
MCKAY CORRESPONDENCE

IKU NAKAMURA

Abstract. We discuss the two-dimensional McKay correspondence from
the view point of Hilbert schemes.

0. Introduction

There is a whole series of apparently unrelated phenomena that are gov-
erned by the so-called ADE Dynkin diagram scheme. It is widely believed
that, despite the diverse nature of the objects concerned, there must be some
hidden reasons for these coincidences. The ADE Dynkin diagrams provide a
classification of the following types of objects:

(1) simple singularities (rational double points) of complex surfaces,
(2) finite subgroups of SL(2,C),
(3) simple Lie groups and simple Lie algebras,
(4) the following three finite simple groups, the derived group F

′
24 of the

Fischer F24, the Baby monster B and the Monster M are related with
E6, E7 and E8 respectively.

Meanwhile there are three outstanding McKay observations. The first
McKay observation made in November, 1978 was concerned with the so-called
moonshine, and the second in December, 1978 with the connection between
the above items (1) and (2), while the third in February, 1979 with the above
item (4). It is the second McKay observation that we discuss in this article,
which we refer to as the McKay correspondence. The purpose of this article
is to discuss the McKay correspondence in detail, partially based on [IN99].

For a given finite subgroup G of SL(2,C), the McKay correspondence is
incorporated into a quiver, called the McKay quiver, in the quotient of the
coinvariant algebra. The McKay quiver gives the Dynkin diagram of the
exceptional set of the corresponding simple singularity ADE. Moreover, the
natural strata of the exceptional set are understood via the subquivers of the
McKay quiver, which are easily described by directed Dynkin diagrams (See
Figures 7-16). The McKay correspondence is also understood as a natural
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bijective correspondence in the irreducible decomposition of a certain coherent
sheaf over theG-orbit Hilbert scheme. Any extended Dynkin diagram of ADE
is realized by a quiver in the symmetric algebra extending the McKay quiver.

The present article is organized as follows. In section one we recall the sim-
ple singularities, the McKay correspondence and related notions. In section
two we recall the notion of G-orbit Hilbert schemes. For a finite subgroup G
of SL(2,C), the G-orbit Hilbert scheme is a minimal resolution of the quotient
A

2/G by [IN99]. In section three we recall the main theorem of [IN99] and
state a new theorem which sharpens the main theorem. In section 4 we prove
the McKay correspondence for D5 in full detail, partially based on [IN99].
We introduce the (extended) McKay quiver, and the subquivers of it so that
we will have a transparent overview of the strata of the exceptional set of the
G-orbit Hilbert scheme. In section 5 we briefly discuss E6 along the same
line. In section 6 we prove our new theorem mentioned above.

1. Simple Singularities and McKay Correspondence

1.1. Simple singularities. We first recall the definition of simple singular-
ities. A germ of a two-dimensional isolated hypersurface singularity is called
a simple singularity if it is isomorphic to one of the following germs at the
origin

An : xn+1 + y2 + z2 = 0 for n ≥ 1,

Dn : xn−1 + xy2 + z2 = 0 for n ≥ 4,

E6 : x4 + y3 + z2 = 0,

E7 : x3y + y3 + z2 = 0,

E8 : x5 + y3 + z2 = 0.

It is also a quotient of the germ (C2, 0) by a finite subgroup of SL(2,C).
Moreover it has a minimal resolution of singularities with exceptional set con-
sisting of smooth rational curves of self-intersection −2 intersecting transver-
sally. See Figure 1 for the Dynkin diagram involved.

1.2. Finite subgroups of SL(2,C). Up to conjugacy, any finite subgroup
of SL(2,C) is one of the subgroups listed in Table 1; see [Klein]. The triple
(d1, d2, d3) specifies the degrees of the generators of the G-invariant polyno-
mial ring. The integer h is the Coxeter number of the Lie algebra of the type
involved (see Table 1), which we also call the Coxeter number of the simple
singularity (A2/G, 0).

1.3. Dynkin diagrams. Let (S, 0) be a germ of a simple singularity, π : X →
S its minimal resolution, E := π−1(0)red and Ei for 1 ≤ i ≤ r the irre-
ducible component of E. It is known that Ei � P

1 with self-intersection
(−2). Let IrrE be the set {Ei; 1 ≤ i ≤ r} and H2 := H2(X,Z). We see
that H2 =

⊕
1≤i≤r Z[Ei]. Then H2 has a negative definite intersection pairing

( , )SING : H2 × H2 → Z. Since (EiEj)SING = 0 or 1 for i �= j, the pairing



MCKAY CORRESPONDENCE 3
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Figure 1. The Dynkin diagrams ADE

Type G name |G| h (d1, d2, d3)

An Zn+1 cyclic n+ 1 n+ 1 (2, n+ 1, n + 1)

Dn Dn−2 binary dihedral 4(n− 2) 2n− 2 (4, 2n− 4, 2n− 2)

E6 T binary tetrahedral 24 12 (6, 8, 12)

E7 O binary octahedral 48 18 (8, 12, 18)

E8 I binary icosahedral 120 30 (12, 20, 30)

Table 1. Finite subgroups of SL(2,C)

( , )SING can be expressed by a finite graph with simple edges. We rephrase
this as follows: we associate a vertex v(E ′) to any irreducible component E ′

of E, and join two vertices v(E ′) and v(E ′′) if and only if (E ′E ′′)SING = 1.
Thus we have a finite graph with simple edges. We call this graph the dual
graph of E, and denote it by ΓSING(S) or Γ(IrrE).

There exists a unique divisor Efund, called the fundamental cycle of X ,
which is the minimal nonzero effective divisor such that EfundEi ≤ 0 for all
i. Let Efund :=

∑r
i=1m

SING
i Ei and E0 := −Efund. For the simple singularities

we have E0Ei = 0 or 1 for any Ei ∈ IrrE (except for the case A1, when

E0E1 = 2). Thus we can draw a new graph Γ̃SING by adding the vertex v(E0)
to ΓSING(S). By abuse of notation we denote IrrE∪{E0} by Irr∗E. Also for a
given finite subgroup G of SL(2,C), we have a quotient singularity (A2/G, 0),
which is one of simple singularities so that we have a Dynkin diagram as a dual
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graph ΓSING(A2/G, 0) of the exceptional set. Also we denote ΓSING(A2/G, 0)

by ΓSING(G) and similarly Γ̃SING(A2/G, 0) by Γ̃SING(G) .
In the D5 case, we have E = E1 + E2 + E3 + E4 + E5 with E2

i = −2 and

−E0 = Efund = E1 + 2E2 + 2E3 + E4 + E5.

Then E0E2 = E1E2 = E2E3 = E3E4 = E3E5 = 1, and all other EiEj = 0.
Hence (mSING

1 , . . . ,mSING
5 ) = (1, 2, 2, 1, 1), as indicated in Figure 2.

D5
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� ���
�

���1

2 2 1

1
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�

�

��
��

� ���
�

���

1

1
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1

Figure 2. The Dynkin diagrams D5 and D̃5

1.4. McKay correspondence. Any simple singularity is a quotient singu-
larity by a finite subgroup G of SL(2,C), and so has a corresponding Dynkin
diagram of exceptional set. McKay [McKay80] showed how one can recover
the same graph purely in terms of the representation theory of G, without
passing through the geometry of the germ (A2/G, 0).

To be more precise, let G be a finite subgroup of SL(2,C). Clearly, G has
a two-dimensional representation, which maps G injectively into SL(2,C);
we call this the natural representation ρnat. Let Irr∗G, respectively IrrG, be
the set of all equivalence classes of irreducible representations, respectively
nontrivial ones. (Caution: note that this goes against the familiar notation
of group theory.) Thus by definition, Irr∗G = IrrG ∪ {ρ0}, where ρ0 is the
one-dimensional trivial representation. Any representation of G over C is
completely reducible, that is, is a direct sum of irreducible representations up
to equivalence. Therefore for any ρ ∈ Irr∗G, we have

ρ⊗ ρnat =
∑

ρ′∈Irr∗ G

aρ,ρ′ρ′,

where aρ,ρ′ are certain nonnegative integers. In our situation, we see that
aρ,ρ′ = 0 or 1 (except for the case A1, when aρ,ρ′ = 2).

Let us look at the example D5, the case of the binary dihedral group G :=
D3 of order 12. The group G is generated by σ and τ :

σ =

(
ε 0
0 ε−1

)
, τ =

(
0 1
−1 0

)
where ε = e2πi/6.

We note that Tr(σ) = 1, Tr(τ ) = 0, hence in this case, the natural repre-
sentation is ρ2 in Table 2.

Definition 1.5. The graph Γ̃GROUP(G) is defined to be the graph consisting
of vertices v(ρ) for ρ ∈ Irr∗G, and simple edges connecting any pair of vertices
v(ρ) and v(ρ′) with aρ,ρ′ = 1. We denote by ΓGROUP(G) the full subgraph of
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ρ Tr ρ 1 σ τ

ρ0 χ0 1 1 1

ρ1 χ1 1 1 −1

ρ2 χ2 2 1 0

ρ3 χ3 2 −1 0

ρ4 χ4 1 −1 i

ρ5 χ5 1 −1 −i

Table 2. Character table of D3 (of type D5)

Γ̃GROUP(G) consisting of the vertices v(ρ) for ρ ∈ IrrG and all the edges
between them.

For example, let us look at the D5 case. Let χj := Tr(ρj) be the character
of ρj. Then from Table 2 we see that

χ2(g)χnat(g) = χ2(g)χ2(g) = χ0(g) + χ1(g) + χ3(g), for g = 1, σ or τ .

Hence χ2χnat = χ0 + χ1 + χ3. General representation theory says that an
irreducible representation of G is uniquely determined up to equivalence by
its character. Therefore ρ2⊗ρnat = ρ0+ρ1+ρ3. Hence aρ2,ρj

= 1 for j = 0, 1, 3
and aρ2,ρj

= 0 for j = 2, 4, 5. Similarly, we see that

χ0χnat = χ2, χ1χnat = χ2,

χ3χnat = χ2 + χ4 + χ5,

χ4χnat = χ3 and χ5χnat = χ3.

In this way we obtain a graph – the extended Dynkin diagram D̃5 of Figure 3.
Thus we see that there are two completely different ways to obtain the same

extended Dynkin diagram D̃5 as Γ̃SING(A2/G, 0) and Γ̃GROUP(G), while D5

as ΓSING(A2/G, 0) and ΓGROUP(G).

D̃5

�

�

��
��

� ���
�

���ρ1

ρ0 ρ2 ρ3
ρ4

ρ5

Figure 3. Γ̃GROUP(D3)

The same is true in the other cases. Namely the two graphs ΓSING(A2/G, 0)
and ΓGROUP(G) turn out to be one of the Dynkin diagrams ADE and co-

incide with each other, while both Γ̃SING(A2/G, 0) and Γ̃GROUP(G) are the
corresponding extended Dynkin diagram (See Figure 4). It is also interesting
to note that the degrees of the characters deg ρj = χj(1) are equal to the
multiplicities of the fundamental cycle we computed in section 1.3.
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This is the second observation of McKay that we are going to discuss in
this article.
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Figure 4. The extended Dynkin diagrams and representations

2. The G-orbit Hilbert schemes

2.1. Hilbert schemes. The Hilbert scheme of a given projective (or quasipro-
jective) scheme X is the scheme parametrizing all the subschemes of X . More
precisely, let X be a projective scheme embedded in a projective space PN ,
and L the restriction of O�N(1) to X . The Hilbert scheme is the scheme
representing the functor

HilbX : S 
→
{

flat families Y of subschemes of X over S
}
.

