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Aim

• To compatify the moduli space

of abelian var. by SQg,K

Table of contents

• Hesse cubics

• PSQAS and Tate curves

• Heisenberg group G(3) and theta

• Stability

• SQg,K : Moduli of PSQASes
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1 Hesse cubic curves

C(μ) : x3
0 + x3

1 + x3
2 − 3μ x0x1x2 = 0

(μ ∈ P1
C)
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x3
0 + x3

1 + x3
2 − 3μx0x1x2 = 0

if μ gets closer to ∞
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x3
0 + x3

1 + x3
2 − 3μx0x1x2 = 0 (μ ∈ C)

if μ gets much closer to ∞
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x3
0 + x3

1 + x3
2 − 3μx0x1x2 = 0 (μ3 = 1 or ∞)

It degenerates into 3 copies of P1 (= S2)
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2 Moduli of cubic curves

Thm 1 (Hesse 1849)

(1) Any nonsing. cubic curve is transformed

into C(μ) under SL(3), (μ3 �= 1, ∞)

(2) C(μ) has 9 flexes

[1 : −β : 0], [0 : 1 : −β],[−β : 0 : 1] (β ∈ {1, ζ3, ζ2
3})

(3) C(μ) and C(μ′) are isomorphic with 9 points fixed

if and only if μ = μ′
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Thm 2 (classical form) (Hesse 1849)

A1,3 : = {nonsing. cubics with 9 flexes}/ isom.

=
{

C(μ); μ3 �= 1, ∞
}

� C \ {1, ζ3, ζ2
3}

SQ1,3 : = A1,3

= {stable cubics with 9 flexes}/ isom.

= {Hesse cubics C(μ)}/isom=id

= A1,3 ∪
{

C(μ); μ3 = 1 or ∞
}

� P1

= {moduli of compact objects}
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We wish to extend this to aribitrary dimension

1. over Z[ζN, 1/N ], ζN :N -th root of 1

2. to construct a projective fine moduli SQg,K

of compact objects PSQASes,

3. GIT stable objects = PSQASes :

Projectively Stable Quasi Abelian Scheme
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3 Tate curve and PSQAS

The Tate curve over CDVR R (e.g. k[[q]], Zp)

X : y2 = x3 − x2 + q

The fibre X0 : y2 = x2(x − 1) for q = 0

X0 \ {sing. pt} = C∗

Hesse cubics over CDVR R

Yq : q(x3
0 + x3

1 + x3
2) = x0x1x2

The fibre Y0 : x0x1x2 = 0 for q = 0,

Y0 \ {sing. pts} = C∗ × (Z/3Z)
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R:CDVR, L = Frac(R) = R[1/q], q uniformizer.

(e.g. R = k[[q]], L = k((q)))

Tate curve 　：　Gm(L)/w 	→ qw

Hesse cubics at ∞ ： Gm(L)/w 	→ q3w

Rewrite Tate curve as　Gm(L)/wn 	→ qmnwn (n ∈ Z)

Hesse cubics at ∞ ：　Gm(L)/wn 	→ q3mnwn (n ∈ Z)

The general case : B pos. def. symmetric

Gm(L)g/wx 	→ qB(x,y)b(x, y)wx,

b(x, y) ∈ L× (x ∈ X = Zg, y ∈ Y = Zg)
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The general case : B pos. def. symmetric

The generic fibre:

Gm(L)g/wx 	→ qB(x,y)b(x, y)wx,

b(x, y) ∈ L× (x ∈ X = Zg, y ∈ Y = Zg)

PSQAS is the closed fibre of it
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Projectively Stable Quasi Abelian Scheme

This is a generalization of Hesse cubics.

What do they look like ?
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4 The shape of PSQASes — Delaunay decompositions

”Limits of theta functions are described by

Delaunay decomp of B.”

PSQAS is a geometric limit of thetas

PSQAS is a generalization of 3-gons.　

The general case : B pos. def. symmetric

Gm(R)g/wx 	→ qB(x,y)b(x, y)wx,

b(x, y) ∈ R× (x ∈ X = Zg, y ∈ Y = Zg)

PSQAS is the closed fiber of it.



16

Let X = Zg, B a positive symmetric on X × X.

