Compactification of the moduli of abelian varieties and

Morphisms of $S Q_{g, K}$ to Alexeev's Moduli

Iku Nakamura

(Hokkaido University)
2012 November 15, Hokkaido University

Compactification of the moduli of abelian varieties and

Morphisms of $S Q_{g, K}$ to Alexeev's Moduli

Iku Nakamura

(Hokkaido University)
2012 November 15, Hokkaido University

Table of contents

- Hesse cubics
- PSQAS as analogue to Tate curves
- Heisenberg groups $G(K), G(3)$
- Stability
- $S Q_{g, K}$: Moduli of PSQASes over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right]$
- Another compactification $S Q_{g, K}^{\text {toric }} \xrightarrow{\exists} S Q_{g, K}$
- Alexeev's moduli $\overline{A P_{g, d}}$
- Closed immersions of $S Q_{g, K}^{\text {toric }}$ into $\overline{A P_{g, d}}$
- Delaunay/Voronoi decompositions

1 Hesse cubic curves

$$
\begin{gathered}
C(\mu): x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0 \\
\left(\mu \in \mathrm{P}_{\mathrm{Z}\left[\zeta_{3}, 1 / 3\right]}^{1}\right)
\end{gathered}
$$

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0
$$

if μ gets closer to ∞

$$
\begin{gathered}
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0\left(\mu \in \mathrm{Z}\left[\zeta_{3}, 1 / 3\right]\right) \\
\text { if } \mu \text { gets much closer to } \infty
\end{gathered}
$$

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0\left(\mu^{3}=1 \text { or } \infty\right)
$$

It degenerates into 3 copies of P^{1}

2 Moduli of cubic curves

Thm 1 (classical form over C) (Hesse 1849)
$A_{1,3}:=$ \{nonsing. cubics with 9 inflection pts $\} /$ isom.

$$
\simeq \mathrm{C} \backslash\left\{1, \zeta_{3}, \zeta_{3}^{2}\right\} \simeq \mathrm{H} / \Gamma(3)(\mathrm{H}: \text { upper half plane })
$$

$S Q_{1,3}:=\overline{A_{1,3}}$
$=\{$ stable cubics with 9 inflection pts $\} /$ isom.
$=\{$ Hesse cubics $\} /$ isom $=\mathrm{id}$
$=A_{1,3} \cup\left\{C(\mu) ; \mu^{3}=1\right.$ or $\left.\infty\right\} \simeq \mathrm{P}^{1}$
$=\{$ moduli of compact objects $\}$

We wish to extend this to aribitrary dimension

1. over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right]$ (Today) or over $\mathbb{Z}\left[\zeta_{N}\right]$
2. to define a representable functor of compact obj.

$$
F:=S Q_{g, K} \text { (fine moduli) }
$$

3. to relate $S Q_{g, K}$ to GIT stability, (This is new)
4. GIT stable objects $=$ our model PSQASes:

Projectively Stable Quasi Abelian Scheme
5. to relate 3 known compactif. $S Q_{g, K}, S Q_{g, K}^{\text {toric }}$

Alexeev's moduli $\overline{\bar{A}}_{g, d}$

3 Moduli over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right]$
Thm 2 (a new version of the theorem of Hesse)

$$
S Q_{1,3}=\mathrm{P}_{\mathrm{Z}\left[\zeta_{3}, 1 / 3\right]}^{1},
$$

the projective fine moduli
(1) The universal cubic curve

$$
\mu_{0}\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}\right)-\mu_{1} x_{0} x_{1} x_{2}=0
$$

where $\left(\mu_{0}, \mu_{1}\right) \in S Q_{1,3}=\mathrm{P}^{1}$.
(2) when k is alg. closed and char. $k \neq 3$

$$
\left.\left.\begin{array}{rl}
S Q_{1,3}(k) & =\left\{\begin{array}{l}
\text { closed orbit cubics } \\
\text { with level 3-structure } / k
\end{array}\right\} / \text { isom. } \\
& =\left\{\begin{array}{l}
\text { Hesse cubics } \\
\text { with level } 3 \text {-str. } / k
\end{array}\right\} / \text { isom. }=\text { id. } \\
A_{1,3}(k) & =\left\{\begin{array}{l}
\text { closed orbit nonsing. cubics } \\
\text { with level } 3 \text {-str. } / k
\end{array}\right\} / \text { isom. }
\end{array}\right\} \begin{array}{l}
\text { nonsing. Hesse cubics } \\
\end{array}\right\} / \text { isom. }=\mathrm{id.} \text {. }
$$

Thm 3 (N. 1999) There exists the fine moduli $S Q_{g, K}$ projective over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right], N=\sqrt{|K|}$, For k closed $\begin{aligned} S Q_{g, K}(k) & =\left\{\begin{array}{l}\text { closed orb. deg. abelian sch. } / k \\ \text { with level } G(K) \text {-structure }\end{array}\right\} / \text { isom. } \\ & =\left\{\begin{array}{l}G(K) \text {-invariant PSQAS } / k \\ \text { with level } G(K) \text {-structure }\end{array}\right\}, \\ A_{g, K}(k) & =\left\{\begin{array}{l}(\text { nonsingular }) \text { abelian schemes } / k \\ \text { with level } G(K) \text {-structure }\end{array}\right\} / \text { isom. } \\ & =\left\{\begin{array}{l}G(K) \text {-inv. abelian schemes } / k \\ \text { with level } G(K) \text {-structure }\end{array}\right\}\end{aligned}$

4 Comparison of three compactifications

Summary $N=\sqrt{|K|}, \mathcal{O}_{N}=\mathrm{Z}\left[\zeta_{N}, 1 / N\right], d>0$.