The Euler–Poincaré characteristic P (m) :=
∑

q∈�(−1)qhq(Ys, L
⊗m
Ys

) (called

the Hilbert polynomial) of the sheaf L⊗m
Ys

is constant on each connected com-
ponent of S. Therefore the Hilbert scheme decomposes as the disjoint union
of open subsets labelled by Hilbert polynomials.
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The point set HilbP
X classifies the subschemes of X with Hilbert polynomial

equal to P . Let U ⊂ X be an open subscheme. Then HilbU is an open
subscheme of HilbX consisting of the subschemes of X whose supports are
contained in U . This means that HilbP

U is empty or an open subscheme of
HilbP

X for a fixed Hilbert polynomial P .

2.2. The Hilbert scheme of n points. In what follows we denote HilbP
X

by HilbP (X). Write Sn(A2) for the nth symmetric product of the affine plane
A2. This is by definition the quotient of the products of n copies of A2 by the
natural permutation action of the symmetric group Sn on n letters. It is the
set of formal sums of n points, in other words, the set of unordered n-tuples
of points. Let P (m) = n for any m ∈ Z, namely let P (m) be a constant
polynomial. We call Hilbn(A2) := HilbP (A2) the Hilbert scheme of n points
in A

2. It is a quasiprojective scheme of dimension 2n. Any Z ∈ Hilbn(A2) is
a zero-dimensional subscheme with h0(Z,OZ) = dim(OZ) = n. Suppose that
Z is reduced. Then Z is the union of n distinct points. Since being reduced
is an open and generic condition, Hilbn(A2) contains a Zariski open subset
consisting of formal sums of n distinct points.

We have a natural morphism π from Hilbn(A2) onto Sn(A2) defined by

π : Z 
→
∑

p∈Supp(Z)

dim(OZ,p)p

which is called the Hilbert-Chow morphism. One of the most remarkable
features of Hilbn(A2) is the following result.

Theorem 2.3 ([Fogarty68]). Hilbn(A2) is a smooth quasi-projective scheme,
and the Hilbert-Chow morphism π : Hilbn(A2) → Sn(A2) is a resolution of
singularities of the symmetric product.

We note that smoothness of Hilbn(A2) is peculiar to dim A
2 = 2.

2.4. The G-orbit Hilbert scheme. For any finite subgroup G of SL(2,C)
of order n, we consider the Hilbert-Chow morphism π from Hilbn(A2) onto
Sn(A2). Since the morphism π : Hilbn(A2) → Sn(A2) is G-equivariant, we
have a natural morphism between G-fixed point loci. We note that the G-
fixed point set of Sn(A2) is nothing but A

2/G because n = |G|. The G-fixed
point set Hilbn(A2)G in Hilbn(A2) is always nonsingular, but could a priori be
disconnected. There is however a unique irreducible component of Hilbn(A2)G

dominating Sn(A2)G, which we denote by HilbG(A2) and call it the G-orbit
Hilbert scheme. It is a G-invariant subscheme of Hilbn(A2) that parametrizes
all smoothable G-invariant subschemes of length |G|.

Now we recall the following theorem proved in [IN99].

Theorem 2.5. Let G ⊂ SL(2,C) be a finite subgroup of order n. Then there
is a unique irreducible component HilbG(A2) of Hilbn(A2)G dominating A

2/G,



8 IKU NAKAMURA

which is a minimal resolution of A
2/G. In particular, the dualizing sheaf of

HilbG(A2) is trivial.

Proof. Any point of Sn(A2)G \{0} is a G-orbit of a point 0 �= p ∈ A2, which is
a reduced zero-dimensional subscheme invariant under G. It follows that
HilbG(A2) is isomorphic to Sn(A2)G (� A

2/G) over Sn(A2)G \ {0} under
the Hilbert-Chow morphism. Hence HilbG(A2) is birationally equivalent to
A2/G), so that it is a resolution of A2/G. Moreover by [Fujiki83], Propo-
sition 2.6, HilbG(A2) inherits a canonical holomorphic symplectic structure
from Hilb(A2). Since dim HilbG(A2) = dim A

2/G = 2, this implies that the
dualizing sheaf of HilbG(A2) is trivial. This proves the theorem.

We denote the natural morphism from HilbG(A2) onto A
2/G by the same

letter π. There are two corollaries to Theorem 2.5, useful for explicit compu-
tations. We only quote these from [IN99]. See [IN99] for proofs.

Corollary 2.6. Let G be a finite subgroup of SL(2,C), and I an ideal of
O� 2 with I ∈ HilbG(A2) (to be exact, the subscheme defined by I belonging
to HilbG(A2)). Then as G-modules O� 2/I � C[G] � ∑

ρ(deg ρ)ρ, the group

algebra (the regular representation).

Corollary 2.7. Let I be an ideal of O� 2 with I ∈ HilbG(A2). Any G-
invariant function vanishing at the origin is contained in I.

3. Theorems

3.1. A link from HilbG(A2) to McKay correspondence. For any finite
subgroup G of SL(2,C) of order n, the G-orbit Hilbert scheme HilbG(A2) of
Hilbn(A2) is a minimal resolution of the simple singularity SG := A

2/G. Let
π : HilbG(A2) → SG be the natural morphism.

Let S := C[x, y]. Let m be the ideal of S generated by x and y, n the ideal
of S generated by all the G-invariant polynomials vanishing at the origin. A
point p of HilbG(A2) is a G-invariant zero-dimensional subscheme Z of A

2.
Since A2 is affine, we can associate to it the G-invariant ideal I := IZ of S =
C[x, y] defining Z with S/I � C[G], the regular representation of G. Thus
often we write I ∈ HilbG(A2) instead of Z ∈ HilbG(A2) or p ∈ HilbG(A2). We
also have the exact sequence

0 → I → S → Γ(Z,OZ) → 0.

Any point of the exceptional set E of π is a G-invariant zero-dimensional
subscheme Z of A2 with support the origin. In other words, the ideal I of S
defining Z is an infinite-dimensional G-module contained in m. By deriving a
finite-dimensional G-module from it naturally, we will give the McKay corre-
spondence as described in section 1. We shall introduce the McKay quiver (in
the quotient of the coinvariant algebra) and subquivers so as to understand
the natural stratification of HilbG(A2). Then the corresponding extended
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Dynkin diagram emerges naturally (See Figure 6) by extending the McKay
quiver in the polynomial ring. We also have a natural irreducible decom-
position of a certain universal coherent sheaf on HilbG(A2). This somewhat
sharpens the McKay correspondence (Theorem 3.9).

3.2. A stratification of HilbG(A2) by IrrG. Let G be a finite subgroup of
SL(2,C). In what follows we assume that G is not cyclic because An-case is
much easier. As in section 1.4, we write IrrG for the set of all the equivalence
classes of nontrivial irreducible G-modules, and Irr∗G for the union of IrrG
and the trivial one-dimensional G-module.

Let E the exceptional set of the minimal resolution, IrrE the set of irre-
ducible components of E.

Any I ∈ X contained in E is a G-invariant ideal of S which contains n by
Corollary 2.7. For any ρ, ρ′, and ρ′′ ∈ IrrG, we define

V (I) := I/(mI + n),

E(ρ) :=
{
I ∈ HilbG(A2);V (I) ⊃ ρ

}
,

P (ρ, ρ′) :=
{
I ∈ HilbG(A2);V (I) ⊃ ρ⊕ ρ′

}
,

Q(ρ, ρ′, ρ′′) :=
{
I ∈ HilbG(A2);V (I) ⊃ ρ⊕ ρ′ ⊕ ρ′′

}
.

Any nonempty stratum will be described in a simple manner by using Dynkin
diagrams with directed edges, called McKay subquivers. See subsection 4.8,
Figures 7-12.

Definition 3.3. Two irreducible G-modules ρ and ρ′ are said to be adjacent
if ρ⊗ ρnat ⊃ ρ′ or vice versa.

The Dynkin diagram Γ(IrrG) of IrrG is the graph whose vertices are IrrG,
with ρ and ρ′ joined by a simple edge if and only if ρ and ρ′ are adjacent.

Then the following theorem was proved in [IN99].

Theorem 3.4. Let G be a finite subgroup of SL(2,C). Then

(1) the map ρ 
→ E(ρ) is a bijective correspondence between IrrG and IrrE;
(2) E(ρ) is a smooth rational curve with E(ρ)2 = −2 for any ρ ∈ IrrG;
(3) P (ρ, ρ′) �= ∅ if and only if ρ and ρ′ are adjacent. In this case P (ρ, ρ′) is

a single (reduced) point, at which E(ρ) and E(ρ′) intersect transversally;
(4) P (ρ, ρ) = Q(ρ, ρ′, ρ′′) = ∅ for any ρ, ρ′, ρ′′ ∈ IrrG.

By Theorem 3.4, (3), Γ(IrrG) is the same as the dual graph Γ(IrrE) of E,
in other words, the Dynkin diagram of the singularity (A2/G, 0).

In what follows we assume that G is not cyclic. We define nonnegative
integers d(ρ) for any ρ ∈ IrrG as follows. Since G is not cyclic, Γ(IrrG) is
star-shaped with a unique centre. For any ρ ∈ IrrG, we define d(ρ) to be the
distance from the vertex ρ to the centre, where d(ρ) = 0 for the centre ρ. It
is obvious that d(ρ) = d(ρ′) ± 1 if ρ and ρ′ ∈ IrrG are adjacent.
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Let S = C[x, y]. For any positive integer k let Sk be the subspace of ho-
mogeneous polynomials of degree k in S. We say that a G-submodule W of
m/n is homogeneous of degree k if it is generated over C by homogeneous
polynomials of degree k. The G-module m/n splits as a direct sum of ir-
reducible homogeneous G-modules. If W is a direct sum of homogeneous
G-submodules, then we denote the homogeneous part of W of degree k by
Sk(W ). For any G-module W in some Sk(m/n), we write Sj ·W for the G-
submodule of Sk+j(m/n) generated over C by the products of Sj(m/n) and
W . We denote by W [ρ] the ρ factor of W , that is, the sum of all the copies
of ρ in W ; and similarly, we denote by [W : ρ] the multiplicity of ρ ∈ IrrG in
a G-module W .

Definition 3.5. The quotient algebra S/n is called the coinvariant algebra
of G, denoted by Coinv(G) (or denoted by Coinv(the type of SG) with the
notation of Table 1). Let h be the Coxeter number of the simple singularity
SG. Then we define the very positive part S† := S†(m/n) of S/n to be

S† :=
∑

k> h
2
+d(ρ),ρ∈IrrG

Sk(m/n)[ρ].

We also define the McKay quiver of G by

SMcKay(G) =
∑

ρ∈Irr G

Sh
2
±d(ρ)(m/n)[ρ] + S†/S†,

which we also denote by SMcKay(the type of SG). We also define Vk(ρ) =
Sk(m/n)[ρ] and V (ρ) = SMcKay(G)[ρ].

The following Lemma 3.6 and Lemma 3.7 describe the structure of the
McKay quiver SMcKay(G). See [IN99] for the proofs.

