$	$ ho_2+ ho_4+ ho_5$	$ ho_3^{\oplus 2}$
Deg.	7	6	5	
Rep.		$ ho_1$	$ ho_2+ ho_4+ ho_5$	

The McKay Quiver of D_5 in the Coinv alg.

8 The extended Dynkin diagram— D_5 -case

 $V(I) = I/(\mathfrak{m}I + \mathfrak{n})$ gives the Dynkin diag. D_5 .

An extended version of V(I) very roughly

$$V^{\dagger}(I) = I/(\mathfrak{m} + \mathfrak{n})I, \quad (I \in G ext{-Hilb}).$$

Then $V^{\dagger}(I)$ very roughly gives the extended Dynkin diagram \widetilde{D}_5 .

 $V_4(
ho_0)=\{x^2y^2\},\,\,V_6(
ho_0)=\{x^6+y^6\}$

Let X =G-Hilb, minimal resol. of A^2/G . Let \mathfrak{n}_X the ideal defining the graph $X \to (A^2/G) \times X$. **Theorem** [N. 2007+ ϵ] $\mathcal{V} := I_{\text{univ}}/(\mathfrak{m}I_{\text{univ}} + \mathfrak{n}_X) \simeq \bigoplus_{i=1}^r O_{E(\rho_i)}(-1) \otimes \rho_i$ $\mathcal{V}^{\dagger} := I_{\text{univ}}/(\mathfrak{m} + \mathfrak{n}_X)I_{\text{univ}} \simeq \bigoplus_{i=0}^r O_{E(\rho_i)}(-1) \otimes \rho_i$

D_5 -case

Let $E(\rho_0) = -E_{\text{fund}}, E(\rho_0)$ fits the extended Dynkin. $L := O_{E(\rho_0)}(-1) := O_{E_{\text{fund}}}(1)$ $L \otimes O_{E(\rho_2)} = O_{E(\rho_2)}(1), L \otimes O_{E(\rho_i)} = \text{trivial } (i \neq 2).$

$$\begin{split} E(\rho_0) &:= -E_{\text{fund}}, \, O_{E(\rho_0)}(L) := O_{E_{\text{fund}}}(-L) \\ O_{E(\rho_0)}(-1) &:= O_{E_{\text{fund}}}(1), \text{ of degree one on an irred.} \\ \text{comp. and trivial elsewhere} \\ \hline \textbf{D_{5-case}} \quad E_0 &= -E_{\text{fund}} \\ E_{\text{fund}} &= E_1 + 2E_2 + 2E_3 + E_4 + E_5 \\ &= E(\rho_1) + 2E(\rho_2) + 2E(\rho_3) + E(\rho_4) + E(\rho_5) \\ -\dim \rho_2 &= \dim \rho_3 = 2, \, \dim \rho_1 = \dim \rho_4 = \dim \rho_5 = 1 \end{split}$$

9 Exceptional set— E_6 -case

 $G(E_6) \subset SL(2, \mathbb{C})$ (Binary Tetrahedral Group) $G(E_6) = \langle \sigma, \tau, \mu \rangle$ order 24 $\sigma = egin{pmatrix} i, & 0 \ 0, & -i \end{pmatrix}, \quad au = egin{pmatrix} 0, & 1 \ -1, & 0 \end{pmatrix}, \quad \mu = rac{1}{\sqrt{2}} egin{pmatrix} \epsilon^7, \, \epsilon^7 \ \epsilon^5, \, \epsilon \end{pmatrix},$ where $\epsilon = e^{2\pi i/8}$ $G(D_4) := \langle \sigma, \tau \rangle$, normal in $G(E_6)$ $1 \rightarrow G(D_4) \rightarrow G(E_6) \rightarrow \mathbb{Z}/3\mathbb{Z} \rightarrow 1.$ $C^2/G(D_4) \xrightarrow{3:1} C^2/G(E_6)$

Irred. rep. of E_6 (irred. character)

	1	-1	au	μ	μ^2	μ^4	μ^5
(\$	1	1	6	4	4	4	4
$ ho_0$	1	1	1	1	1	1	1
$ ho_2$	2	-2	0	1	-1	-1	1
$ ho_3$	3	3	-1	0	0	0	0
$ ho_2'$	2	-2	0	ω^2	$-\omega$	$-\omega^2$	ω
$ ho_1'$	1	1	1	ω^2	ω	ω^2	ω
$ ho_2''$	2	-2	0	ω	$-\omega^2$	$-\omega$	ω^2
$ ho_1''$	1	1	1	ω	ω^2	ω	ω^2

Coinv. alg. of E_6

m	$ar{V}_m$
1	$ ho_2$
2	$ ho_3$
3	$ ho_2'+ ho_2''$
4	$ ho_1'+ ho_1''+ ho_3$
5	$ ho_2+ ho_2'+ ho_2''$
6	$2 ho_3$
7	$ ho_2+ ho_2'+ ho_2''$
8	$ ho_1'+ ho_1''+ ho_3$
9	$ ho_2'+ ho_2''$
10	$ ho_3$
11	$ ho_2$

Dynkin diagram E_6

The extended McKay quiver of E_6

10 Summary

For $I \in E$: (except. set), we define

$$V(I) := I/(\mathfrak{m}I + \mathfrak{n})$$

Then V(I) is either irred. or $\rho \oplus \rho'(\rho, \rho' \text{ irred.})$ For ρ an irred. rep. of G, define

$$E(
ho):=\{I\in E;V(I)\supset
ho\}$$

Thm 5 (Ito-Nakamura 1999)

Let G be a finite subgroup of $SL(2, \mathbb{C})$. Then (1) G-Hilb(\mathbb{C}^2) is a min. resol. of \mathbb{C}^2/G .