1. $S Q_{g, K}$ is a proj. fine moduli over \mathcal{O}_{N} [N99],
2. $S Q_{g, K}^{\text {toric }}$ is a proj. coarse mod. over \mathcal{O}_{N} [N01] [N10],
3. $\overline{A P}_{g, d}=\{(P, G, D)\}$ is a proper separated coarse moduli over Z [Alexeev02],
4. $\operatorname{dim} S Q_{g, K}=\operatorname{dim} S Q_{g, K}^{\text {toric }}=g(g+1) / 2$,
5. $\operatorname{dim} \overline{A P}_{g, d}=g(g+1) / 2+d-1$,
6. \exists a bij. mor. sq : $S Q_{g, K}^{\text {toric }} \rightarrow S Q_{g, K}[\mathrm{~N} 10]$
$\left(S Q_{g, K}^{\text {toric }}\right)^{\text {norm }} \simeq S Q_{g, K}^{\text {norm }}$
$S Q_{g, K, 1 / N}:=S Q_{g, K}:$ proj. over $Z\left[\zeta_{N}, 1 / N\right]$ (1999)
$\overline{\boldsymbol{A P}}_{g, N}$: by Alexeev, over Z, dim. excessive by $N-1$ (2002)
$\bar{A}_{g, N}$: by Olsson, over Z, proper separated (2008)

Thm 4 \exists a finite Galois morph. over $\mathcal{O}_{N}, N=\sqrt{|K|}$,

$$
\begin{gathered}
\text { sqap }: S Q_{g, K}^{\text {toric }} \times\left(\mathrm{P}^{N-1} \backslash H_{g, K}\right) \rightarrow \overline{A P}_{g, N} \otimes \mathcal{O}_{N} \\
(P, \phi, \tau) \times v \mapsto\left(P, \operatorname{Aut}^{\dagger 0}(P), \operatorname{Div}\left(\phi^{*}(v)\right)\right.
\end{gathered}
$$

such that for any fixed $v \in \mathrm{P}^{N-1} \backslash H_{g, K}$

$$
(P, \phi, \tau) \mapsto\left(P, \operatorname{Aut}^{\dagger 0}(P), \operatorname{Div}\left(\phi^{*}(v)\right)\right.
$$

is a closed immersion of $S Q_{g, K}^{\text {toric }}$.

5 Tate curve and PSQAS

$R: \operatorname{DVR}, L=\operatorname{Frac}(R)=R[1 / q], q$ uniformizer.

$$
\text { Tate curve } \quad: \quad \mathrm{G}_{m}(L) / w \mapsto q w
$$

Hesse cubics at $\infty: \mathrm{G}_{m}(L) / w \mapsto q^{3} w$

Rewrite Tate curve as $\mathrm{G}_{m}(L) / w^{n} \mapsto q^{m n} w^{n}(n \in \mathrm{Z})$
Hesse cubics at $\infty: \quad \mathrm{G}_{m}(L) / w^{n} \mapsto q^{3 m n} w^{n}(n \in \mathrm{Z})$

The general case : B pos. def. symmetric

$$
\begin{gathered}
\mathrm{G}_{m}(L)^{g} / w^{x} \mapsto q^{B(x, y)} b(x, y) w^{x} \\
b(x, y) \in L^{\times} \quad(x \in X, y \in Y)
\end{gathered}
$$

The usual Tate curve over CDVR R

$$
\begin{gathered}
X: x_{0} x_{2}^{2}=x_{1}^{3}-x_{0} x_{1}^{2}+q x_{0}^{3} \\
\text { Or } \quad X: y^{2}=x^{3}-x^{2}+q
\end{gathered}
$$

The generic fibre $\quad X_{\eta}: y^{2}=x^{3}-x^{2}+q \quad(q \neq 0)$
The fibre $X_{0}: y^{2}=x^{2}(x-1)$ for $q=0:$ a limit of X_{q}

$$
X_{0} \backslash\{0,0\}=\mathrm{G}_{m}
$$

To compactify the moduli, need to find all nice limits !!

The general case : B pos. def. symmetric
The generic fibre:

$$
\begin{aligned}
& \mathrm{G}_{m}(L)^{g} / w^{x} \mapsto q^{B(x, y)} b(x, y) w^{x} \\
& \quad b(x, y) \in L^{\times} \quad(x \in X, y \in Y) \\
& \text { PSQAS is the closed fibre of it }
\end{aligned}
$$

6 Review of Theta functions

An elliptic curve, $w=e^{2 \pi i z}, q=e^{2 \pi i \tau / 6}$

$$
\boldsymbol{E}(\tau)=\mathrm{C} /(\mathrm{Z}+\mathrm{Z} \tau)=\mathrm{C}^{*} / \boldsymbol{w} \mapsto \boldsymbol{w} \boldsymbol{q}^{6}, \quad q=e^{2 \pi i \tau / 6}
$$

Theta function $\theta_{k}(\tau, z)=\sum_{m \in \mathrm{Z}} q^{(k+3 m)^{2}} w^{k+3 m}$.
The map Θ embeds $E(\tau)$ into P^{2}.

$$
\Theta: E(\tau) \ni z \mapsto\left[x_{0}, x_{1}, x_{2}\right]=\left[\theta_{0}, \theta_{1}, \theta_{2}\right] \in \mathrm{P}^{2}
$$

To compactify the moduli
we find the limit of the image of Θ as $q \rightarrow 0$
General case will lead us to the next definition

Before it,recall again $w=e^{2 \pi i z}, q=e^{2 \pi i \tau / 6}$

$$
\begin{gathered}
\theta_{k}\left(\tau, z+\frac{1}{3}\right)=\zeta_{3}^{k} \theta_{k}(\tau, z), \\
\theta_{k}\left(\tau, z+\frac{\tau}{3}\right)=(q w)^{-1} \theta_{k+1}(\tau, z), \\
{\left[\theta_{0}, \theta_{1}, \theta_{2}\right]\left(\tau, z+\frac{\tau}{3}\right)=\left[\theta_{1}, \theta_{2}, \theta_{0}\right](\tau, z)} \\
\sigma, \tau \text { are the liftings to GL}(3), \\
z \mapsto z+\frac{1}{3} \text { is lifted to } \sigma\left(\theta_{k}\right)=\zeta_{3}^{k} \theta_{k} \\
z \mapsto z+\frac{\tau}{3} \text { is lifted to } \tau\left(\theta_{k}\right)=\theta_{k+1} \\
G(3):=\text { the group }\langle\sigma, \tau\rangle
\end{gathered}
$$

The image of Θ is a Hesse cubic.

