Hesse cubics and GIT stability

Iku Nakamura
(Hokkaido University)
2014 Feb. 17, Lakeside Lecture

Hesse cubics and GIT stability

Iku Nakamura
(Hokkaido University)
2014 Feb. 17, Lakeside Lecture

Aim

- To compatify the moduli space of abelian var. by $S Q_{g, K}$

Table of contents

- Hesse cubics
- PSQAS and Tate curves
- Heisenberg group $G(3)$ and theta
- Stability
- $S Q_{g, K}$: Moduli of PSQASes

1 Hesse cubic curves

$$
\begin{gathered}
C(\mu): x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0 \\
\left(\mu \in \mathrm{P}_{\mathrm{C}}^{1}\right)
\end{gathered}
$$

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0
$$

if μ gets closer to ∞

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0(\mu \in \mathrm{C})
$$

if μ gets much closer to ∞

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0\left(\mu^{3}=1 \text { or } \infty\right)
$$

It degenerates into 3 copies of $\mathrm{P}^{1}\left(=S^{2}\right)$

2 Moduli of cubic curves

Thm 1 (Hesse 1849)
(1) Any nonsing. cubic curve is transformed into $C(\mu)$ under $\operatorname{SL}(3), \quad\left(\mu^{3} \neq 1, \infty\right)$
(2) $C(\mu)$ has 9 flexes
$[1:-\beta: 0],[0: 1:-\beta],[-\beta: 0: 1]\left(\beta \in\left\{1, \zeta_{3}, \zeta_{3}^{2}\right\}\right)$
(3) $C(\mu)$ and $C\left(\mu^{\prime}\right)$ are isomorphic with 9 points fixed if and only if $\mu=\mu^{\prime}$

Thm 2 (classical form) (Hesse 1849)

$A_{1,3}:=$ \{nonsing. cubics with 9 flexes $\} /$ isom.
$=\left\{C(\mu) ; \mu^{3} \neq 1, \infty\right\} \simeq \mathrm{C} \backslash\left\{1, \zeta_{3}, \zeta_{3}^{2}\right\}$
$S Q_{1,3}:=\overline{A_{1,3}}$
$=\{$ stable cubics with 9 flexes $\} /$ isom.
$=\{$ Hesse cubics $C(\mu)\} /$ isom $=\mathrm{id}$
$=A_{1,3} \cup\left\{C(\mu) ; \mu^{3}=1\right.$ or $\left.\infty\right\} \simeq \mathrm{P}^{1}$
$=\{$ moduli of compact objects $\}$

We wish to extend this to aribitrary dimension

1. over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right], \quad \zeta_{N}: N$-th root of 1
2. to construct a projective fine moduli $S Q_{g, K}$ of compact objects PSQASes,
3. GIT stable objects $=$ PSQASes:

Projectively Stable Quasi Abelian Scheme

3 Tate curve and PSQAS
The Tate curve over CDVR R (e.g. $k[[q]], \mathrm{Z}_{p}$)

$$
X: y^{2}=x^{3}-x^{2}+q
$$

The fibre $X_{0}: y^{2}=x^{2}(x-1)$ for $q=0$

$$
X_{0} \backslash\{\text { sing. pt }\}=\mathrm{C}^{*}
$$

Hesse cubics over CDVR R

$$
Y_{q}: q\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}\right)=x_{0} x_{1} x_{2}
$$

The fibre $Y_{0}: x_{0} x_{1} x_{2}=0$ for $q=0$,

$$
Y_{0} \backslash\{\text { sing. pts }\}=\mathrm{C}^{*} \times(\mathrm{Z} / 3 \mathrm{Z})
$$

$R: \operatorname{CDVR}, L=\operatorname{Frac}(R)=R[1 / q], q$ uniformizer.

$$
\text { (e.g. } \boldsymbol{R}=k[[q]], L=k((q)))
$$

$$
\text { Tate curve } \quad: \quad \mathrm{G}_{m}(L) / w \mapsto q w
$$

Hesse cubics at $\infty: \mathrm{G}_{m}(L) / w \mapsto q^{3} w$

Rewrite Tate curve as $G_{m}(L) / w^{n} \mapsto q^{m n} w^{n}(n \in Z)$
Hesse cubics at $\infty: \quad \mathrm{G}_{m}(L) / w^{n} \mapsto q^{3 m n} w^{n}(n \in \mathrm{Z})$