‖x‖ =
√

B(x, x) : a distance of X ⊗ R (fixed)

Def 3 Let α ∈ XR.

D(α) : a Delaunay cell :=

the convex closure of points of X closest to α.

Exam 4 1-dim. B(x, y) = 2xy, X = Z, Y = nZ,

then PSQAS Z0 is an n-gon of P1

� � � � � � �



17

Exam 5 g = 1, X = Z, Y = 3Z.

X = Proj(R̃), a(x) = qx2
, (x ∈ X)

V−2 V−1 V0 V1 V2 V3 V4

S−3 S−3
� �

� � � � � � �

X0/Y

��
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• Each PSQAS (its scheme struture) and its decom-

position into torus orbits (its stratification)

are described by Delaunay decomp.

• Each pos. symm. B defines a Delaunay decomp.

• Different B can yield the same Delaunay decomp.

and the same PSQAS.
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Exam 6 B =

⎛
⎜⎝1 0

0 1

⎞
⎟⎠

Z0 := X0/Y is a union of P1 × P1

� � � � � �

� � � � � �

� � � � � �

� � � � � �



20

Exam 7 B =

⎛
⎜⎝ 2 −1

−1 2

⎞
⎟⎠
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• This (mod Y ) is a PSQAS.

It is a union of P2, each triangle stands for P2,

• each line segment is a P1, two P2 intersect along P1

• six P2 meet at a point,

locally k[x1, · · · , x6]/(xixj, |i − j| ≥ 2)
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We re-start with

Thm 8 Over Z[ζ3, 1/3]

A1,3 : = {nonsing. cubics with 9 inflection pts}/ isom.

A1,3 : = {stable cubics with 9 inflection pts}/ isom.

= {Hesse cubics}/isom=id

= A1,3 ∪
{

C(μ); μ3 = 1 or ∞
}

� P1
Z[ζ3,1/3].

To construct moduli, consider G(3)-equiv. theory

G(3): Heisenberg group of level 3
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5 Heisenberg group G(3)

G(3) = 〈σ, τ 〉 acts on V , order |G(3)| = 27,

V = Rx0 + Rx1 + Rx2,

σ(xi) = ζi
3xi, τ (xi) = xi+1 (i ∈ Z/3Z)

ζ3 is a primitive cube root of 1, R � ζ3, 1/3

Fact

• x3
0 + x3

1 + x3
2, x0x1x2 ∈ S3V only are G(3)-invariant

• G(3) determines xi ”uniquely” (∵ V :G(3)-irred,)

• xi are classical theta over R = C
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6 (Classical) Theta functions

E(τ ) : an elliptic curve /C

E(τ ) = C/(Z + Zτ )

This is the same as

E(τ ) = C∗/w 	→ wq6,

(set q = e2πiτ/6, w = e2πiz)
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6 (Classical) Theta functions

E(τ ) : an elliptic curve /C

E(τ ) = C∗/w 	→ wq6, w = e2πiz, q = e2πiτ/6

Def 9 Theta functions (k = 0, 1, 2)

θk(τ, z) =
∑

m∈Z

q(k+3m)2wk+3m.

The following Θ embedds E(τ ) into P2.

Θ : E(τ ) � z 	→ [x0, x1, x2] = [θ0, θ1, θ2] ∈ P2

where [θ0, θ1, θ2] is the ratio of θk.
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Recall again w = e2πiz, q = e2πiτ/6

θk(τ, z +
1

3
) = ζk

3θk(τ, z),

θk(τ, z +
τ

3
) = (qw)−1θk+1(τ, z),

[θ0, θ1, θ2](τ, z +
τ

3
) = [θ1, θ2, θ0](τ, z)

σ, τ are their liftings to GL(3),

z 	→ z + 1
3 is lifted to σ(θk) = ζk

3θk

z 	→ z + τ
3 is lifted to τ (θk) = θk+1

G(3) := the group 〈σ, τ 〉
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[σ, τ ] = στσ−1τ−1

=

⎛
⎜⎜⎜⎜⎝

1 0 0

0 ζ3 0

0 0 ζ2
3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0 0 1

1 0 0

0 1 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 0 0

0 ζ2
3 0

0 0 ζ3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0 1 0

0 0 1

1 0 0

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

ζ3 0 0

0 ζ3 0

0 0 ζ3

⎞
⎟⎟⎟⎟⎠ .