7 Heisenberg groups $G(K), G(3)$
$G(3)=\langle\sigma, \tau\rangle$ acts on V, order $|G(3)|=27$,

$$
\begin{gathered}
V=R x_{0}+R x_{1}+R x_{2} \\
\sigma\left(x_{i}\right)=\zeta_{3}^{i} x_{i}, \quad \tau\left(x_{i}\right)=x_{i+1} \quad(i \in \mathrm{Z} / 3 \mathrm{Z})
\end{gathered}
$$

ζ_{3} is a primitive cube root of $1, R \ni \zeta_{3}, 1 / 3$

- $x_{0}^{3}+x_{1}^{3}+x_{2}^{3}, x_{0} x_{1} x_{2} \in S^{3} V$ only are $G(3)$-invariant
- $G(3)$ determines x_{i} "uniquely" ($\because V: G(3)$-irred, $)$
- x_{i} are classical theta over C

General case will lead us to the next definition

In terms of theta, $w=e^{2 \pi i z}, q=e^{2 \pi i \tau / 6}$

$$
\begin{gathered}
\theta_{k}\left(\tau, z+\frac{1}{3}\right)=\zeta_{3}^{k} \theta_{k}(\tau, z), \\
\theta_{k}\left(\tau, z+\frac{\tau}{3}\right)=(q w)^{-1} \theta_{k+1}(\tau, z), \\
{\left[\theta_{0}, \theta_{1}, \theta_{2}\right]\left(\tau, z+\frac{\tau}{3}\right)=\left[\theta_{1}, \theta_{2}, \theta_{0}\right](\tau, z)} \\
\sigma, \tau \text { are the liftings to GL}(3), \\
z \mapsto z+\frac{1}{3} \text { is lifted to } \sigma\left(\theta_{k}\right)=\zeta_{3}^{k} \theta_{k} \\
z \mapsto z+\frac{\tau}{3} \text { is lifted to } \tau\left(\theta_{k}\right)=\theta_{k+1} \\
G(3):=\text { the group }\langle\sigma, \tau\rangle
\end{gathered}
$$

8 Definition of PSQAS

$R: \mathrm{DVR}, q$ a uniformizer of R,
$k(0)=R / m, k(\eta)=R[1 / q]:$ the fraction field of R
Suppose $\left(G_{\eta}, L_{\eta}\right)$: abelian variety over $k(\eta)$
(G, L) is the (connected) Néron model of $\left(G_{\eta}, L_{\eta}\right)$
Let $\lambda\left(L_{\eta}\right): G_{\eta} \rightarrow{ }^{t} G_{\eta}=\operatorname{Pic}^{0}\left(G_{\eta}\right)$
$\left({ }^{t} G_{\eta},{ }^{t} L_{\eta}\right)$ dual AV, ${ }^{t} G_{\eta}=\operatorname{Pic}^{0}\left(G_{\eta}\right)$.
$\left({ }^{t} G,{ }^{t} L\right)$: the (connected) Néron model of $\left({ }^{t} G_{\eta},{ }^{t} L_{\eta}\right)$
Suppose G_{0} a split torus over $k(0)$,
Then $\left({ }^{t} G_{0},{ }^{t} L_{0}\right)$ is a split torus over $k(0)$

For the Tate curve over CDVR R

The generic fibre $G_{\eta}: y^{2}=x^{3}-x^{2}+q \quad(q \neq 0)$
The fibre $X_{0}: y^{2}=x^{2}(x-1)$ for $q=0:$ a limit of X_{q}

$$
X_{0} \backslash\{0,0\}=\mathrm{G}_{m}
$$

This is the key assumption G_{0} a split torus

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0 \quad\left(\mu^{3}=1 \text { or } \infty\right)
$$

It degenerates into 3 copies of P^{1}

$$
\mu=\infty, x_{0} x_{1} x_{2}=0 \text { contains } \mathrm{G}_{m} \times \mathrm{Z} / 3 \mathrm{Z}
$$

This is the key assumption G_{0} a split torus

Definition of PSQAS

$R: \operatorname{DVR}, q$ a uniformizer of R,
$k(0)=R / m, k(\eta)=R[1 / q]:$ the fraction field of R
Suppose $\left(G_{\eta}, L_{\eta}\right)$: abelian variety over $k(\eta)$
(G, L) is the (connected) Néron model of $\left(G_{\eta}, L_{\eta}\right)$
Let $\lambda\left(L_{\eta}\right): G_{\eta} \rightarrow{ }^{t} G_{\eta}=\operatorname{Pic}^{0}\left(G_{\eta}\right)$
$\left({ }^{t} G_{\eta},{ }^{t} L_{\eta}\right)$ dual AV, ${ }^{t} G_{\eta}=\operatorname{Pic}^{0}\left(G_{\eta}\right)$.
$\left({ }^{t} G,{ }^{t} L\right)$: the (connected) Néron model of $\left({ }^{t} G_{\eta},{ }^{t} L_{\eta}\right)$
Suppose G_{0} a split torus over $k(0)$,
Then $\left({ }^{t} G_{0},{ }^{t} L_{0}\right)$ is a split torus over $k(0)$