The general case : B pos. def. symmetric

$$
\begin{gathered}
\mathrm{G}_{m}(L)^{g} / w^{x} \mapsto q^{B(x, y)} b(x, y) w^{x} \\
b(x, y) \in L^{\times} \quad\left(x \in X=\mathrm{Z}^{g}, y \in Y=\mathrm{Z}^{g}\right)
\end{gathered}
$$

The general case : B pos. def. symmetric
The generic fibre:

$$
\begin{gathered}
\mathrm{G}_{m}(L)^{g} / w^{x} \mapsto q^{B(x, y)} b(x, y) w^{x} \\
b(x, y) \in L^{\times} \quad\left(x \in X=\mathrm{Z}^{g}, y \in \boldsymbol{Y}=\mathrm{Z}^{g}\right)
\end{gathered}
$$

PSQAS is the closed fibre of it

Projectively Stable Quasi Abelian Scheme This is a generalization of Hesse cubics. What do they look like ?

4 The shape of PSQASes - Delaunay decompositions
"Limits of theta functions are described by
Delaunay decomp of B."
PSQAS is a geometric limit of thetas
PSQAS is a generalization of 3 -gons.
The general case : B pos. def. symmetric

$$
\begin{gathered}
\mathrm{G}_{m}(R)^{g} / w^{x} \mapsto q^{B(x, y)} b(x, y) w^{x} \\
b(x, y) \in R^{\times} \quad\left(x \in X=\mathrm{Z}^{g}, y \in Y=\mathrm{Z}^{g}\right)
\end{gathered}
$$

PSQAS is the closed fiber of it.

Let $\boldsymbol{X}=\mathrm{Z}^{g}, \boldsymbol{B}$ a positive symmetric on $\boldsymbol{X} \times \boldsymbol{X}$.

$$
\|x\|=\sqrt{B(x, x)}: \text { a distance of } X \otimes R(\text { fixed })
$$

Def 3 Let $\alpha \in X_{R}$.
$D(\alpha)$: a Delaunay cell $:=$
the convex closure of points of X closest to α.

Exam 4 1-dim. $B(x, y)=2 x y, X=Z, Y=n Z$,
then PSQAS Z_{0} is an n-gon of P^{1}

Exam $5 g=1, X=Z, Y=3 Z$.

$$
\mathcal{X}=\operatorname{Proj}(\widetilde{R}), \quad a(x)=q^{x^{2}},(x \in X)
$$

- Each PSQAS (its scheme struture) and its decomposition into torus orbits (its stratification) are described by Delaunay decomp.
- Each pos. symm. B defines a Delaunay decomp.
- Different B can yield the same Delaunay decomp. and the same PSQAS.

Exam $6 \quad B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$Z_{0}:=\mathcal{X}_{0} / Y$ is a union of $\mathrm{P}^{1} \times \mathrm{P}^{1}$

$\boxed{\text { Exam } 7} \quad B=\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$

- This $(\bmod Y)$ is a PSQAS.

It is a union of P^{2}, each triangle stands for P^{2},

- each line segment is a P^{1}, two P^{2} intersect along P^{1}
- $\operatorname{six} \mathrm{P}^{2}$ meet at a point,
locally $k\left[x_{1}, \cdots, x_{6}\right] /\left(x_{i} x_{j},|i-j| \geq 2\right)$

We re-start with

Thm 8 Over $\mathbb{Z}\left[\zeta_{3}, 1 / 3\right]$

$A_{1,3}:=$ \{nonsing. cubics with 9 inflection pts\}/isom.
$\overline{A_{1,3}}:=\{$ stable cubics with 9 inflection pts $\} /$ isom.
$=\{$ Hesse cubics $\} /$ isom $=\mathrm{id}$
$=A_{1,3} \cup\left\{C(\mu) ; \mu^{3}=1\right.$ or $\left.\infty\right\} \simeq \mathrm{P}_{\mathrm{Z}\left[\zeta_{3}, 1 / 3\right]}^{1}$.