Lemma 3.6. Let ϕi be three generators of G-invariants, di = degϕi and h
the Coxeter number of the simple singularity SG. Then d1 + d2 = d3 + 2 and
d3 = h, and moreover Sk(m/n) = 0 for k ≥ d3.

Lemma 3.7. Assume that G is not cyclic. Let h be the Coxeter number of
the simple singularity SG. Then as G-modules, we have

(1) m/n =
∑

ρ∈Irr G 2(deg ρ)ρ;

(2) SMcKay(G) � ∑
ρ∈Irr G 2ρ;

(3) Vh
2
−d(ρ)(ρ) � Vh

2
+d(ρ)(ρ) = ρ if d(ρ) ≥ 1 and Vh

2
(ρ) = ρ⊕2 if d(ρ) = 0;

(4) Sh
2
−k(m/n) � Sh

2
+k(m/n) for any k.

Using this notation we see by Lemma 3.7, (2) that V (ρ) = Vh
2
−d(ρ)(ρ) +

Vh
2
+d(ρ)(ρ) � ρ⊕2 and that the subset E(ρ) is P(V (ρ)), the set of all nontrivial

G-submodules of ρ⊕2. This is isomorphic to the projective line, or a smooth
rational curve by Schur’s lemma. This proves Theorem 3.4, (2).
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3.8. The ideals nX and π∗m. Since (A2/G) ×(� 2/G) X � X , X is a closed
subscheme of (A2/G) ×X , which is defined by an ideal IX of O� 2/G ⊗ OX .
Let nX be the ideal of O� 2 ⊗OX generated by IX . Let Zuniv be the universal
subscheme of A

2×X , and Iuniv the ideal sheaf of O� 2×X defining Zuniv. Since
we have a commutative diagram

Zuniv
pr2−−−→ X

pr1

⏐⏐
 π

⏐⏐

A2 φ−−−→ A2/G,

the morphism φ× idX : A
2 ×X → A

2/G×X sends Zuniv into (A2/G)×(� 2/G)

X � X . This implies that nX = IXO� 2 ⊗ OX ⊂ Iuniv. Now we define

V := V (Iuniv) = Iuniv/mIuniv + nX .

Let m be the maximal ideal of O� 2/G of the unique singular point. We
note n = Γ(A2, φ∗m). We also note π∗(m) ∩ Iuniv = {0}. In fact, suppose
π∗(F ) ∈ Iuniv. Then π∗(F ) = 0 on Zuniv. Since Zuniv is surjective over A2/G,
F = 0. It follows π∗(m) ∩ Iuniv = {0}.

Since π∗m := mOX is the defining ideal of Efund by [Artin66], we see that
V is a finite OEfund

-module. See section 6 for the proof. However we prove a
little stronger

Theorem 3.9. The O� 2×�X-module V is a finite OE-module; as an O� 2×�X-
module with G-action, we have an isomorphism

V �
⊕

ρ∈Irr G

ρ⊗� OE(ρ)(−1).

In section 6 we will prove Theorem 3.9. In order to prepare for the proof
of Theorem 3.9, we recall in section 4 the proof of Theorem 3.4 and related
constructions in the case of D5 in full detail. In the cases Dn (n �= 5) and E6

we give only a sketch of proofs of Theorem 3.9. Though we give almost no
proof for E7 because we need more notation, we remark that we can prove it
in the same manner. It remains to check E8.

4. The Simple Singularity D5

In this section we explain the case of D5 in full detail.

4.1. The binary dihedral group D3. The simple singularity D5 is the
quotient singularity of A

2 by the binary dihedral group G := D3 of order 12,
which is generated by σ and τ :

σ =

(
ε 0
0 ε−1

)
, τ =

(
0 1
−1 0

)
,

where ε := e2πi/6. We have σ6 = τ 4 = 1, σ3 = τ 2 and τστ−1 = σ−1. The
ring of G-invariants in C[x, y] is generated by three elements A6 := x6 + y6,
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A8 := xy(x6 − y6) and A4 := x2y2. The quotient A
2/G is isomorphic to the

hypersurface 4A4
4 + A2

8 −A4A
2
6 = 0.

k Sk Sk(S/n)

0 ρ0 ρ0

1 ρ2 ρ2

2 ρ1 + ρ3 (ρ1) + ρ3

3 ρ2 + ρ4 + ρ5 (ρ2 + ρ4 + ρ5)

4 [ρ0] + 2ρ3 (2ρ3)

5 2ρ2 + ρ4 + ρ5 (ρ2 + ρ4 + ρ5)

6 [ρ0] + 2ρ1 + 2ρ3 (ρ1) + ρ3

7 3ρ2 + ρ4 + ρ5 ρ2

Table 3. Irreducible decompositions of S and Coinv(D5)

k Vk(ρ) ⊂ Sk(S/n) equiv.class

0 {1}ρ0
ρ0

1 {x, y}ρ2
ρ2

2 {xy}ρ1
⊕ {x2, y2}ρ3

(ρ1) + ρ3

3 {x2y,−xy2}ρ2
(ρ2 + ρ4 + ρ5)

⊕{x3 + iy3}ρ4
⊕ {x3 − iy3}ρ5

4 {y4, x4}ρ3
⊕ {x3y,−xy3}ρ3

(2ρ3)

5 {y5,−x5}ρ2
(ρ2 + ρ4 + ρ5)

⊕{xy(x3 − iy3)}ρ4
⊕ {xy(x3 + iy3)}ρ5

6 {x6 − y6}ρ1
⊕ {xy5,−x5y}ρ3

(ρ1) + ρ3

7 {xy6, x6y}ρ2
ρ2

Table 4. Coinv(D5)

degree 1 2 3 4

equiv.class ρ2 (ρ1) + ρ3 (ρ2 + ρ4 + ρ5)

degree 7 6 5 (2ρ3)

equiv.class ρ2 (ρ1) + ρ3 (ρ2 + ρ4 + ρ5)

Table 5. Dual pairs of Coinv(D5)
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4.2. The McKay quiver, tables and figures. We consider the case of D5.
By an elementary computation we have the irreducible decomposition of the
coinvariant algebra Coinv(D5) in Table 3. As Tables 3-5 indicate, Coinv(D5)
consists of dual pairs. The McKay quiver SMcKay(D5) of Coinv(D5), that
is, the irreducible factors in the parentheses in Tables 3 - 5 consist of dual
pairs, exactly one pair for each equivalence class ρ ∈ IrrG except ρ3, while
V4(ρ3) = 2ρ3 is self-dual.

V2(ρ1)

⊕
V6(ρ1)

V3(ρ2)

⊕
V5(ρ2)

V4(ρ3)

V3(ρ4)

⊕
V5(ρ4)

V3(ρ5)

⊕
V5(ρ5)

�� ��

�
�

�
���
�
�
�
���

�
�

�
����
�
�
��	

Figure 5. The McKay quiver of D5

V4(ρ0)

⊕
V6(ρ0)

V2(ρ1)

⊕
V6(ρ1)

V3(ρ2)

⊕
V5(ρ2)

V4(ρ3)

V3(ρ4)

⊕
V5(ρ4)

V3(ρ5)

⊕
V5(ρ5)

�
�

�
���

�
�

�
���

�
�
�
����
�

�
���

��

�
�

�
���
�
�
�
���

�
�

�
����
�
�
��	

Figure 6. The extended McKay quiver of D5

The coinvariant algebra Coinv(D5) admits a quiver structure induced from
multiplication of the symmetric algebra. This induces a quiver structure on
SMcKay(D5), which we call the McKay quiver of D5. It yields naturally a

corresponding Dynkin diagram of the minimal resolution X := HilbG(A2),
as we see later. In other words, the McKay quiver of D5 gives the Dynkin
diagram D5 of the exceptional set E of X by replacing each pair of arrows
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by an edge. To describe the strata of E precisely we also introduce the
subquivers Quiv(ρ) and Quiv(ρ, ρ′), which are Dynkin diagrams with certain
directed edges. See Figures 7-16. These enable us to specify which of the
G-invariants A4, A6 and A8 generates the ideal π∗(n) along each E(ρ).

Moreover in order to obtain the extended Dynkin diagram D̃5 it seems
natural to add to Figure 5 the G-submodules V4(ρ0) := S4[ρ0] and V6(ρ0) :=
S6[ρ0] as in Figure 6, where V4(ρ0) and V6(ρ0), the parts of Table 3 in the
bracket, are generated by the generators A4 = x2y2 and A6 = x6 + y6 of
G-invariants respectively.

We note that the arrows between ρ2 to ρ0 are exceptional in the sense that
both the arrows between them are directed from ρ2 to ρ0, while in any other
cases, say for ρ1 and ρ2, both directions are taken by arrows between them.
As its consequence deg V4(ρ0) + degV6(ρ0) = 10 > 8 = 2 + 6 = 3 + 5 = 4 + 4,
the sum of degrees for the other pairs or the Coxeter number of D5.

4.3. The subset E(ρ1).

4.3.1. We first classify I ∈ E(ρ1). Now we recall

V2(ρ1) = {xy}, V6(ρ1) = {x6 − y6},
V3(ρ2) = {x2y, xy2}, V5(ρ2) = {x5, y5}.

For any nonzero G-submodule W of V2(ρ1) ⊕ V6(ρ1) with W �= V6(ρ
′
1), let

I(W ) := SW + n where S = C[x, y]. The G-module W is generated by
xy + t(x6 − y6) for some t ∈ C. Then since S8 ⊂ n by Lemma 3.6, we see

S2W + n = S2 · (xy + t(x6 − y6)) + n = S2 · xy + n,

SkW + n = SkV2(ρ1) + n for any k ≥ 2

By Table 4, we see in S/n

S2V2(ρ1) = {x3y, x2y2, xy3} = {x3y,−xy3} = V4(ρ3),

S3V2(ρ1) = {x4y, xy4} = V5(ρ4) ⊕ V5(ρ5),

S4V2(ρ1) = V6(ρ3), S5V2(ρ1) = V7(ρ2).

It follows that

S1W + S5W + n = S1V2(ρ1) + S5V2(ρ1) + n.

Hence we see

I(W )/n = W +

5∑
k=1

SkW + n/n = W +

5∑
k=1

SkV2(ρ1) + n/n

� W + ρ2 + ρ3 + (ρ4 + ρ5) + ρ3 + ρ2 �
∑

ρ∈Irr G

deg(ρ)ρ.

Thus we have S/I(W ) � S/n � I(W )/n � ∑
ρ∈Irr∗ G deg(ρ)ρ. Hence I(W )

belongs to Hilb|G|(A2)G−inv.
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4.3.2. Next we prove that I(V2(ρ1)) belongs to HilbG(A2). For this pur-

pose we consider local deformations of I(V2(ρ1)) in Hilb|G|(A2)G−inv. Let
I = I(V2(ρ1)). Then I = xyS + A6S because n is generated by A4 = x2y2,
A6 = x6 + y6 and A8 = xy(x6 − y6). General deformation theory says
that G-equivariant local deformations of I are captured by the ρ0-part of
HomS(I/I2, S/I). We see

(S/I)[ρ1] = {xy, x6 − y6} = V2(ρ1) + V6(ρ1), (S/I)[ρ0] = {1} = C.