Let $X=\operatorname{Hom}\left(G_{0}, G_{m}\right), \quad Y=\operatorname{Hom}\left({ }^{t} G_{0}, G_{m}\right)$.
Hence $\boldsymbol{X} \simeq Z^{g}, Y \simeq Z^{g}$,
$\lambda\left(L_{\eta}\right)$ extends, \exists a surjection $G_{0} \rightarrow{ }^{t} G_{0}$
Hence $Y:$ a sublattice of $X,[X: Y]<\infty$.
$K_{\eta}:=\operatorname{ker} \lambda\left(L_{\eta}\right), N:=\left|K_{\eta}\right|$.
$K:=$ the closure of K_{η}. May assume Over $\mathbb{Z}\left[\zeta_{N}, 1 / N\right]$
$K \simeq(\boldsymbol{X} / \boldsymbol{Y}) \oplus(\boldsymbol{X} / \boldsymbol{Y})^{\vee}$,
This finite group helps us to take up the necessary data

From G and K we can construct

- $G(K)$: Heisenberg group scheme

$$
\begin{gathered}
1 \rightarrow \mu_{N} \rightarrow G(K) \rightarrow K \rightarrow 0 \text { (exact) } \\
(a, z, \alpha) \cdot(b, w, \beta)=(a b \beta(z), z+w, \alpha+\beta)
\end{gathered}
$$

- $\quad R[X / Y]=\oplus_{x \in X / Y} R \boldsymbol{v}(x) \quad$ (group alg. of X / Y)

$$
v(0)=1, v(x+y)=v(x) v(y)
$$

- $G(K)$ acts on $R[X / Y]$ by

$$
\begin{gathered}
(a, z, \alpha) \cdot v(x)=a \alpha(x) v(z+x) \\
a, b \in \mu_{N} ; z, x \in(X / Y) ; \alpha, \beta \in(X / Y)^{\vee}
\end{gathered}
$$

Facts. G : conn. Néron model of G_{η},

$$
K_{\eta}:=\operatorname{ker}\left(\lambda\left(L_{\eta}\right)\right) \simeq(X / Y) \oplus(X / Y)^{\vee}
$$

- $V:=H^{0}(G, L)$: finite \boldsymbol{R}-free, $G(\boldsymbol{K})$-irreducible
- $V=H^{0}(G, L) \simeq R[X / Y]$ as $G(K)$-module
- $H^{0}(G, L) \ni \exists \theta_{x} \stackrel{G(K) \text {-isom }}{\longleftrightarrow} v(x) \in R[X / Y]$ gp alg θ_{x} can be thought as "classical theta"

Idea: Find the limit of the image $\left[\theta_{x}\right]_{x \in X / Y}$

Let $G_{\text {for }}$: the formal completion of G along G_{0}
Key Fact:

$$
G_{\mathrm{for}} \simeq\left(\mathrm{G}_{m, R}^{g}\right)_{\mathrm{for}}
$$

Fourier expansion of $\theta_{x}(x \in X / Y)$ on $G_{\text {for }}$:

$$
\theta_{x}=\sum_{y \in Y} a(x+y) w^{x+y}
$$

$a(x+y):$ Fourier coeff. of θ_{x}
called Faltings-Chai's degeneration data of (G, L)

- $B(x, y):=\operatorname{val}_{q}\left(a(x+y) a(x)^{-1} a(y)^{-1}\right)$ is pos. def.

generalized Tate curves

The general case : B pos. def. symmetric
The generic fibre:

$$
\begin{gathered}
\mathrm{G}_{m}(L)^{g} / w^{x} \mapsto q^{B(x, y)} b_{0}(x, y) w^{x} \\
b_{0}(x, y) \in L^{\times} \quad(x \in X, y \in Y)
\end{gathered}
$$

PSQAS is the closed fibre of a gener. Tate curve

We construct a canonical gen. of Tate curves.

$$
\widetilde{R}:=R\left[a(x) w^{x} \vartheta, x \in X\right], \quad \vartheta: \text { deg one }
$$

$\operatorname{Proj}(\widetilde{R}):$ locally of finite type over R $\mathcal{X}:$ the formal completion of $\operatorname{Proj}(\widetilde{\boldsymbol{R}})$

The Quotient \mathcal{X} / Y is a degenerating family of AV
$\left(\mathcal{X} / Y, O_{\mathcal{X} / Y}(1)\right)$ is a generalization of Tate curves

Grothendieck (EGA) guarantees

\exists a projective R-scheme $\left(Z, O_{Z}(1)\right)$
s.t. the formal completion $Z_{\text {for }}$ of Z

$$
Z_{\mathrm{for}} \simeq \mathcal{X} / Y, \quad\left(Z_{\eta}, O_{Z_{\eta}}(1)\right) \simeq\left(G_{\eta}, L_{\eta}\right)
$$

(the stable reduction theorem)
The central fiber $\left(Z_{0}, O_{Z_{0}}(1)\right)$ is our (P)SQAS.
Projectively Stable Quasi Abelian Scheme

$$
G(K) \text { acts on }\left(Z, O_{Z}(1)\right)
$$

Summary Let R be CDVR over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right]$

- There is a natural choice of $\theta_{x} \in H^{0}(G, L)$
- $a(x+y), y \in Y$ is Fourier coeff of $\theta_{x}, x \in X / Y$
- all $a(x)$ recover the given G_{η} over $k(\eta):=\operatorname{Frac}(R)$
- There is an extention \mathcal{X} / Y of G_{η} to R so that
(a) it is a canonical generalization of Tate curves,
(b) $G(K)$ acts on $\left(\mathcal{X} / \boldsymbol{Y}, O_{\mathcal{X} / Y}(1)\right)$
(c) hence $G(K)$ acts on $\left(Z, O_{Z}(1)\right)$
(d) the closed fibre $\left(Z_{0}, O_{Z_{0}}(1)\right)$ is a PSQAS.