To construct moduli, consider $G(3)$-equiv. theory
$G(3):$ Heisenberg group of level 3

5 Heisenberg group $G(3)$

$G(3)=\langle\sigma, \tau\rangle$ acts on V, order $|G(3)|=27$,

$$
\begin{gathered}
V=R x_{0}+R x_{1}+R x_{2} \\
\sigma\left(x_{i}\right)=\zeta_{3}^{i} x_{i}, \quad \tau\left(x_{i}\right)=x_{i+1} \quad(i \in \mathrm{Z} / 3 \mathrm{Z})
\end{gathered}
$$

ζ_{3} is a primitive cube root of $1, R \ni \zeta_{3}, 1 / 3$

Fact

- $x_{0}^{3}+x_{1}^{3}+x_{2}^{3}, x_{0} x_{1} x_{2} \in S^{3} V$ only are $G(3)$-invariant
- $G(3)$ determines x_{i} "uniquely" $(\because V: G(3)$-irred, $)$
- x_{i} are classical theta over $R=\mathrm{C}$
$E(\tau)$: an elliptic curve /C

$$
\boldsymbol{E}(\boldsymbol{\tau})=\mathrm{C} /(\mathrm{Z}+\mathrm{Z} \tau)
$$

This is the same as

$$
\begin{gathered}
E(\tau)=\mathrm{C}^{*} / \boldsymbol{w} \mapsto w q^{6} \\
\left(\operatorname{set} q=e^{2 \pi i \tau / 6}, \quad w=e^{2 \pi i z}\right)
\end{gathered}
$$

6 (Classical) Theta functions

$E(\tau)$: an elliptic curve /C

$$
E(\tau)=\mathrm{C}^{*} / \boldsymbol{w} \mapsto \boldsymbol{w} q^{6}, \quad w=e^{2 \pi i z}, q=e^{2 \pi i \tau / 6}
$$

Def 9 Theta functions $(k=0,1,2)$

$$
\theta_{k}(\tau, z)=\sum_{m \in \mathrm{Z}} q^{(k+3 m)^{2}} w^{k+3 m}
$$

The following Θ embedds $E(\tau)$ into P^{2}.

$$
\Theta: E(\tau) \ni z \mapsto\left[x_{0}, x_{1}, x_{2}\right]=\left[\theta_{0}, \theta_{1}, \theta_{2}\right] \in \mathrm{P}^{2}
$$

where $\left[\theta_{0}, \theta_{1}, \theta_{2}\right]$ is the ratio of θ_{k}.

Recall again $w=e^{2 \pi i z}, q=e^{2 \pi i \tau / 6}$

$$
\begin{gathered}
\theta_{k}\left(\tau, z+\frac{1}{3}\right)=\zeta_{3}^{k} \theta_{k}(\tau, z) \\
\theta_{k}\left(\tau, z+\frac{\tau}{3}\right)=(q w)^{-1} \theta_{k+1}(\tau, z), \\
{\left[\theta_{0}, \theta_{1}, \theta_{2}\right]\left(\tau, z+\frac{\tau}{3}\right)=\left[\theta_{1}, \theta_{2}, \theta_{0}\right](\tau, z)} \\
\sigma, \tau \text { are their liftings to GL(3), } \\
z \mapsto z+\frac{1}{3} \text { is lifted to } \sigma\left(\theta_{k}\right)=\zeta_{3}^{k} \theta_{k} \\
z \mapsto z+\frac{\tau}{3} \text { is lifted to } \tau\left(\theta_{k}\right)=\theta_{k+1} \\
G(3):=\text { the group }\langle\sigma, \tau\rangle
\end{gathered}
$$

$$
\begin{aligned}
{[\sigma, \tau] } & =\sigma \tau \sigma^{-1} \tau^{-1} \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & \zeta_{3} & 0 \\
0 & 0 & \zeta_{3}^{2}
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & \zeta_{3}^{2} & 0 \\
0 & 0 & \zeta_{3}
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\zeta_{3} & 0 & 0 \\
0 & \zeta_{3} & 0 \\
0 & 0 & \zeta_{3}
\end{array}\right) .
\end{aligned}
$$

$G(3)=\langle\sigma, \tau\rangle$ is not commutative.
$7 \quad$ The space of closed orbits

Often in algebraic geometry,

$$
\text { moduli }=X / G
$$

where X a scheme, $G=\mathrm{PGL}(V)$

To be more preicse

\boldsymbol{X}	the set (scheme) of geometric objects
\boldsymbol{G}	the group of isomorphisms
x, x^{\prime} are isom.	G-orbits are the same $O(x)=O\left(x^{\prime}\right)$
X_{s}	the set of stable objects
$X_{s s}$	the set of semistable objects
$X_{s s} / / G$	"compact moduli""

Exam 10 Action on C^{2} of $G=G_{m}\left(=C^{*}\right)$,

$$
\mathrm{C}^{2} \ni(x, y) \mapsto\left(\alpha x, \alpha^{-1} y\right) \quad\left(\alpha \in \mathrm{G}_{m}\right)
$$

What is the quotient of C^{2} by G ?