Since I/I2 is generated by the elements xy and A6 = x6 +y6, the G-module
HomS(I/I2, S/I)[ρ0] is spanned by the elements ψ1 and ψ2 :

ψ1(xy) = x6 − y6, ψ1(A6) = 0, ψ2(xy) = 0, ψ2(A6) = 1.

In fact, let φ ∈ HomS(I/I2, S/I)[ρ0]. Let a = xy be a generator of V2(ρ1).
Then we may assume φ(a) = s(x6 − y6). Then we have (x6 − y6)φ(a) =
φ(A8) + s0φ(A2

6 − 4A3
4) = φ(A8) because AjAk ∈ I2, while (x6 − y6)φ(a) =

s(A2
6 − 4A3

4) = 0 in S/I because Ak ∈ I . Hence φ(A8) = 0. Moreover,
φ(A4) = φ(xya) = sA8 = 0. Since HomS(I/I2, S/I)[ρ0] is two-dimensional
and I is generated by a and A6, it follows that letting φ(A6) = t, then
φ = sψ1 + tψ2, whence ψ1 and ψ2 span HomS(I/I2, S/I)[ρ0].

Thus the tangent space T[I](Hilb|G|(A2))G−inv at the point [I ] is spanned by
∂
∂s

and ∂
∂t

. In other words, s and t are local (regular) parameters of HilbG(A2)
at I . This implies the following. Let C[[s, t]] be the formal power series ring
of two variables s and t, and R = C[[s, t]][x, y]. Now we define I to be the
ideal of R generated by the elements

xy + t(x6 − y6), A6 + s, A4 + tA8, A8 + s2t+ 4t4A3
8.

Let φ1(s, t) be a power series with initial term −s2t satisfying the equation

φ1 + s2t+ 4t4φ3
1 = 0,

which comes from A2
8 = A4A

2
6 − 4A4

4. The power series φ1 is uniquely deter-
mined by this property. Then I is also generated by the elements

xy + t(x6 − y6), A6 + s, A4 + tφ1(s, t), A8 − φ1(s, t).

We note that

S/I =

5⊕
k=1

{xk, yk} ⊕ {x6 − y6}.

By the upper semi-continuity R/I is generated over C[[s, t]] by S/I (re-
garded as a G-submodule of S). Then it is almost clear that R/I is a free
C[[s, t]]-module with the same basis S/I because of the forms of the four
generators of I. Hence R/I gives a C[[s, t]]-flat family of zero-dimensional
subschemes deforming Z := Spec(S/I). It is obvious that the support of the
subscheme over C((s, t)) is away from the origin (if necessary by restricting
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the deformation to a small disc of the (s, t) space near the origin in the com-
plex topology). In other words, Z is deformed into a G-invariant reduced
subscheme of A2. Therefore Z, hence I , belongs to HilbG(A2).

4.3.3. Since I belongs to HilbG(A2), any deformation I ′ of I over a connected
base belongs to HilbG(A2) because HilbG(A2) is connected. In particular,
I(W ) defined above and all I ′ we are going to construct in this (sub)section
belong to HilbG(A2).

4.3.4. Next we consider the case where W = V6(ρ1). Let W∞ = V6(ρ1) and
Wt = (xy + t(x6 − y6))S + n. Then limt→∞Wt = W∞ in P

1 = P(V (ρ1)) =
P(V2(ρ1) ⊕ V6(ρ1)). Now we compute limt→∞ I(Wt) in HilbG(A2). For any t,
hence for t = ∞ we have

I(Wt)/n = Wt +
5∑

k=1

SkWt + n/n = Wt +
5∑

k=1

SkV2(ρ1) + n/n,

I(W∞)/n = V6(ρ1) +

5∑
k=1

SkV2(ρ1) + n/n �
∑

ρ∈Irr G

deg(ρ)ρ.

Since I(W∞) is a limit of I(Wt), to be more precise, we have a flat family
over P

1 deforming I(Wt) into I(W∞), the limit I(W∞) belongs to HilbG(A2).
We note that

V (I(W∞)) = V6(ρ1) + S1V2(ρ1) = V6(ρ1) + S3(ρ2).

Hence I(W∞) belongs to the subset P (ρ1, ρ2) of HilbG(A2).

4.3.5. Now we shall prove the converse. Let I ∈ Hilb|G|(A2)G−inv. Suppose
S/I � C[G] and ρ1 ⊂ V (I). Then n ⊂ I by (the same reason as) Corollary 2.7.
This implies that a nonzero G-submodule W of V2(ρ1) ⊕ V6(ρ1) is contained
in V (I), and in I as part of generators of I . If W �= V6(ρ1), then I contains
I(W ) defined above. Since I(W )/n � I/n, we have I = I(W ). Suppose
W = W∞ = V6(ρ1), or equivalently V6(ρ1) ⊂ V (I). Since W is part of
generators of I , V5(ρ2) is not contained in I . There are only V3(ρ2) and
V5(ρ2) in S(m/n)[ρ2]. Hence V (I) ⊃ {x2y+ ty5, xy2− tx5} for some t, whence
t{x6,−y6} + n ⊂ S1V (I) + n ⊂ I because x2y2 ∈ n. If t �= 0, this implies
that {x6,−y6} = V6(ρ1) is not part of generators of I , which contradicts
the assumption W = V6(ρ1). It follows that t = 0, and V3(ρ2) is contained
in I . Let I(W ) = I(W∞) = I(V6(ρ1)) := V6(ρ1)S + V3(ρ2)S + n. Then
I(W∞) ⊂ I . As we saw above, I(W∞) ∈ HilbG(A2) and I(W∞)/n � C[G].
Hence I(W∞)/n � I/n, whence I = I(W∞).

Thus we have proved that if S/I � C[G] and V (I) ⊃ ρ1, then I = I(W )
for some nonzero G-submodule W ⊂ V2(ρ1) ⊕ V6(ρ1).
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4.3.6. To summarize the above, we define for a nonzero G-submodule W of
V2(ρ1) + V6(ρ1),

I1(W ) =

{
V6(ρ1)S + V3(ρ2)S + n if W = V6(ρ1),

SW + n otherwise,

= W +

5∑
k=1

SkV2(ρ1) + n.

The above classification of I shows that

E(ρ1) = {I1(W ); ρ1 �W ⊂ V2(ρ1) ⊕ V6(ρ1)},
P (ρ1, ρ2) = {I1(V6(ρ1))} = {V6(ρ1)S + V3(ρ2)S + n}.

We note that E(ρ1) is identified with the set of all nonzero G-submodules
of V2(ρ1) ⊕ V6(ρ1), which is (at least set-theoretically) isomorphic to P1 by
Schur’s lemma. Moreover

lim
W→V6(ρ1)

I1(W ) = I1(V6(ρ1)) = V6(ρ1)S + V3(ρ2)S + n.

The family I(W ), W ∈ P(V2(ρ1) ⊕ V6(ρ1)) � P
1 is flat over P

1 because I
with I0 = I1(V6(ρ1)) is C[[s, t]]-flat (See subsection 4.4). Hence we have an
injective morphism φ : P

1 → HilbG(A2) with injective homomorphism of tan-
gent spaces, whence E(ρ1), the image of φ, is a smooth rational curve. Since
HilbG(A2) is a smooth surface with trivial dualizing sheaf by Theorem 2.5,
this proves that the self-intersection of E(ρ1) is −2.

4.4. The subset E(ρ2).

4.4.1. First we consider the tangent space T[I](HilbG(A2)) at I := I1(V6(ρ1)).
Recall V (I) = V6(ρ1) + V3(ρ2). Since (S/I)[ρ1] = V2(ρ1) and (S/I)[ρ2] =
V1(ρ2) ⊕ V5(ρ2), the tangent space T[I](HilbG(A2)) at I is spanned as before
by the elements ψ1 and ψ2 :

ψ1(x
6 − y6) = xy, ψ1(V3(ρ2)) = 0,

ψ2(V6(ρ1)) = 0, ψ2(x
2y) = y5, ψ2(−xy2) = −x5

Because if ψ2(x
2y) = ax + by5 and ψ2(−xy2) = ay − bx5 for nonzero a, then

deformations by φ2 of I contain S, a contradiction. Hence a = 0.
We define I to be the ideal of C[[s, t]][x, y] generated by the elements

B := x6 − y6 + sxy,

C1 := x2y + ty5 − st

2
x,C2 := −xy2 − tx5 − st

2
y,

2A4 + tA6, A6 − φ2, A8 + sA4,
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where φ2 ∈ C[[s, t]] is the unique power series with initial term −1
2
s2t satis-

fying the equation

φ2 +
s2t

2
+
t3

2
φ2

2 = 0.

We note 2A4 + tA6 = yC1 − xC2, A8 + sA4 = xyB and A8 − st
2
A6 =

x5C1 + y5C2. The ideal I is therefore generated by the elements

B,C1, C2, A4 +
t

2
φ2, A6 − φ2, A8 − st

2
φ2.(1)

One can show that I defines a C[[s, t]]-flat family of subschemes, which is
a local universal deformation of Spec(S/I) or simply I .

4.4.2. One can read from this that s = 0 yields a new deformation of sub-
schemes. This leads us to the following definitions.

For W , any nonzero G-submodule of V (ρ2) := V3(ρ2) ⊕ V5(ρ2), we define

I2(W ) =

⎧⎪⎨⎪⎩
V6(ρ1)S + V3(ρ2)S + n if W = V3(ρ2),

V5(ρ2)S + S1V3(ρ2)S + n if W = V5(ρ2),

SW + n otherwise.

Suppose W to be any nonzero G-submodule of V (ρ2) such that W �= V3(ρ2)
and W �= V5(ρ2). Then we see S3W+S4W+n = V6(ρ3)+V7(ρ2)+n as S8 ⊂ n.
Since W �= V3(ρ2) and W �= V5(ρ2), we infer

SW + n = W + S1W + S2W + V6(ρ3) + V7(ρ2) + n

= W + S1V3(ρ2) + V5(ρ4) + V5(ρ5)

+ V6(ρ1) + V6(ρ3) + V7(ρ2) + n,

whence I2(W )/n � C[G]. This implies that I2(W ) ∈ HilbG(A2). In the
same manner as above one can prove that I2(W ) belongs to HilbG(A2) for
W = V3(ρ2) or W = V5(ρ2). We also see that

I2(W ) = W + S1W + S2W + V6(ρ3) + V7(ρ2) + n

= W + S1V3(ρ2) + V5(ρ4) + V5(ρ5)

+ V6(ρ1) + V6(ρ3) + V7(ρ2) + n

for any nonzero G-submodule of V (ρ2).

4.4.3. Moreover in the same manner as before one can check that if I satisfies
S/I � C[G] and V (I) contains ρ2, then I = I2(W ) for some nonzero G-
submodule W of V3(ρ2) ⊕ V5(ρ2).

This proves

E(ρ2) = {I2(W ); ρ2 �W ⊂ V3(ρ2) ⊕ V5(ρ2)} � P
1,

P (ρ1, ρ2) = {I2(V3(ρ2))} = {V6(ρ1)S + V3(ρ2)S + n},
P (ρ2, ρ3) = {I2(V5(ρ2))} = {V5(ρ2)S + S1V3(ρ2)S + n}.
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The subset E(ρ2) is proved as before to be a smooth rational curve with
self-intersection −2. We also see that

I2(V3(ρ2)) = lim
W→V3(ρ2)

I2(W ) = V3(ρ2)S + V6(ρ1)S + n,

I2(V5(ρ2)) = lim
W→V5(ρ2)

I2(W ) = V5(ρ2)S + S1V3(ρ2)S + n.