G(3) = 〈σ, τ 〉 is not commutative.
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7 The space of closed orbits

Often in algebraic geometry,

moduli = X/G

where X a scheme, G = PGL(V )
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To be more preicse

X the set (scheme) of geometric objects

G the group of isomorphisms

x, x′ are isom. G-orbits are the same O(x) = O(x′)

Xs the set of stable objects

Xss the set of semistable objects

Xss//G ”compact moduli”
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Exam 10 Action on C2 of G = Gm(= C∗),

C2 � (x, y) 	→ (αx, α−1y) (α ∈ Gm)

What is the quotient of C2 by G ?

• Simple answer：the set of G-orbits (×)

• Answer：Spec(the ring of all G-invariant poly.)(○)

• t := xy is the unique G-inv. !

C2//G := Spec C[t] = {t ∈ C}

But this is different from ”the set of G-orbits”.
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�

∼= {t ∈ C}
�

�

t = xy = 0

t = xy = 0

�

O(c, 1)

(c > 0, d < 0)

�

O(d, 1)

• t = 0 is a point of C = C2//G = Spec C[t].

• But {xy = 0} consists of three G-orbits

C∗ × {0}, {0} × C∗, {(0, 0)}
• {(0, 0)} is the only closed orbit in {xy = 0}



32

Thm 11 C2//G = {t ∈ C} is

the set of all closed orbits.

Thm 12 (Seshadri,Mumford)

G : reductive, acting on a scheme X, (e.g. G = Gm).

Let Xss = the set of semistable points. Then

Xss//G : = Spec(all G-invariants)

= the set of closed orbits.

Closed means that the orbit is closed in Xss.
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The most natual choice is objects with closed orbits.
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Def 13 The same notation as before. Let p ∈ X.

(1) semistable if ∃ G-inv. homog. poly. F , F (p) �= 0,

(2) Kempf-stable if the orbit O(p) is closed in Xss,

(3) properly-stable if (2) and Stab(p) finite.

Rem stable =⇒ closed orbit =⇒ semistable
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The general theory suggests us to consider

only those objects with closed orbits

We will see

• Abelian varieties have closed orbits (Kempf), and

• our PSQASes have closed orbits,

Conversely

• Any degenerate abelian scheme with closed orbit

is one of our PSQASes

• This enables us to compactify

the moduli of abelian varieties.
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8 Stable curves of Deligne-Mumford

Def 14 C is a stable curve of a genus g if

(1) connected projective reduced with finite autom.,

(2) the singularities of C are like xy = 0

(3) dim H1(OC) = g

Let Mg : moduli of stable curves of genus g,

Mg : moduli of nonsing. curves of genus g.

Thm 15 Mg compactifies Mg

(Deligne-Mumford 1969)
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Definition of stable curves is irrelevant to GIT stability

Nevertheless

Thm 16 The following are equivalent

(1) C is a stable curve (moduli-stable)

(2) any Hilbert point of Φ|mK|(C) is GIT-stable

(3) any Chow point of Φ|mK|(C) is GIT-stable

(1)⇔(2) Gieseker 1982 (before Mumford 1977)

(1)⇔(3) Mumford 1977 (suggested by Gieseker 1982)
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9 Stability of cubic curves

Cubic cuves Stability Stab gp.

smooth elliptic stable finite

3-gon closed orbit 2-dim

a line+a conic (transv.) semistable 1-dim

irred. with a node semistable finite

others unstable 1-dim
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Thm 17 For a cubic C, the following cond. are equiv.

(1) C has a closed SL(3)-orbit in (S3V )ss　

(2) C is a Hesse cubic curve, that is, G(3)-invariant

(3) C is either smooth elliptic or a 3-gon
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10 Stability in higher-dim.

Thm 18 (N.1999)

Assume (X, L) is a limit of abelian varieties A

with ker(λ(L)) = K, λ(L) : A → At (dual)

Then the following are equivalent:

(1) X has a closed SL(V )-orbit in Hilbss (GIT-stable)

(2) X is invariant under G(K) (G(K)-stable)

(3) X is one of our PSQASes (moduli-stable)
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Thm 19 For cubics the following are equiv:

(1) it has a closed SL(3)-orbit (GIT-stable)　

(2) it is a Hesse cubic, that is，G(3)-inv. (G(3)-stable)

(3) it is smooth ell. or a 3-gon. (moduli-stable)

Thm 20 Let X be a degenerate AV.