Exam $1 \quad g=1, X=Z, Y=3 Z$.

$$
\mathcal{X}=\operatorname{Proj}(\widetilde{R}), \quad a(x)=q^{x^{2}},(x \in X)
$$

Recall

Thm 5 Over $\mathbb{Z}\left[\zeta_{3}, 1 / 3\right]$
$A_{1,3}:=$ \{nonsing. cubics with 9 inflection pts $\} /$ isom.
$S Q_{1,3}:=\overline{A_{1,3}}$
$=\{$ stable cubics with 9 inflection pts $\} /$ isom.
$=\{$ Hesse cubics $\} /$ isom $=\mathrm{id}$
$=A_{1,3} \cup\left\{C(\mu) ; \mu^{3}=1\right.$ or $\left.\infty\right\} \simeq \mathrm{P}^{1}$.

Hesse cubics are PSQASes in dimension one, level 3.

We wish to extend this to arbitrary dimension

1. over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right]$ or over $\mathrm{Z}\left[\zeta_{N}\right]$
2. to define a representable functor of compact obj.

$$
F:=S Q_{g, K} \text { (fine moduli) }
$$

3. to relate to GIT stability, that is,
to aim at $F(k)=$ GIT stable objects for k alg. closed
$S Q_{g, K, 1 / N}:=S Q_{g, K}:$ proj. over $Z\left[\zeta_{N}, 1 / N\right]$ (1999)
$\overline{A P}_{g, N}$: over Z, dim. excessive by $N-1$ (2002)
Olsson : over Z, nonseparated nonproper stack (2008)
Olsson uses the same model as ours (Alexeev-Nakamura's
model)
We prefer to separated moduli.
It is easy to construct nonseparated stack moduli.

9 Separatedness of the moduli

There are difficulties never seen in dimension one

- Classical level structure $=$ base of \boldsymbol{n}-divison points,
- Singular limits of Abelian varieties are very reducible
- Classical level str. gives non-separated moduli
- We need to prove in any dimension,

Lemma. (Valuative Lemma for Separatedness)

$R: \operatorname{DVR}, L=\operatorname{Frac}(R), X, Y \in F(R)$.
If $X_{L} \simeq Y_{L}$, then $X \simeq Y$. In other words,
Isom. over L implies isom. over R.

- separated $=$ Hausdorff, (e.g. if X projective, then separated)
- X : non-separated $=$ non Hausdorff,
- If non-Hausdorff, then $\exists P_{n} \in X(n=1,2, \cdots)$, $P=\lim P_{n}, Q=\lim P_{n}$. But $P \neq Q$
- This really happens in geometry.

Example $R:$ DVR, $q:$ uniformizer of $R, L=R[1 / q]$, $\boldsymbol{E}, \boldsymbol{E}^{\prime}$: elliptic curves over \boldsymbol{R}

$$
E: y^{2}=x^{3}-q^{6}, \quad E^{\prime}: Y^{2}=X^{3}-1
$$

Let us consider $P_{n}:=E_{L}, Q_{n}:=E_{L}^{\prime}$
$P_{n}=Q_{n}$, i.e. $E_{L} \simeq E_{L}^{\prime}$
because

$$
\begin{aligned}
E_{L} & :\left(y / q^{3}\right)^{2}=(x / q)^{3}-1 \\
E_{L}^{\prime} & : Y^{2}=X^{3}-1
\end{aligned}
$$

Example $R:$ DVR, $q:$ uniformizer of $R, L=R[1 / q]$, $\boldsymbol{E}, \boldsymbol{E}^{\prime}$: elliptic curves over \boldsymbol{R}

$$
E: y^{2}=x^{3}-q^{6}, \quad E^{\prime}: Y^{2}=X^{3}-1
$$

Let us consider $P_{n}:=E_{L}, Q_{n}:=E_{L}^{\prime}$
$P:=E_{0}=\lim E_{L}, Q:=E_{0}^{\prime}=\lim E_{L}^{\prime}$
$P_{n}=Q_{n}$, i.e. $E_{L} \simeq E_{L}^{\prime} \quad \operatorname{But} P \neq Q$

$$
P:=E_{0}: y^{2}=x^{3}, \quad Q:=E_{0}^{\prime}: Y^{2}=X^{3}-1
$$

To overcome the difficulty of level str/n-div. pts :

- Non-abelian Heisenberg gp. $G:=G(\boldsymbol{K})$
- New level str. = Framing of irred. reps. of G
- To prove Val. Lemma for Separatedness, we use

Schur's Lemma over \boldsymbol{R}. Let $|G|=N$,

R : a ring over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right], V:$ free R-mod.
$V:$ irr. G-mod. of wt one, $(\Rightarrow G \subset G L(V \otimes R))$
Let $h \in \mathrm{GL}(\boldsymbol{V} \otimes \boldsymbol{R})$. If $g h=h g$ for $\forall g \in G$,
then h is scalar.

Summary

- Separatedness of the moduli
follows from $G(K)$-Irreducibility of $V=H^{0}(X, L)$,
$(X, L)=\left(Z_{0}, O_{Z_{0}}(1)\right):$ any PSQAS, level $N \geq 3$
if $K \simeq \operatorname{ker}\left(\lambda(L): G_{\eta} \rightarrow G_{\eta}^{t}(\right.$ dual $\left.)\right)$.

We re-start with

Thm 6 Over $\mathbb{Z}\left[\zeta_{3}, 1 / 3\right]$

$A_{1,3}:=$ \{nonsing. cubics with 9 inflection pts $\} /$ isom.
$\overline{A_{1,3}}:=\{$ stable cubics with 9 inflection pts$\} /$ isom.
$=\{$ Hesse cubics $\} /$ isom $=\mathrm{id}$
$=A_{1,3} \cup\left\{C(\mu) ; \mu^{3}=1\right.$ or $\left.\infty\right\} \simeq \mathrm{P}^{1}$.