4.4.4. Now we focus on the intersection point P (ρ1, ρ2) of two rational curves
E(ρ1) and E(ρ2). The computation of limits shows that

I1(V6(ρ1)) = lim
W→V6(ρ1)

I1(W ) = {V6(ρ1) + S1V2(ρ1)}S + n

= {V6(ρ1) + V3(ρ2)}S + n,

I2(V3(ρ2)) = lim
W→V3(ρ2)

I2(W ) = {V3(ρ2)S + S1V5(ρ2)}S + n

= {V3(ρ2) + V6(ρ1)}S + n.

The reason why I1(V6(ρ1)) = I2(V3(ρ2)) holds true is just the fact

S1V2(ρ1) = V3(ρ2), S1V5(ρ2) = V6(ρ1) mod n,

where V2(ρ1) is the dual partner of V6(ρ1), while V3(ρ2) is the dual partner of
V5(ρ2). Since S1 � ρnat, the natural representation of G, this is part of the
McKay rule of irreducible decompositions by tensoring with ρnat, relevant to
ρ1 and ρ2 : ρ1ρnat = ρ2, ρ2ρnat = ρ1 + · · · .

4.5. The subset E(ρ3). The subset E(ρ3) is computed in the same manner
as before. Let W be a nonzero irreducible G-submodule of V4(ρ3). Then we
define in the same manner as before

I3(W ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(S1V3(ρ2)[ρ3] + V5(ρ2))S + n if W = S1V3(ρ2)[ρ3],

(S1V3(ρ4) + V5(ρ4))S + n if W = S1V3(ρ4),

(S1V3(ρ5) + V5(ρ5))S + n if W = S1V3(ρ5),

SW + n otherwise,

= W +

7∑
k=5

Sk(m/n) + n for any W.

Then one can prove in the same manner as before

E(ρ3) = {I3(W ); ρ3 �W ⊂ V4(ρ3)},
P (ρ2, ρ3) = {I3(S1V3(ρ2))} = {S1V3(ρ2)S + V5(ρ2)S + n},
P (ρ3, ρ4) = {I3(S1V3(ρ4))} = {S1V3(ρ4)S + V5(ρ4)S + n},
P (ρ3, ρ5) = {I3(S1V3(ρ5))} = {S1V3(ρ5)S + V5(ρ5)S + n}.
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We have also similar formulae of limits

P (ρ2, ρ3) = I3(S1V3(ρ2)[ρ3]) = S1V3(ρ2) +

7∑
k=5

Sk + n

= I2(V5(ρ2)) = V5(ρ2)S + S1V3(ρ2)S + n,

P (ρ3, ρ4) = I3(S1V3(ρ4)) = lim
W→S1V3(ρ4)

I3(W ),

P (ρ3, ρ5) = I3(S1V3(ρ5)) = lim
W→S1V3(ρ5)

I3(W ).

The first formula is true because SS1W + n =
∑7

k=5 Sk + n for any general
irreducible G-submodule W of V4(ρ3). Hence, the reason why I2(V5(ρ2)) =
I3(S1V3(ρ2)) holds true is just the fact

S1V3(ρ2) = {x3y,−xy3} + {x2y2} = {x3y,−xy3} � ρ3 mod n,

S1{x4, y4} = V5(ρ2) + V5(ρ4) + V5(ρ5) � ρ2 + ρ4 + ρ5,

where V3(ρ2) is the dual partner of V5(ρ2), while {x3y,−xy3} is the dual part-
ner of {x4, y4} with respect to the natural pairing (See [IN99], Lemma 11.5).
This reminds us of the McKay rule for representations explained in subsec-
tion 1.4.

4.6. The subsets E(ρ4) and E(ρ5). Since ρ4 and ρ5 are one-dimensional,
we can argue in the same manner as ρ1. Then we define

I4(W ) =

{
SW + S1V3(ρ4)S + n if W = V5(ρ4),

SW + n otherwise,

= W + S1V3(ρ4) + V5(ρ2) + V5(ρ5) + S6 + S7 + n

for any nonzero G-submodule W of V (ρ4) := V3(ρ4) + V5(ρ4), and

I5(W ) =

{
SW + S1V3(ρ5)S + n if W = V5(ρ5),

SW + n otherwise,

= W + S1V3(ρ5) + V5(ρ2) + V5(ρ4) + S6 + S7 + n

for any nonzero G-submodule W of V (ρ5) := V3(ρ5) + V5(ρ5). In the same
manner as before we see

E(ρ4) = {I4(W ); ρ4 �W ⊂ V (ρ4)} � P
1,

E(ρ5) = {I5(W ); ρ5 �W ⊂ V (ρ5)} � P
1,

P (ρ3, ρ4) = {I4(V5(ρ4))}, P (ρ3, ρ5) = {I5(V5(ρ5))}.
By subsection 4.5

P (ρ3, ρ4) = I4(V5(ρ4)) = I3(S1V3(ρ4)),

P (ρ3, ρ5) = I5(V5(ρ5)) = I3(S1V3(ρ5)).
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These formulae come from the relations

S1V3(ρ4) � ρ3, S1V3(ρ5) � ρ3 mod n,

S1{x4, y4} = V5(ρ2) + V5(ρ4) + V5(ρ5),

which reminds us of the McKay rule for representations in subsection 1.4.

4.7. Versal deformations.

4.7.1. Let I = I2(V5(ρ2)) = I3(S1V3(ρ2)) = V5(ρ2)S + S1V3(ρ2)S + n. Let

R = C[[s, t]][x, y], and λ = s2t
1+t2

. We define a deformation I3 of I as the ideal
of R generated by the elements

y5 + sx2y + λx,−x5 − sxy2 + λy,

x3y + ty4 + stx2,−xy3 + tx4 + sty2,

A6 + 2sA4, A8 − 2λA4, A8 + stA6 + 2tA2
4, 2A

2
4 − tA8, A4 − tλ.

It turns out that I3 is generated by the elements

y5 + sx2y + λx,−x5 − sxy2 + λy,

x3y + ty4 + stx2,−xy3 + tx4 + sty2,

A6 + 2stλ,A8 − 2tλ2, A4 − tλ,

which gives a C[[s, t]]-flat deformation of the subscheme defined by I .

4.7.2. Next let I = I3(S1V3(ρ4)) = I4(V5(ρ4)) = V5(ρ4)S+S1V3(ρ4)+n. Then
we define a C[[s, t]]-(co)flat deformation I4 of I as the ideal of R generated
by the elements

y4 − ix3y + sy4 + istx2, x4 + ixy3 + sx4 + isty2,

x4y − ixy4 + t(x3 + iy3),

(1 + s)A8 + 2iA2
4, (1 + s)A6 + 2istA4,

A8 − 2iA2
4 + tA6, (2 + 2s)A2

4 − iA8 + istA6.

It turns out that the ideal I4 is generated by the elements

y4 − ix3y + sy4 + istx2, x4 + ixy3 + sx4 + isty2,

x4y − ixy4 + t(x3 + iy3),

A4 +
st2

2 + s
,A6 − 2is2t3

(1 + s)(2 + s)
, A8 +

2is2t4

(1 + s)(2 + s)2
,

which gives a C[[s, t]]-flat deformation of the subscheme defined by I .

4.7.3. Let I = I3(S1V3(ρ5)) = I4(V5(ρ5)) = V5(ρ5)S + S1V3(ρ5) + n. We can
construct a versal deformation I5 of I in the same manner as ρ4. In fact,
we define I5 by replacing i in the definition of I4 by −i. Then I5 gives a
C[[s, t]]-flat family of deformations of the subscheme defined by I .
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4.8. The subquivers of the McKay quiver.

4.8.1. Now we give a simple algorithm for describing E(ρ) for ρ ∈ IrrG.
First we note that the very positive part S† is contained in any I ∈ E, the
exceptional divisor. It remains to describe precisely I + S†/S† ⊂ SMcKay(G).
This is done by using the subquivers of the McKay quiver as follows.

Now we take ρ1 as an example. The curve E(ρ1) consists of all I1(W ),
W ∈ P(V2(ρ1) ⊕ V6(ρ1), where

I1(W ) = W +

5∑
k=1

SkV2(ρ1)

= W + V3(ρ2) + S1V3(ρ2) + V5(ρ4) + V5(ρ5) + S†.

We define Quiv(ρ1), a subquiver of SMcKay(G) associated with ρ1, to be the
sum of all G-submodules V of SMcKay(G) in Figure 7 equipped with arrows
(= quiver structure) of SMcKay(G).

V2(ρ1)

⊕
V6(ρ1)

V3(ρ2)

⊕
{0}

S1V3(ρ2)

V5(ρ4)

V5(ρ5)

�� ��
0

�
�
��

�
�
�	

Figure 7. The original Quiv(ρ1)

We denote it simply by the following :

�� � �

�

�

� � 

�

��


Figure 8. Quiv(ρ1)

It is easy to recover the original Quiv(ρ1) from Figure 8 because between
the subspaces of Quiv(ρ1) corresponding to the vertices there are no nonzero
arrows of SMcKay(G) with reverse directions. For instance, in Quiv(ρ1) the
arrow from V2(ρ1) ⊕ V6(ρ1) to V3(ρ2) is precisely the disjoint union of the
arrow from V2(ρ1) to V3(ρ2) and the reverse arrow from {0} (⊂ V5(ρ2)) to
V6(ρ1), or equivalently, just the arrow from V2(ρ1) to V3(ρ2).

The G-submodule (I1(W )/n + S†) ∩ SMcKay(G) is the sum of W and all
G-submodules of Quiv(ρ1) inequivalent to ρ1. Therefore any I1(W ) ∈ E(ρ1)
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is given by

I1(W ) = W +
∑

V ⊂Quiv(ρ1),V ��ρ1

V + S† for W ∈ P(V2(ρ1) ⊕ V6(ρ1)),

where the summation ranges over all irreducible G-submodules V of Quiv(ρ1)
inequivalent to ρ1.

4.8.2. This is generalized in the other cases in the obvious manner. The
subquivers Quiv(ρi) (i = 2, 3, 4, 5) are given in Figure 9.
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Figure 9. Quiv(ρ) for D5

Any I(W ) ∈ E(ρ) is given by

I(W ) = W +
∑

V ⊂Quiv(ρ),V ��ρ

V + S† for W ∈ P(Vh−d(ρ)(ρ) + Vh+d(ρ)(ρ)),

where the summation ranges over all irreducible G-submodules V of Quiv(ρ)
inequivalent to ρ. The first diagram in Figure 9 is denoted Quiv(ρ2), which
means the subquiver diagram in Figure 10. We note that the quiver SMcKay(G)
restricted to S1V3(ρ2) automatically reduces to zero to the direction of V5(ρ2).

With these diagrams, the point P (ρ1, ρ2) is understood as the first diagram
of Figure 11 which can be embedded into both of Quiv(ρ1) and Quiv(ρ2), to
which it may be natural to assign the second graph in Figure 11. Thus the
four intersection points P (ρ, ρ′) are described by the subquivers in Figure 12.