- Simple answer: the set of G-orbits (\times)
- Answer: Spec(the ring of all G-invariant poly.)(○)
- $t:=x y$ is the unique G-inv. !

$$
\mathrm{C}^{2} / / G:=\operatorname{Spec} \mathrm{C}[t]=\{t \in \mathrm{C}\}
$$

But this is different from "the set of G-orbits".

- $t=0$ is a point of $\mathrm{C}=\mathrm{C}^{2} / / G=\operatorname{Spec} \mathrm{C}[t]$.
- But $\{x y=0\}$ consists of three G-orbits

$$
\mathrm{C}^{*} \times\{0\}, \quad\{0\} \times \mathrm{C}^{*}, \quad\{(0,0)\}
$$

- $\{(0,0)\}$ is the only closed orbit in $\{x y=0\}$

Thm $11 \mathrm{C}^{2} / / G=\{t \in \mathrm{C}\}$ is
the set of all closed orbits.

Thm 12 (Seshadri,Mumford)
G : reductive, acting on a scheme X, (e.g. $G=\mathrm{G}_{m}$).
Let $X_{s s}=$ the set of semistable points. Then

$$
\begin{aligned}
X_{s s} / / G: & =\operatorname{Spec}(\text { all } G \text {-invariants) } \\
& =\text { the set of closed orbits. }
\end{aligned}
$$

Closed means that the orbit is closed in $X_{s s}$.

The most natual choice is objects with closed orbits.

Def 13 The same notation as before. Let $p \in X$.
(1) semistable if $\exists G$-inv. homog. poly. $F, F(p) \neq 0$,
(2) Kempf-stable if the orbit $O(p)$ is closed in $X_{s s}$,
(3) properly-stable if (2) and $\operatorname{Stab}(p)$ finite.

Rem stable \Longrightarrow closed orbit \Longrightarrow semistable

The general theory suggests us to consider only those objects with closed orbits We will see

- Abelian varieties have closed orbits (Kempf), and
- our PSQASes have closed orbits,

Conversely

- Any degenerate abelian scheme with closed orbit
is one of our PSQASes
- This enables us to compactify
the moduli of abelian varieties.

8 Stable curves of Deligne-Mumford

Def $14 \quad C$ is a stable curve of a genus g if
(1) connected projective reduced with finite autom.,
(2) the singularities of C are like $x y=0$
(3) $\operatorname{dim} H^{1}\left(O_{C}\right)=g$

Let $\overline{M_{g}}$: moduli of stable curves of genus g,
$M_{g}:$ moduli of nonsing. curves of genus g.

Thm $15 \overline{M_{g}}$ compactifies M_{g}
(Deligne-Mumford 1969)

Definition of stable curves is irrelevant to GIT stability
Nevertheless

Thm 16 The following are equivalent
(1) C is a stable curve (moduli-stable)
(2) any Hilbert point of $\Phi_{|m K|}(C)$ is GIT-stable
(3) any Chow point of $\Phi_{|m K|}(C)$ is GIT-stable
$(1) \Leftrightarrow(2)$ Gieseker 1982 (before Mumford 1977)
$(1) \Leftrightarrow(3)$ Mumford 1977 (suggested by Gieseker 1982)

$9 \quad$ Stability of cubic curves

Cubic cuves	Stability	Stab gp.
smooth elliptic	stable	finite
3-gon	closed orbit	2-dim
a line+a conic (transv.)	semistable	1-dim
irred. with a node	semistable	finite
others	unstable	1-dim

Thm 17 For a cubic C, the following cond. are equiv.
(1) C has a closed SL(3)-orbit in $\left(S^{3} V\right)_{s s}$
(2) C is a Hesse cubic curve, that is, $G(3)$-invariant
(3) C is either smooth elliptic or a 3 -gon

10 Stability in higher-dim.

Thm 18 (N.1999)
Assume (X, L) is a limit of abelian varieties A
with $\operatorname{ker}(\lambda(L))=K, \lambda(L): A \rightarrow A^{t}$ (dual)
Then the following are equivalent:
(1) X has a closed $\mathrm{SL}(V)$-orbit in $\mathrm{Hilb}_{s s} \quad$ (GIT-stable)
(2) X is invariant under $G(K) \quad(G(K)$-stable $)$
(3) X is one of our PSQASes (moduli-stable)