We convert it into $G(3)$-equivariant theory
$G(3):$ Heisenberg group of level 3
10 Heisenberg groups $G(K), G(3)$
$G(3)=\langle\sigma, \tau\rangle$ acts on V, order $|G(3)|=27$,

$$
\begin{gathered}
V=R x_{0}+R x_{1}+R x_{2} \\
\sigma\left(x_{i}\right)=\zeta_{3}^{i} x_{i}, \quad \tau\left(x_{i}\right)=x_{i+1} \quad(i \in \mathrm{Z} / 3 \mathrm{Z})
\end{gathered}
$$

ζ_{3} is a primitive cube root of $1, R \ni \zeta_{3}, 1 / 3$

Fact

- $x_{0}^{3}+x_{1}^{3}+x_{2}^{3}, x_{0} x_{1} x_{2} \in S^{3} V$ only are $G(3)$-invariant
- $G(3)$ determines x_{i} "uniquely" ($\because V: G(3)$-irred, $)$
- x_{i} are classical theta over C

Summary $G(K)$: Heisenberg gp. e.g. $G(3)$

- $G(K)$ chooses a basis of $V=H^{0}(X, L), X:$ PSQAS
- $G(K)$ chooses a basis of $H^{0}(G, L), G$:Néron model
- $G(\boldsymbol{K})$ determines Faltings-Chai degeneration data
- $G(K)$ extends G_{η} to define $\left(Z, O_{Z}(1)\right), Z=\mathcal{X} / Y$
- Separatedness of the moduli
follows from $G(K)$-Irreducibility of $V=H^{0}(X, L)$,
X : any PSQAS, level $N \geq 3$

11 The space of closed orbits

\boldsymbol{X}	the set of geometric objects
G	the group of isomorphisms
x, x^{\prime} are isom.	G-orbits are the same $O(x)=O\left(x^{\prime}\right)$
$X_{p s}$	the set of properly-stable objects
$X_{s s}$	the set of semistable objects
$X_{s s / / G}$	"compact moduli"

Exam 2 Action on C^{2} of $G=\mathrm{G}_{m}\left(=\mathrm{C}^{*}\right)$,

$$
\mathrm{C}^{2} \ni(x, y) \mapsto\left(\alpha x, \alpha^{-1} y\right) \quad\left(\alpha \in \mathrm{G}_{m}\right)
$$

What is the quotient of C^{2} by G ?

- Simple answer: the set of G-orbits (\times)
- Answer: $\operatorname{Spec}($ the ring of all G-invariant poly.)(○)
- $t:=x y$ is the unique G-inv. !

$$
\mathrm{C}^{2} / / G:=\operatorname{Spec} \mathrm{C}[t]=\{t \in \mathrm{C}\}
$$

But this is different from "the set of G-orbits".

- $\mathrm{C}^{2} / / G=\{t \in \mathrm{C}\}$ is the set of all closed orbits.

- $t=0$ is a point of $\mathrm{C}=\mathrm{C}^{2} / / G=\operatorname{Spec} \mathrm{C}[t]$.
- But $\{x y=0\}$ consists of three G-orbits

$$
\mathrm{C}^{*} \times\{0\}, \quad\{0\} \times \mathrm{C}^{*}, \quad\{(0,0)\}
$$

- $\{(0,0)\}$ is the only closed orbit in $\{x y=0\}$

Def 7 The same notation as before. Let $p \in X$.
(1) semistable if $\exists G$-inv. homog. poly. $F, F(p) \neq 0$,
(2) Kempf-stable (= closed orbit)
if the orbit $O(p)$ is closed in $X_{s s}$,
(3) properly-stable if (2) and $\operatorname{Stab}(p)$ finite.

Rem stable \Longrightarrow closed orbit \Longrightarrow semistable

Thm 8 (Seshadri,Mumford) $G:$ reductive, acting on a scheme X, (e.g. $\left.G=G_{m}\right)$. Let $X_{s s}=$ the set of semistable points. Then

- $X_{s s} / / G:=\operatorname{Spec}($ all G-inv.) $=$ the set of closed orbits.
- $X_{s s} / / G$ is a scheme, $X_{p s} / / G$ is also a scheme,
- $\boldsymbol{X}_{s s} / / \boldsymbol{G}$ compactifies $X_{p s} / / \boldsymbol{G}$.

Rem The set of points with closed orbits is not an algebraic subscheme.

Thus we consider only those objects with closed orbits
As its consequence we will see

- Abelian varieties have closed orbits (Kempf), and
- our PSQASes have closed orbits,

Conversely

- Any degenerate abelian scheme with closed orbit
is one of our PSQASes
- There is a simple characterization of our PSQASes,
- This characterization enables us to compactify
the moduli of abelian varieties.

12 Stable curves of Deligne-Mumford

Def $9 \quad C$ is a stable curve of a genus g if
(1) connected projective reduced with finite autom.,
(2) the singularities of C are like $x y=0$
(3) $\operatorname{dim} H^{1}\left(O_{C}\right)=g$

Let $\overline{M_{g}}$: moduli of stable curves of genus g,
M_{g} : moduli of nonsing. curves of genus g.

Thm $10 \quad \overline{M_{g}}$ compactifies M_{g}
(Deligne-Mumford 1969)

Definition of stable curves is irrelevant to GIT stability
Nevertheless

Thm 11 The following are equivalent
(1) C is a stable curve (moduli-stable)
(2) any Hilbert point of $\Phi_{|m K|}(C)$ is GIT-stable
(3) any Chow point of $\Phi_{|m K|}(C)$ is GIT-stable
$(1) \Leftrightarrow(2)$ Gieseker 1982 (before Mumford 1977)
$(1) \Leftrightarrow(3)$ Mumford 1977 (suggested by Gieseker 1982)

CUBIC CURVES

 STABILITY STAB GP.| smooth elliptic | stable | finite |
| :--- | :---: | :---: |
| 3-gon | closed orbit | 2-dim |
| a line+a conic (transv.) | semistable | 1-dim |
| irred. with a node | semistable | finite |
| others | unstable | 1-dim |

Thm 12 For a cubic C, the following cond. are equiv.
(1) C has a closed $\mathrm{SL}(3)$-orbit in $\left(S^{3} V\right)_{s s}$
(2) C is a Hesse cubic curve, that is, $G(3)$-invariant
(3) C is either smooth elliptic or a 3 -gon

14 Stability in higher-dim.

Thm 13 (Kempf) (A, L) an abelian variety, $V=H^{0}(A, L)$ very ample, $w:=$ Hilbert point of (A, L). Then $\mathrm{SL}(V) w$ is closed in $\mathrm{P}_{s s}$: the semistable locus of a big proj. space.