{0}
⊕

V6(ρ1)

V3(ρ2)

⊕
V5(ρ2)

S1V3(ρ2)

V5(ρ4)

V5(ρ5)

�� ��
0

�
�
��

�
�
�	

Figure 10. The original Quiv(ρ2)
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{0}
⊕

V6(ρ1)

V3(ρ2)
⊕
{0}

S1V3(ρ2)

V5(ρ4)

V5(ρ5)

�� ��
0
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��
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Figure 11. Quiv(ρ1, ρ2)
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Figure 12. Quiv(ρ, ρ′) for D5

V4(ρ0)
⊕
{0}

V2(ρ1)

⊕
V6(ρ1)

V3(ρ2)

⊕
{0}

S1V3(ρ2)

V5(ρ4)

V5(ρ5)
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Figure 13. The extended Quiv(ρ1)

4.9. The extended McKay quiver revisited. The subquiver Quiv(ρ1)
extends itself in the extended McKay quiver by adding an arrow from V3(ρ2)
to V4(ρ0) as Figure 13 indicates.

This implies the following. By Table 4, V3(ρ2) = S1V2(ρ1) and V4(ρ0) ⊂
S1V3(ρ2). The subquiver Quiv(ρ1) does not generate V6(ρ0) in I1(W ), which
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explains why V6(ρ0) is always included as a generator of I1(W ). This is true
over a Zariski open subset of HilbG(A2) containing Spec C[s] (⊂ E(ρ1)) in
subsection 4.3.

Similarly, the subquiver Quiv(ρ2) extends itself by adding an arrow from
V3(ρ2) ⊕ V5(ρ2) to V4(ρ0) ⊕ V6(ρ0) as well. This means that the image of
the arrow spans a one-dimensional subspace of V4(ρ0) ⊕ V6(ρ0), whose one-
dimensional complement is necessary as a part of the generators of I2(W ).

In the other cases, the subquiver Quiv(ρk) (k = 3, 4, 5) extends itself by
adding an arrow from V5(ρ2) to V6(ρ0) as well. This shows that V4(ρ0) is
always necessary as a part of the generators of Ik(W ).

5. The Simple Singularity E6

5.1. The binary tetrahedral group T. The simple singularity E6 is the
quotient singularity of A2 by the binary tetrahedral group G := T, which is
the subgroup of SL(2,C) of order 24 generated by D2 = 〈σ, τ〉 and μ:

σ =

(
i, 0
0, −i

)
, τ =

(
0, 1
−1, 0

)
, μ =

1√
2

(
ε7, ε7

ε5, ε

)
,

where ε = e2πi/8 [Slodowy80], p. 74. The group G acts on A
2 from the right

by (x, y) 
→ (x, y)g for g ∈ G and D2 is a normal subgroup of G with the
following exact sequence:

1 → D2 → G→ Z/3Z → 1.

See Table 6 for the character table of G [Schur07] where h = 12 and ω =
(−1 +

√
3i)/2.

ρ 1 2 3 4 5 6 7 d (h
2
± d)

1 −1 τ μ μ2 μ4 μ5

(
) 1 1 6 4 4 4 4

ρ0 1 1 1 1 1 1 1 (2) –

ρ2 2 −2 0 1 −1 −1 1 1 (5, 7)

ρ3 3 3 −1 0 0 0 0 0 (6, 6)

ρ′2 2 −2 0 ω2 −ω −ω2 ω 1 (5, 7)

ρ′1 1 1 1 ω2 ω ω2 ω 2 (4, 8)

ρ′′2 2 −2 0 ω −ω2 −ω ω2 1 (5, 7)

ρ′′1 1 1 1 ω ω2 ω ω2 2 (4, 8)

Table 6. Character table of T
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k Sk Vk

0 ρ0 0

1 ρ2 ρ2

2 ρ3 ρ3

3 ρ′2 + ρ′′2 ρ′2 + ρ′′2
4 ρ′1 + ρ′′1 + ρ3 (ρ′1 + ρ′′1) + ρ3

5 ρ2 + ρ′2 + ρ′′2 (ρ2 + ρ′2 + ρ′′2)

6 [ρ0] + 2ρ3 (2ρ3)

7 2ρ2 + ρ′2 + ρ′′2 (ρ2 + ρ′2 + ρ′′2)

8 [ρ0] + ρ′1 + ρ′′1 + 2ρ3 (ρ′1 + ρ′′1) + ρ3

9 ρ2 + 2ρ′2 + 2ρ′′2 ρ′2 + ρ′′2
10 ρ′1 + ρ′′1 + 3ρ3 ρ3

11 2ρ2 + 2ρ′2 + 2ρ′′2 ρ2

12 2ρ0 + ρ′1 + ρ′′1 + 3ρ3 0

Table 7. Irreducible decompositions of S and Coinv(E6)

V4(ρ
′
1)

⊕
V8(ρ

′
1)

V5(ρ
′
2)

⊕
V7(ρ

′
2)

V6(ρ3)

V5(ρ
′′
2)

⊕
V7(ρ

′′
2)

V4(ρ
′′
1)

⊕
V8(ρ

′′
1)

V5(ρ2) ⊕ V7(ρ2)

V6(ρ0) ⊕ V8(ρ0)

�� �� �� ��
�
�

��

Figure 14. The extended McKay quiver of E6

5.2. Symmetric tensors modulo n. Let Sm be the space of homogeneous
polynomials in x and y of degree m. The G-modules Sm and Sm(S/n) via
ρnat decompose into irreducible G-submodules. We define a G-submodule of
m/n by Vi(ρj) := Si(m/n)[ρj] the sum of all copies of ρ in Si(m/n), which we
always choose as a homogeneous G-submodule of Si. For a G-module W we
define W [ρ] to be the sum of all the copies of ρ in W . It is known by [Klein],
p. 51 that there are G-invariant polynomials A6, A8, A

2
6 and A12 respectively

of degrees 6, 8, 12 and 12. We may assume that A6 = T , A8 = W and
A12 = U := ϕ3 +ψ3. Let V6(ρ0) = S6[ρ0] = {A6} and V8(ρ0) = S8[ρ0] = {A8},
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Figure 15. Quiv(ρ) for E6
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Figure 16. Quiv(ρ, ρ′) for E6

where U2 = 4W 3 − 27T 4. See [IN99], subsection 14.3 for the notation. We
caution that A12 in [IN99] is different from the present one.

The decomposition of Sk and Sk(m/n) for small values of k are given in
Table 7. The factors of Sk(m/n) in the parentheses are those in SMcKay(G).
We see by Table 7 that V6±d(ρ)(ρ) � ρ⊕2 if d(ρ) = 0, or ρ if d(ρ) ≥ 1. We also
see that S6−k(m/n) � S6+k(m/n) for any k. Thus Lemma 3.7 for E6 follows
from Table 7 immediately. The (extended) McKay quiver and subquivers of
E6 are given in Figures 14-16. See also Figure 4.

6. Proof of Theorem 3.9

Now we prove Theorem 3.9 mainly for D5.

6.1. The sheaf V. Let Zuniv be the universal subscheme of A2 of G-orbits
parameterized by HilbG(A2), and X = HilbG(A2). The natural morphism
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π : X → A
2/G is known by Theorem 2.5 to be the minimal resolution. We

define Iuniv to be the ideal sheaf of O� 2×X defining Zuniv in A2 ×X . Then we
have an exact sequence 0 → Iuniv → O� 2×X → OZuniv

→ 0.
We define IX to be the defining ideal of X as a subscheme of X �

(A2/G) ×(� 2/G) X of (A2/G) ×X , nX := IXO� 2×X and

V (Iuniv) := Iuniv/mIuniv + nX ,

which we denote by V . The sheaf V is a finite O� 2 ⊗OX -module supported by
{0}×E because mO� 2 = O� 2 outside the origin and {0}×X∩Supp(Zuniv)red =
{0} ×E. It is clear that mV = nXV = 0 from the definition of V .

Let m be the maximal ideal of the unique singular point of A
2/G. By the

definition of nX , φ∗F = π∗F mod nX for any F ∈ m.
We prove next π∗(m)V = 0. Let H ∈ Iuniv and a ∈ π∗m. Then there are

some Fk ∈ OX and Ak ∈ m such that a =
∑

k Fkπ
∗(Ak). Since nX ⊂ Iuniv

(See subsection 3.8), we have aH ≡ ∑
k Fkφ

∗(Ak)H in Iuniv/nX . However∑
k Fkφ

∗(Ak)H ∈ mIuniv, which proves aH = 0 in V . It follows π∗(m)V = 0.
Since π∗m is the ideal of OX defining the fundamental cycle Efund of E, this
implies that V is a finite OEfund

-module.
Since E(ρ) is a subscheme of Efund, V ⊗OE(ρ) is a finite OE(ρ)-module and

we have a natural homomorphism

V →
∑

ρ∈Irr G

V ⊗ OE(ρ).(2)

We prove this is an isomorphism in subsections 6.2 and 6.3.

6.2. Freeness outside Sing(E). First we prove that (2) is an isomorphism
at a nonsingular point of E. Let S = C[x, y].

Let I ∈ E(ρ) \ Sing(E). Then the ideal I is generated by a nonzero irre-
ducible G-submodule W of V (ρ) = Vh−d(ρ)(ρ) + Vh+d(ρ)(ρ) and n by section 4
or by [IN99], Theorem 10.7.

First we consider the case D5.

6.2.1. Let ρ = ρ1. Then W �= V6(ρ1). As HilbG(A2) is nonsingular and two-
dimensional, the tangent space T[I](HilbG(A2)) is exactly two-dimensional.
By subsection 4.3

HomS(I/I2, S/I)[ρ0] = Hom� (W,V6(ρ1)) ⊕ Hom� (V6(ρ0), V0(ρ0)).

We note that I is generated by W and A6 by subsection 4.9. Since
T[I](E(ρ1)) = Hom� (W,V6(ρ1)), the parameter t of Hom� (V6(ρ0), V0(ρ0))
gives a defining equation of E(ρ1).

By subsection 4.3 the ideal Iuniv of Zuniv is over E(ρ1) \ Sing(E) generated
by xy+s(x6−y6) and A6+t. Since A6+t ∈ nX , the quotient V is S⊗C[s, t]/t-
free of rank one, hence OE-free of rank one.
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6.2.2. Let us consider next the case ρ = ρ4. In this case, I = I4(W ),
W �= V5(ρ4). Then I is generated by W and A4 by subsection 4.9. Let
a = x3 + iy3 + s0(x

4y − ixy4) ∈ W and take φ ∈ HomS(I/I2, S/I)[ρ0]. We
may assume φ(a) = s(x4y−ixy4) ∈ V5(ρ4). Then we see A8+2iA2

4+s0A4A6 =
(x4y+ixy4)a. Since AjAk ∈ I2, we have φ(A8) = (x4y+ixy4)φ(a) = sA4A6 =
0. Similarly, φ(A6 + s0A8 − 2is0A

2
4) = (x3 − iy3)φ(a) = s(A8 − 2iA2

4) = 0.
Hence we have φ(A6) = φ(A8) = 0. It follows that letting φ(A4) = t, then s
and t are local (regular) parameters of HilbG(A2) at I . Thus we see

HomS(I/I2, S/I)[ρ0] = Hom� (W,V3(ρ4)) ⊕ Hom� (V4(ρ0), V0(ρ0)).