Thm 19 For cubics the following are equiv:
(1) it has a closed SL(3)-orbit (GIT-stable)
(2) it is a Hesse cubic, that is, $G(3)$-inv. $(G(3)$-stable)
(3) it is smooth ell. or a 3-gon. (moduli-stable)

Thm 20 Let X be a degenerate AV.
The following are equiv. under natural assump.:
(1) it has a closed $\mathrm{SL}(V)$-orbit (GIT-stable)
(2) X is $G(K)$-inv $\quad(G(K)$-stable $)$
(3) it is a PSQAS (moduli-stable)

11 Moduli over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right]$
Thm 21 (a new version of the theorem of Hesse)

$$
S Q_{1,3}=\mathrm{P}_{\mathrm{Z}\left[\zeta_{3}, 1 / 3\right]}^{1}
$$

the projective fine moduli
(1) The universal cubic curve

$$
\mu_{0}\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}\right)-3 \mu_{1} x_{0} x_{1} x_{2}=0
$$

where $\left(\mu_{0}, \mu_{1}\right) \in S Q_{1,3}=\mathrm{P}^{1}$.
(2) when k is alg. closed and char. $k \neq 3$

$$
\left.\left.\begin{array}{rl}
S Q_{1,3}(k) & =\left\{\begin{array}{l}
\text { closed orbit cubics } \\
\text { with level 3-structure } / k
\end{array}\right\} / \text { isom. } \\
& =\left\{\begin{array}{l}
\text { Hesse cubics } \\
\text { with level } 3 \text {-str. } / k
\end{array}\right\} / \text { isom. }=\text { id. } \\
A_{1,3}(k) & =\left\{\begin{array}{l}
\text { closed orbit nonsing. cubics } \\
\text { with level } 3 \text {-str. } / k
\end{array}\right\} / \text { isom. }
\end{array}\right\} \begin{array}{l}
\text { nonsing. Hesse cubics } \\
\end{array}\right\} / \text { isom. }=\mathrm{id.} \text {. }
$$

Thm 22 (N. 1999) There exists the fine moduli $S Q_{g, K}$ projective over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right], N=\sqrt{|K|}$, For k closed $\begin{aligned} S Q_{g, K}(k) & =\left\{\begin{array}{l}\text { degenerate abelian schemes } / k \\ \text { with level } G(K) \text {-structure }\end{array}\right\} / \text { isom. } \\ & =\left\{\begin{array}{l}G(K) \text {-invariant PSQAS } / k \\ \text { with level } G(K) \text {-structure }\end{array}\right\}, \\ A_{g, K}(k) & =\left\{\begin{array}{l}(\text { nonsingular) abelian schemes } / k \\ \text { with level } G(K) \text {-structure }\end{array}\right\} / \text { isom. } \\ & =\left\{\begin{array}{l}G(K) \text {-invariant (nonsingular) AS } \\ \text { with level } G(K) \text {-structure }\end{array}\right\}\end{aligned}$

12 Delaunay/Voronoi decompositions

| Exam 23 |
| :---: |\(\quad B=\left(\begin{array}{ll}1 \& 0

0 \& 1\end{array}\right)\)

$\boxed{\text { Exam } 24} \quad B=\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$

Def $25 D$: for Delaunay cells

$$
V(D):=\left\{\lambda \in X \otimes_{\mathrm{Z}} \mathrm{R} ; D=D(\lambda)\right\}
$$

We call it a Voronoi cell

$$
\overline{V(0)}=\left\{\lambda \in X \otimes_{\mathrm{Z}} \mathrm{R} ;\|\lambda\| \leqq\|\lambda-q\|,(\forall q \in X)\right\}
$$

This is a crystal of mica.

$$
\text { For } B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We get $\overline{V(0)}$, a cube (salt),

$$
\text { For } B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

then we get a hexagonal pillar (calcite), and then

$$
B=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

A Dodecahedron (Garnet)

$$
B=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

Apophyllite $\mathrm{KCa}_{4}\left(\mathrm{Si}_{4} \mathrm{O}_{10}\right)_{2} \mathrm{~F} \cdot 8 \mathrm{H}_{2} \mathrm{O}$

$$
B=\left(\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right)
$$

A Trunc. Octahed. - Zinc Blende $Z n S$

謝謝 御清聴