The following are equiv. under natural assump.:

(1) it has a closed SL(V )-orbit (GIT-stable)

(2) X is G(K)-inv (G(K)-stable)

(3) it is a PSQAS (moduli-stable)
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11 Moduli over Z[ζN, 1/N ]

Thm 21 (a new version of the theorem of Hesse)

SQ1,3 = P1
Z[ζ3,1/3],

the projective fine moduli

(1) The universal cubic curve

μ0(x
3
0 + x3

1 + x3
2) − 3μ1x0x1x2 = 0

where (μ0, μ1) ∈ SQ1,3 = P1.

(2) when k is alg. closed and char. k �= 3
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SQ1,3(k) =

⎧⎪⎨
⎪⎩

closed orbit cubics

with level 3-structure /k

⎫⎪⎬
⎪⎭ /isom.

=

⎧⎪⎨
⎪⎩

Hesse cubics

with level 3-str. /k

⎫⎪⎬
⎪⎭ /isom.=id.

A1,3(k) =

⎧⎪⎨
⎪⎩

closed orbit nonsing. cubics

with level 3-str. /k

⎫⎪⎬
⎪⎭ /isom.

=

⎧⎪⎨
⎪⎩

nonsing. Hesse cubics

with level 3-structure /k

⎫⎪⎬
⎪⎭ /isom.=id.
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Thm 22 (N. 1999) There exists the fine moduli SQg,K

projective over Z[ζN, 1/N ], N =
√|K|, For k closed

SQg,K(k) =

⎧⎪⎨
⎪⎩

degenerate abelian schemes /k

with level G(K)-structure

⎫⎪⎬
⎪⎭ /isom.

=

⎧⎪⎨
⎪⎩

G(K)-invariant PSQAS /k

with level G(K)-structure

⎫⎪⎬
⎪⎭ ,

Ag,K(k) =

⎧⎪⎨
⎪⎩

(nonsingular) abelian schemes /k

with level G(K)-structure

⎫⎪⎬
⎪⎭ /isom.

=

⎧⎪⎨
⎪⎩

G(K)-invariant (nonsingular) AS

with level G(K)-structure

⎫⎪⎬
⎪⎭
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12 Delaunay/Voronoi decompositions

Exam 23 B =

⎛
⎜⎝1 0

0 1

⎞
⎟⎠

� � � � � �

� � � � � �

� � � � � �

� � � � � �
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Exam 24 B =

⎛
⎜⎝ 2 −1

−1 2

⎞
⎟⎠

� � �

� � �

� � �

�
�

�
�

�

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

� �

� �

� �

� �

�
��

����

�
�
�
�
�

�
��

�����

�
�
�
�
�

����

����

�
�

�
�

�

�
�

�
�

�

�
��

����

�
�
�
�
�

�
��

�����

�
�
�
�
�



47

Def 25 D : for Delaunay cells

V (D) := {λ ∈ X ⊗Z R; D = D(λ)}

We call it a Voronoi cell

V (0) = {λ ∈ X ⊗Z R; ‖λ‖ � ‖λ − q‖, (∀q ∈ X)}
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This is a crystal of mica.
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For B =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎠

We get V (0), a cube (salt),　

For B =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 2 −1

0 −1 2

⎞
⎟⎟⎟⎟⎠

then we get a hexagonal pillar (calcite)，

and then
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B =

⎛
⎜⎜⎜⎜⎝

2 −1 0

−1 2 −1

0 −1 2

⎞
⎟⎟⎟⎟⎠

A Dodecahedron (Garnet)
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B =

⎛
⎜⎜⎜⎜⎝

2 −1 0

−1 3 −1

0 −1 2

⎞
⎟⎟⎟⎟⎠

Apophyllite KCa4(Si4O10)2F · 8H2O
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B =

⎛
⎜⎜⎜⎜⎝

3 −1 −1

−1 3 −1

−1 −1 3

⎞
⎟⎟⎟⎟⎠

A Trunc. Octahed. — Zinc Blende ZnS
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