Thus we have generators A := A4 + t and B := x3 + iy3 + sxy(x3 − iy3) of
Iuniv, whose derivation span T[I](HilbG(A2)). Moreover A6 + sA8 − 2isA2

4 =
(x3 − iy3)B ∈ Iuniv, and A8 + 2iA2

4 + sA4A6 = (x3 + iy3)xyB ∈ Iuniv. Thus
Iuniv is generated by A and B, whence over E(ρ4)\Sing(E) � SpecC[s, t]/(t),

Iuniv = (x3 + iy3 + sxy(x3 − iy3), A4 + t).

Since π∗(m) is the defining ideal of Efund, we have π∗(m) = (t). Therefore V
is S ⊗ C[s, t]/t-free of rank one.

6.2.3. The above arguments are easily generalized to any one-dimensional
irreducible representation of Dn, E6 and E7 by using [IN99], sections 13-15.
We note that there is no one-dimensional irreducible representation for E8.

6.2.4. Next we consider ρ2 in theD5-case. Let I = I2(W ),W �= V3(ρ2), V5(ρ2).
Then we note that I6(ρ1) ⊂ SW + n and that V4(ρ0) + V6(ρ0)/W is a part of
generators of I/I2 by the property of Quiv(ρ2) mentioned in subsection 4.9.
Thus I/I2 is generated by b1 = x2y + s0y

5, b2 = −xy2 − s0x
5 and Ak. The

condition W �= V3(ρ2), V5(ρ2) is just s0 �= 0,∞.
We compute now T[I](HilbG(A2)) = HomS(I/I2, S/I)[ρ0], relying on these

facts. It is clear that (S/I)[ρ2] � V5(ρ2)⊕ V1(ρ2). We define ψ1 and ψ2 to be
the elements of HomS(I/I2, S/I)[ρ0]

ψ1(b1) = y5, ψ1(b2) = −x5, ψ2(b1) = −x,ψ2(b2) = −y.
We prove that ψ1 and ψ2 span HomS(I/I2, S/I)[ρ0]. So we take an element

φ of HomS(I/I2, S/I)[ρ0] and let φ(b1) = sy5 − tx, φ(b2) = −sx5 − ty.
We shall prove φ(Ak) = 0 (k = 4, 6, 8). We note φ(Ak) ∈ C = (S/I)[ρ0], a

constant. First φ(A8) = x5φ(b1) + y5φ(b2) = −tA6 = 0. Secondly, φ(2A4 +
s0A6) = yφ(b1) − xφ(b2) = sA6 = 0. Thirdly, we see

xyφ(A6) = x5φ(b1) − y5φ(b2) − 2s0xyφ(A2
4) = −t(x6 − y6) = 0

because (x6 − y6) ∈ V6(ρ1) ⊂ SW + n = I2(W ) = I . Meanwhile, xy ∈ V2(ρ1)
which is nonzero in S/I . Hence φ(A6) = 0. Hence we have φ(Ak) = 0 for all
Ak. It follows that φ = sψ1 + tψ2.

Since I/I2 is generated by b1, b2 and Ak, this proves

HomS(I/I2, S/I)[ρ0] = Hom� (W,V5(ρ2) ⊕ V1(ρ2)).
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Since T[I](E(ρ2)) = Hom� (W,V5(ρ2)), the parameter t of Hom� (W,V1(ρ2))
gives the equation of E(ρ2) locally along E(ρ2)\Sing(E). Now we prove that
the ideal Iuniv is generated by the elements

B1 := x2y + sy5 − tx,B2 := −xy2 − sx5 − ty, A := A4 − η,

where η := π∗A4 is a power series of t with initial term t2 satisfying s2η2−η+
t2 = 0. In fact, Noetherian property shows that Iuniv is generated by B1, B2

and some elements with initial terms being Ak. We see 2A4+sA6 = yB1−xB2,
sA8 + 2tA4 = −xy(yB1 + xB2) and A8 − tA6 = x5B1 + y5B2. Hence all of
these belong to Iuniv. Since π∗(m) ∩ Iuniv = {0}, we have π∗(2A4 + sA6) =
π∗(A8 − tA6) = 0, and therefore the ideal π∗m = (π∗A4, π

∗A6, π
∗A8) of OX

is generated by π∗A4 because s is invertible over E(ρ2) \ Sing(E). We note
E(ρ2) \ Sing(E) � Spec C[s, s−1]. It is easy to infer from A2

8 = A4A
2
6 − 4A4

4

that η satisfies s2η2 − η + t2 = 0.
Since −t2 = s2η2 − η and A4 − η ∈ nX , we have in V

tB1 = tx2y + sty5 + (s2A2
4 − A4)x

= −xyB1 − sy4B2 = 0,

tB2 = xyB2 + sx4B1 = 0.

Hence V is an OE-module with B1 and B2 generators. By section 4.4 that
V (I) is of rank two for any I ∈ E(ρ2) \ Sing(E), hence for each s ∈ C, s �= 0.
This implies that V ⊗ S[s, s−1, t]/(t) is S[s, s−1]-free of rank two.

6.2.5. As the final case of D5, we consider ρ3. Let I = I3(W ), W �= S1V3(ρk)
(k = 2, 4, 5). Then we see

HomS(I/I2, S/I)[ρ0] = Hom� (W,V4(ρ3)/W ) ⊕ Hom� (W,V2(ρ3)).

The proof in this case is however rather tricky. Let b1 = y4 + is0x
3y and

b2 = x4 − is0xy
3. By the condition W �= S1V3(ρk), we have s0 �= ±1,∞. Let

φ ∈ HomS(I/I2, S/I)[ρ0]. Since (S/I)[ρ3] = {x3y,−xy3} ⊕ V2(ρ3), we may
assume φ(b1) = isx3y + tx2 and φ(b2) = −isxy3 + ty2. First we note that
φ(bi) ∈ (S4 + S2)(m/I), whence φ(S2bi) ∈ (S6 + S4)(m/I) = S4(m/I). Hence
we see φ(y2b1) = isx3y3+ tA4 = tA4 = 0, φ(x2b2) = −isx3y3+ tA4 = tA4 = 0.
Similarly φ(x2b1) = isx5y + tx4 = tx4, φ(xyb1) = tx3y, φ(xyb2) = txy3 and
φ(y2b2) = ty4.

Then φ(xy3b1 − x3yb2) = −φ(A8) + 2is0φ(A2
4) = −φ(A8), while φ(xy3b1 −

x3yb2) = xyφ(y2b1) − xyφ(x2b2) = 0. Hence φ(A8) = 0. Similarly φ(A6) =
φ(y2b1 + x2b2) = 2tA4 = 0. We also see that (1 − s2

0)φ(x2y4) = φ(x2b1 −
is0xyb2) = tx4 − is0txy

3 = tb2 ∈ W ⊂ I . Hence (1 − s2
0)φ(x2y4) = 0 in S/I ,

whence φ(x2y4) = 0 because 1 − s2
0 �= 0. Similarly we see φ(x4y2) = 0. It

follows that {x2, y2}φ(A4) = 0. Hence φ(A4) = 0 because 0 �= {x2, y2} ⊂
(S/I)[ρ2]. This proves φ(Ak) = 0 for any Ak. Hence HomS(I/I2, S/I) =
Hom� (W,V4(ρ3)/W ) ⊕ Hom� (W,V2(ρ3)).
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We know by the subquiver Quiv(ρ3) that I is generated by W and A4. We
have B1, B2 and A as generators of Iuniv as follows :

B1 = y4 + isx3y + tx2, B2 = x4 − isxy3 + ty2, A = A4 − π∗(A4),

where π∗(A4) = t2

1−s2 . We note A6 + 2tA4 and A8 − 2isA2
4 ∈ Iuniv. Since t is

the parameter of Hom� (W,V2(ρ3)), E(ρ3) is defined by t = 0.
Now we prove in S[s, t]

tB1 = y2B2 + isxyB1 − (1 − s2)x2A,

tB2 = x2B1 − isxyB2 − (1 − s2)y2A.

Hence tB1 = tB2 = 0. This shows that V is C[s, 1
1−s2 ]-free of rank two,

where E(ρ3) \ Sing(E) = Spec C[s, 1
1−s2 ].

This completes the proof of freeness of V over E \ Sing(E) in the D5-case.

6.2.6. It is clear that one can generalize the above arguments to Dn for the
other n. To settle the E6 and E7-cases, we need to discuss three-dimensional
or four-dimensional representations ρ. Since the discussion below on the
three-dimensional representation ρ3 of E6 shows the general features of the
arguments for the proof sufficiently, we take up only ρ3 of E6 in order to avoid
the overwhelming notation for E7.

6.2.7. We consider the E6-case. Let G be the binary tetrahedral group T,
and ρ3 the unique three-dimensional representation of G. Let A6, A8 and A12

be the homogeneous generators of the ring of G-invariants :

A6 = T = p1p2p3, A8 = W = ϕψ,A12 = U = ϕ3 + ψ3,

where U2 = 4W 3 − 27T 4. See [IN99], subsection 14.3 for the notation. We
note ϕ3 − ψ3 = 3(2ω + 1)T 2 and that both ϕ3 and ψ3 are G-invariants.

Then any point I = I3(W ) ∈ E(ρ3) \ Sing(E) is given by an irreducible
G-submodule of V6(ρ3) with W �= S1V5(ρ2), S1V5(ρ

′
2), S1V5(ρ

′′
2) under the no-

tation of section 5. Then we see

HomS(I/I2, S/I) = Hom� (W,V6(ρ3)/W ) ⊕ Hom� (W,V4(ρ3)).

Moreover a versal deformation Iuniv of I is generated by six elements

B1, B2, B3, A6 − π∗(A6), A8 − π∗(A8), A12 − π∗(A12),

where with the notation of [IN99], subsection 14.3,

B1 = p1(ϕ + ωψ) + sp1ϕ+ tp2p3 + up1,

B2 = ωp2(ϕ+ ω2ψ) + sωp2ϕ− tp3p1 + up2,

B3 = ω2p3(ϕ+ ψ) + sω2p3ϕ+ tp1p2 + up3,

where s, t and u are parameters. We note that

V6(ρ3) = {p1ϕ,ωp2ϕ,ω
2p3ϕ} ⊕ {p1ψ, ω

2p2ψ, ωp3ψ},
V4(ρ3) = {p2p3,−p3p1, p1p2}, V2(ρ3) = {p1, p2, p3}.
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Then we see p1B1 − ω2p2B2 + ωp3B3 = ω(1 − ω)(ψ2 − ωuϕ). Hence ψ2 −
ωuϕ ∈ Iuniv, whence ψ3−ωuW ∈ Iuniv. Similarly we see p1B1−p2B2+p3B3 =
(ω − 1)sW − 3tT , which belongs to Iuniv. We also have (1 − ω2){(1 + s)ϕ2 −
ωuψ} = p1B1 − ωp2B2 + ω2p3B3 ∈ Iuniv. Hence (1 + s)ϕ3 − ωuW ∈ Iuniv.
From π∗m ∩ Iuniv = {0} it follows that

π∗ψ3 = ωuπ∗W, (1 + s)π∗ϕ3 = ωuπ∗W,

(ω − 1)sπ∗W = 3tπ∗T, π∗ϕ3 − π∗ψ3 = 3(2ω + 1)π∗T 2.