(2) For any irred rep. ρ of G, $\rho \neq$ trivial, $E(\rho) = P(\rho \oplus \rho) = P^1, \ \rho \mapsto E(\rho)$ is McKay corresp.

(3) Quiver str. of Coninv. alg.

=Decomp. rule of $\rho_{\text{nat}} \otimes (\text{rep.})$ into irred. rep.

=Dynkin diagram

Thm 6 (a refined version of Th. 5, $[N.2007+\epsilon]$) (4) Let I_{univ} be the ideal of the universal *G*-orbit scheme Z_{univ} over X := G-Hilb(A²). Let \mathfrak{m} be the maximal ideal of $O \in A^2$, \mathfrak{n}_X is the ideal of the graph of $X \to (A^2/G) \times X$. Then

(i)
$$\mathcal{V} := I_{\text{univ}} / (\mathfrak{m}I_{\text{univ}} + \mathfrak{n}_X) \simeq \bigoplus_{i=1}^r O_{E_i}(-1) \otimes \rho_i$$

(ii) $\mathcal{V}^{\dagger} := I_{\text{univ}} / (\mathfrak{m} + \mathfrak{n}_X) I_{\text{univ}} \simeq \bigoplus_{i=0}^r O_{E_i}(-1) \otimes \rho_i$
(iii) The corresp. $E_i \leftrightarrow \rho_i$ is McKay
 E_0 is minus the fundamental cycle, ρ_0 is triv.rep.

Thm 6 [N. 2007+ ϵ]

$$\begin{aligned} \mathcal{V} &:= I_{\text{univ}} / (\mathfrak{m} I_{\text{univ}} + \mathfrak{n}_X) \simeq \bigoplus_{i=1}^r O_{E(\rho_i)}(-1) \otimes \rho_i \\ \mathcal{V}^{\dagger} &:= I_{\text{univ}} / (\mathfrak{m} + \mathfrak{n}_X) I_{\text{univ}} \simeq \bigoplus_{i=0}^r O_{E(\rho_i)}(-1) \otimes \rho_i \end{aligned}$$

D_5 -case

Let $E(\rho_0) = -E_{\text{fund}}$, Then $E(\rho_0)$ fits to the extended Dynkin diagram.

$$egin{aligned} L &:= O_{E(
ho_0)}(-1) := O_{E_{ ext{fund}}}(1) \ L &\otimes \overline{O_E(
ho_2)} = O_{E(
ho_2)}(1), \ L \otimes O_{E(
ho_i)} = ext{trivial} \ (i
eq 2). \end{aligned}$$

End

Thank you for your attention.

Why ?? $\mathcal{V}^{\dagger} \simeq \bigoplus_{i=0}^{r} O_{E(\rho_i)}(-1) \otimes \rho_i$

Let $\phi_3 = \frac{s_3^2 t_3}{1+t_3^2}$. A universal (local) deformation $\mathcal{I}_{\text{univ}}$ is the ideal generated by

$$egin{aligned} D_1 &:= y^5 + s_3 x^2 y + \phi_3 x, D_2 := -x^5 - s_3 x y^2 + \phi_3 y, \ E_1 &:= x^3 y + t_3 y^4 + s_3 t_3 x^2, E_2 := -x y^3 + t_3 x^4 + s_3 t_3 y^2, \ A_6 + 2 s_3 A_4, A_8 - 2 \phi_3 A_4, A_4 - t_3 \phi_3. \end{aligned}$$

In \mathcal{V}^{\dagger} , we have

$$egin{aligned} t_3D_1 &= yE_1 - x(A_4 - t_3\phi_3) = 0, \ t_3D_2 = au(t_3D_1) = 0, \ s_3E_1 &= xD_1 + y^2E_2 - t_3x^2(A_4 - t_3\phi_3) = 0, \ s_3E_2 = au(s_3E_1) \ t_3\phi_3(A_4 - t_3\phi_3) = A_4(A_4 - t_3\phi_3) = 0, \end{aligned}$$

Hence

$$\mathcal{V}^{\dagger} \simeq O_{E(\rho_2)}^{\oplus 2} \oplus O_{E(\rho_3)}^{\oplus 2} \oplus O_{2E(\rho_2)+2E(\rho_3)}(L),$$

where L is a line bundle with $L_0E(\rho_0) = -1, E(\rho_0) = -E(\rho_1) - 2E(\rho_2) - 2E(\rho_3) - E(\rho_4) - E(\rho_5).$ The divisor $(t_3\phi_3)$ is equal to $2E(\rho_2) + 2E(\rho_3) = -E(\rho_0)$ near here.