Thm 14 (N.1999)
(X, L) : PSQAS of level $G(K)$,
$V=H^{0}(\boldsymbol{X}, L)$ very ample. Then
any Hilbert point of (X, L) has a closed $\mathrm{SL}(V)$-orbit.

Thm 15 (N.1999)
Assume (X, L) is a limit of abelian varieties A with $\operatorname{ker}(\lambda(L))=K, \lambda(L): A \rightarrow A^{t}$ (dual)

Then the following are equivalent:
(1) X has a closed $\operatorname{SL}(V)$-orbit (GIT-stable)
(2) X is invariant under $G(K) \quad(G(K)$-stable $)$
(3) X is one of our PSQASes (moduli-stable)

To be more precise,
Thm 16 (N.1999)

Assume (X, L) is a limit of AV A 's with $\operatorname{ker}(\lambda(L))=K$ Then the following are equivalent:
(1) The m-th Hilbert point of X has a closed $\mathrm{SL}(V)$ orbit in $\mathrm{P}\left({ }_{\wedge}^{M} S^{m} V\right)_{s s} \quad$ (GIT-stable)
(2) X is invariant under $G(K) \quad(G(K)$-stable $)$
(3) X is one of our PSQASes (moduli-stable)
where $M:=\operatorname{dim} H^{0}(X, m L)$.

Thm 17 For cubics the following are equiv:
(1) it has a closed SL(3)-orbit (GIT-stable)
(2) it is a Hesse cubic, that is, $G(3)$-inv. $(G(3)$-stable $)$
(3) it is smooth ell. or a 3-gon. (moduli-stable)

Thm 18 Let X be a degenerate AV. The following are equiv. under natural assump.:
(1) it has a closed $\mathrm{SL}(V)$-orbit (GIT-stable)
(2) X is $G(K)$-inv $\quad(G(K)$-stable $)$
(3) it is a PSQAS (p.20) (moduli-stable)

Thus we see

- Abelian varieties have closed orbits (Kempf), and
- our PSQASes have closed orbits,

Conversely

- Any degenerate abelian scheme with closed orbit
is one of our PSQASes
- X is our PSQAS iff X is $G(K)$-stable,
- This characterization will compactify
the moduli of abelian varieties.

The characterization of PSQASes will compactify

the moduli of abelian varieties. We recall
"Closed orbit" is not a Zariski open/closed condition.

Exam 3

Let $G:=\left\{(s, t, u) \in\left(\mathrm{G}_{m}\right)^{3} ;\right.$ stu $\left.=1\right\}$

$$
C_{a, b, c}: a x_{0}^{3}+b x_{1}^{3}+c x_{2}^{3}-x_{0} x_{1} x_{2}=0
$$

G acts on $\mathrm{A}^{3}:(a, b, c) \mapsto(s a, t b, u c) \mathrm{A}^{3}$
Closed $\left(\mathrm{G}_{m}\right)^{2}$-orbit iff $a b c \neq 0$ or $(a, b, c)=(0,0,0)$.

15 Moduli over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right]$
Thm 19 (a new version of the theorem of Hesse)

$$
S Q_{1,3}=\mathrm{P}_{\mathrm{Z}\left[\zeta_{3}, 1 / 3\right]}^{1},
$$

the projective fine moduli
(1) The universal cubic curve

$$
\mu_{0}\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}\right)-\mu_{1} x_{0} x_{1} x_{2}=0
$$

where $\left(\mu_{0}, \mu_{1}\right) \in S Q_{1,3}=\mathrm{P}^{1}$.
(2) when k is alg. closed and char. $k \neq 3$

$$
\left.\left.\begin{array}{rl}
S Q_{1,3}(k) & =\left\{\begin{array}{l}
\text { closed orbit cubics } \\
\text { with level 3-structure } / k
\end{array}\right\} / \text { isom. } \\
& =\left\{\begin{array}{l}
\text { Hesse cubics } \\
\text { with level } 3 \text {-str. } / k
\end{array}\right\} / \text { isom. }=\mathrm{id.} \\
A_{1,3}(k) & =\left\{\begin{array}{l}
\text { closed orbit nonsing. cubics } \\
\text { with level } 3 \text {-str. } / k
\end{array}\right\} / \text { isom. }
\end{array}\right\} \begin{array}{l}
\text { nonsing. Hesse cubics } \\
\end{array}\right\} / \text { isom. }=\mathrm{id.} \text {. }
$$

Thm 20 (N. 1999) There exists the fine moduli $S Q_{g, K}$ projective over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right], N=\sqrt{|K|}$, For k closed $\begin{aligned} S Q_{g, K}(k) & =\left\{\begin{array}{l}\text { closed orb. deg. abelian sch. } / k \\ \text { with level } G(K) \text {-structure }\end{array}\right\} / \text { isom. } \\ & =\left\{\begin{array}{l}G(K) \text {-invariant PSQAS } / k \\ \text { with level } G(K) \text {-structure }\end{array}\right\}, \\ A_{g, K}(k) & =\left\{\begin{array}{l}(\text { nonsingular }) \text { abelian schemes } / k \\ \text { with level } G(K) \text {-structure }\end{array}\right\} / \text { isom. } \\ & =\left\{\begin{array}{l}G(K) \text {-inv. abelian schemes } / k \\ \text { with level } G(K) \text {-structure }\end{array}\right\}\end{aligned}$

Summary $G(K)$: Heisenberg gp. e.g. $G(3)$
(A) $\quad H^{0}(X, L)$ is $G(K)$-irred for X : PSQAS

- (A) implies Stability of X with L very ample,
- (A) implies Separatedness of the moduli,
- (A) gives a simple characterization of PSQASes,
- $G(K)$ finds a compact separated moduli $S Q_{g, K}$

16 The Second Compactification over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right]$
Recall Grothendieck (EGA) guarantees \exists a projective R-scheme ($Z, O_{Z}(1)$)
s.t. the formal completion $Z_{\text {for }}$ of Z

$$
Z_{\mathrm{for}} \simeq \mathcal{X} / Y, \quad\left(Z_{\eta}, O_{Z_{\eta}}(1)\right) \simeq\left(G_{\eta}, L_{\eta}\right)
$$

The central fiber ($\left.Z_{0}, O_{Z_{0}}(1)\right)$ is our (P)SQAS.