It follows that

π∗W =
ω2u2

1 + s
, π∗ϕ3 =

u3

(1 + s)2
, π∗ψ3 =

u3

1 + s
,

3π∗T = (1 − ω2)
u2s

(1 + s)t
, (1 − ω)su = t2.

Though the relation (1 − ω)su = t2 looks singular at P (ρ2, ρ3), the point
s = t = 0 of HilbG(A2), it is not singular at all because s and t/s are regular
parameters at P (ρ2, ρ3).

The condition W �= S1V5(ρ2), S1V5(ρ
′
2), S1V5(ρ

′′
2) implies s(1 + s) �= 0, s �=

∞. The parameters s, t and u are related by (1 − ω)su = t2. Hence π∗m =
(π∗T ) = (u2/t) = (t3) along E(ρ3) \ Sing(E), whence Efund = 3E(ρ3) there.

We see mod nX

tB1 = tp1(ϕ+ ωψ) + stp1ϕ + t2p2p3 + tup1

= tp1(ϕ+ ωψ) + stp1ϕ + t2p2p3 − 3ω(1 + s)p1T

= −ω2(s− ω)p3B2 + (s− ω2)p2B3,

tB2 = ω(s− ω)p1B3 − (s− ω2)p3B1,

tB3 = −ω(s− ω)p2B1 + (s− ω2)p1B2.

This proves tBi = 0 in V . Hence V is S[s, 1
s(1+s)

]-free of rank three. This

completes the proof of freeness of V over E(ρ3) \ Sing(E) for E6.

6.2.8. We explain very briefly the most complicated case of E7, that is, the
ρ4-case. The finite group G involved is the binary octahedral group O, and
the invariant ring of G is generated by homogeneous polynomials of degree 8,
12, and 18, where we note that 18 is also the Coxeter number of E7.

Any point I = I4(W ) ∈ E(ρ4) \ Sing(E) is given by an irreducible G-
submodule of V9(ρ4) with W �= S1V8(ρ

′′
2), S1V8(ρ3), S1V8(ρ

′
3) under the nota-

tion of section 5. Then we see

HomS(I/I2, S/I) = Hom� (W,V9(ρ4)/W ) ⊕ Hom� (W,V7(ρ4)).

The versal deformation Iuniv is generated over E(ρ4) \ Sing(E) by five ele-
ments B1, B2, B3, B4, A := A8 − π∗(A8), where A8 = W is the same as W of
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E6 and the elements Bi are of the form

Bi = Bi1 + sBi2 + tBi3 + uBi4 + vBi5

such that

V9(ρ4) = {Bi1, Bi2; i = 1, 2, 3, 4},
V13−2k(ρ4) = {Bik; i = 1, 2, 3, 4} (k = 3, 4, 5).

See [IN99], Table 13 for ρ4-factors of SMcKay(G). Moreover over E(ρ4) \
Sing(E), u (resp. v) is a unit multiple of t2 (or resp. t3), while π∗(A8) is a
unit multiple of t4, and π∗m = (A8) = (t4). Then we can prove tBi = 0 in V
in the same manner as before. In fact, the proof goes roughly as follows. The
term tB1 is the sum of Bik, whose last term tvBi5 is a multiple of t4. Hence
tvBi5 can be replaced mod nX by a unit multiple of A8Bi5. Then we see that
tB1 − tvBi5 + (the unit multiple of A8Bi5) is a sum of Bj over m. In other
words, tB1 is a sum of Bj and A over m. Since ρ4 is irreducible, this implies
that tBi is also a sum of Bj and A over m for any i. Thus we can prove that
V is OE(ρ4)-free over E(ρ4) \ Sing(E).

We can write down precisely the versal deformations of I ∈ E(ρ) \Sing(E)
similarly for any ρ of E7. By this, we can prove freeness of V along E\Sing(E).
We omit the details of E7-case because we need more notation.

6.3. Isomorphism at I(ρ, ρ′). In this subsection we prove that (2) is an
isomorphism at any singular point I := I(ρ, ρ′) of E.

6.3.1. First we consider the pair ρ = ρ1 and ρ′ = ρ2 in the D5-case. Then
Iuniv is given in (1). It is clear that V is generated by those elements whose
specializations at s = t = 0 are just the generators of I belonging to V6(ρ1) +
V3(ρ2). Let B = x6−y6+sxy, C1 = x2y+ty5− st

2
x and C2 = −xy2−tx5− st

2
y.

The ideal π∗(m) is generated by φ2, hence by s2t. We first see

tB = −(yC1 + xC2) = 0 in V .
Next we prove sC1 = 0 in V . We compute mod mIuniv + nX :

sC1 = sx2y + sty5 − s2t

2
x

= xB − x(x6 − y6) + sty5 − s2t

2
x

= −xA6 + 2xy6 + sty5 − s2t

2
x (∵ xB ∈ mIuniv)

= −x(A6 +
s2t

2
+
t3

2
A2

6) + 2xy6 + sty5 +
t3

2
xA2

6

= 2xy6 + sty5 + 2txA2
4 = −2y4C2 = 0,

and similarly sC2 = 0. This proves

V = OE(ρ1)B +OE(ρ2)C1 + OE(ρ2)C2.
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Since V isOE(ρ)-free of rank deg ρ over E(ρ)\Sing(E), the upper-semicontinuity
shows that OE(ρ1)B is OE(ρ1)-free of rank deg ρ1 (= 1) at s = t = 0, while
OE(ρ2)C1 + OE(ρ2)C2 is OE(ρ2)-free of rank deg ρ2 (= 2) at s = t = 0. This
proves that (2) is an isomorphism at I(ρ1, ρ2) : s = t = 0.

6.3.2. If ρ = ρ2 and ρ′ = ρ3 in the D5-case, then Iuniv is generated by those
elements whose specializations at s = t = 0 belong to V5(ρ1) + S1V3(ρ2).

Let R = C[[s, t]][x, y]. By subsection 4.7, the versal deformation Iuniv of I
is given by I3, which is, as the ideal of R, generated by the elements

B1 := y5 + sx2y + λx,B2 := −x5 − sxy2 + λy,

C1 := x3y + ty4 + stx2, C2 := −xy3 + tx4 + sty2,

A6 + 2sA4, A8 − 2λA4, A4 − tλ,

where λ = s2t
1+t2

. Let A := A4 − tλ. We will check sC1 = sC2 = 0 and

tB1 = tB2 = 0 in V . In fact, in S[[s, t]] we have

tB1 = yC1 − xA, tB2 = −xC2 − yA,

sC1 = (1 + t2)xB1 − txyC1 + y2C2,

sC2 = (1 + t2)yB2 − txyC2 + x2C1.

It follows that

V = OE(ρ1)B +OE(ρ2)C1 + OE(ρ2)C2.

Since V isOE(ρ)-free of rank deg ρ over E(ρ)\Sing(E), the upper-semicontinuity
shows that OE(ρ2)B1 + OE(ρ2)B2 is OE(ρ2)-free of rank deg ρ2 at s = t = 0,
while OE(ρ3)C1 + OE(ρ3)C2 is OE(ρ3)-free of rank deg ρ3 at s = t = 0. This
proves that (2) is an isomorphism at I(ρ2, ρ3) : s = t = 0.

6.3.3. In this subsubsection we consider one of the most complicated case
of E6 where ρ = ρ2 and ρ′ = ρ3 with deg(ρ2) = 2 and deg(ρ3) = 3. For
the notation see Figure 4. Let I := P (ρ2, ρ3) and W = (S1V5(ρ2))[ρ3]. Then

I := I(ρ2, ρ3) = W +
∑11

k=7 Sk + n and V (I) = W ⊕ V7(ρ2). Moreover

HomS(I/I2, S/I) = Hom� (W,V6(ρ3/W )) ⊕ Hom� (V7(ρ2), V5(ρ2)).

The versal deformation Iuniv of I(ρ2, ρ3) is generated by

B1, B2, B3, C1, C2, A,

where Bi (i = 1, 2, 3) is the same as in subsubsection 6.2.8, and

C1 := −s2ϕ+ vγ1 + wx,C2 := s1ϕ + vγ2 +wy,

A := T − π∗(T ) = T − 1

2ω + 1
sw = T − 1

1 + s
s2v3.
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The parameters s and v are regular parameters of HilbG(A2) at I . The
other parameters are related as follows :

t = −(1 − ω)sv, u = (1 − ω)sv2, w = −2ω + 1

1 + s
sv3,

whence u = −tv, uv = −ω2(1 + s)w and (2ω + 1)π∗(T ) = sw.
Then we see in S[s, v],

vB1 = −ω2(1 + s)(xC1 − yC2) +
1

1 − ω
(ωp2B3 − p3B2),

vB2 = −ω2(1 + s)(xC1 + yC2) − 1

1 − ω
(ωp3B1 − p1B3),

vB3 = −ω2(1 + s)(yC1 + xC2) +
1

1 − ω
(ωp1B2 − p2B1),

sC1 =
1

1 − ω
(yB1 + yB2 − xB3) − (2ω + 1)xA,

sC2 =
1

1 − ω
(xB1 − xB2 + yB3) − (2ω + 1)yA.

This proves V = V ⊗OE(ρ2) + V ⊗ OE(ρ3).

6.3.4. In general, let I ∈ P (ρ, ρ′) be a singular point of E. Then as we saw
above, we have an isomorphism

V[I] = V[I] ⊗ OE(ρ) ⊕ V[I] ⊗ OE(ρ′)

locally at I . This proves the global isomorphism over E

V �
⊕

ρ∈Irr(G)

V ⊗OE(ρ).

6.4. The sheaf V ⊗ OE(ρ). It remains to prove V ⊗OE(ρ) � ρ⊗OE(ρ)(−1).

6.4.1. Let V be a two-dimensional C-vector space, and P(V ) the projective
line of one-dimensional subspaces of V . There is a universal family of one-
dimensional subspaces of V parametrized by P(V ), which we denote Wuniv.
This is a line bundle (an invertible sheaf) on P(V ). There is an exact sequence
of O�(V )-modules:

0 →Wuniv → V ⊗ O�(V ) → V ⊗ O�(V )/Wuniv → 0.

This implies that Wuniv � O�(V )(−1) because the bundle is twisted linearly.
Let V (ρ) := SMcKay(G)[ρ] = Vh−d(ρ) + Vh+d(ρ) � ρ⊕2, and P(V (ρ)) the

projective line of nonzero irreducible G-submodules of V (ρ). Then V (ρ) �
ρ ⊗ V and P(V (ρ)) � P(V ). It is obvious that ρ ⊗Wuniv yields a universal
familyWuniv(ρ) of nonzeroG-submodules of V (ρ) parametrized by P(V (ρ)) (�
P(V )). We see Wuniv(ρ) � ρ⊗ O�(V (ρ))(−1).
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6.4.2. Let I ∈ E(ρ). Then by identifying E(ρ) with P(V ), on any Zariski
open subset U := SpecA of E(ρ) we have

Iuniv ⊗ A = Wuniv(ρ) +
∑

V ⊂Quiv(ρ),v ��ρ

V ⊗A + S† ⊗ A,

and by subsection 6.3

V ⊗ A = Wuniv(ρ) ⊗ A = Wuniv(ρ).

In other words, V ⊗ OE(ρ) �Wuniv(ρ) � ρ⊗ OE(ρ)(−1).
This completes the proof of Theorem 3.9.
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