The normalization $Z^{\text {norm }}$ of Z with $Z_{0}^{\text {norm }}$ reduced gives a bit different central fiber $\left(Z_{0}^{\text {norm }}, O_{Z_{0}^{\text {norm }}}(1)\right)$, we call it TSQAS.

Thm 21 (N .2010) over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right]$,
\exists another cano. compactif. $S Q_{g, K}^{\text {toric }}$
:coarse moduli of TSQASes with level- $G(\boldsymbol{K})$ str.
\exists cano. bij. birat. morphism

$$
\left.\begin{array}{rl}
\mathrm{sq}: & S Q_{g, K}^{\text {toric }}
\end{array} \rightarrow S Q_{g, K}, \quad(P, \phi, \tau) \mapsto\left(Q, \phi_{Q}, \tau_{Q}\right), \quad Q:=\operatorname{Proj}(\operatorname{Sym}(\phi))\right) ~ l
$$

when any generic fibre of P is an abelian var.

Corollary
The normalizations of $S Q_{g, K}^{\text {toric }}$ and $S Q_{g, K}$ are isom.

Recall $(P, \phi, \tau) \in S Q_{g, K}^{\text {toric }}$

- $P:$ TSQAS $=$ modified PSQAS,
- $\phi: P \rightarrow \mathrm{P}^{N-1}=\mathrm{P}\left(k\left[H^{\vee}\right]\right)$ is a finite morphism
- $L=\phi^{*}\left(O_{\mathrm{P}^{N-1}}(1)\right)$,
- $H^{0}(P, L) \stackrel{\phi^{*}}{\simeq} k\left[H^{\vee}\right]=H^{0}\left(O_{P^{N-1}}(1)\right)$
- τ : a compatible action of $G(K)$ on the pair (P, L)
- τ on $P=$ translation by K when $P=A: A V$
$\left(Q, \phi_{Q}, \tau_{Q}\right) \in S Q_{g, K}$
- $Q:$ PSQAS,
- $\phi_{Q}: Q \rightarrow \mathrm{P}^{N-1}=\mathrm{P}\left(k\left[H^{\vee}\right]\right)$ is a closed immersion
- $L_{Q}=\phi^{*}\left(O_{\mathrm{P}^{N-1}}(1)\right)$,
- $H^{0}\left(Q, L_{Q}\right) \simeq H^{0}(P, L) \stackrel{\phi^{*}}{\simeq} k\left[H^{\vee}\right]=H^{0}\left(O_{\mathrm{P}^{N-1}}(1)\right)$
- τ_{Q} : a compatible action of $G(K)$ on the pair $\left(Q, L_{Q}\right)$
- τ_{Q} on $Q=$ translation by K when $Q=A: A V$

Definition of sq : For $(P, L, \phi, \tau) \in S Q_{g, K}^{\text {toric }}(T)$ Suppose (P, L, ϕ, τ) is a T-TSQAS
such that any generic fibre is AV.
Then let $Q=\phi(P):=\operatorname{Proj}(\operatorname{Sym}(\phi))$
Can define $\left(Q, L_{Q}, \phi_{Q}, \tau_{Q}\right) T$-PSQAS, Then
the morphism sq is
$\mathrm{sq}(P, L, \phi, \tau)=\left(Q, L_{Q}, \phi_{Q}, \tau_{Q}\right) \in S Q_{g, K}(T)$

17 Comparison of three compactifications
$\boxed{\text { Summary }} N=\sqrt{|K|}, \mathcal{O}_{N}=\mathrm{Z}\left[\zeta_{N}, 1 / N\right], d>0$.

1. $S Q_{g, K}$ is a proj. fine moduli over \mathcal{O}_{N} [N99],
2. $S Q_{g, K}^{\text {toric }}$ is a proj. coarse mod. over \mathcal{O}_{N} [N01] [N10],
3. $\overline{A P}_{g, d}=\{(P, G, D)\}$ is a proper separated coarse moduli over Z [Alexeev02],
4. $\operatorname{dim} S Q_{g, K}=\operatorname{dim} S Q_{g, K}^{\text {toric }}=g(g+1) / 2$,
5. $\operatorname{dim} \overline{A P}_{g, d}=g(g+1) / 2+d-1$,
6. \exists a canonical bij. birat. morphism [N10]

$$
\mathrm{sq}: S Q_{g, K}^{\text {toric }} \rightarrow S Q_{g, K}
$$

Alexeev's moduli $\overline{\boldsymbol{A P}}_{g, d}=\{(P, G, D)\}$

- P is semi-normal proj. with L ample line bundle
- G semi-abelian acting on P with extra cond.
- $D \in H^{0}(P, L)$ a Cartier divisor
- D contains no G-orbits
- $\operatorname{dim} \overline{A P}_{g, d}=\operatorname{dim} A_{g}+d-1$.
k alg. closed
$S Q_{1, K}, K=(\mathrm{Z} / 3 \mathrm{Z})^{2}$, Roughly
$S Q_{1, K}(k)=\{C$ a nonsing. cubic or a 3 -gon cubic $\}$
$\overline{A P}_{1,3}(k)=\{(C, G, D)\}$
C nonsingular elliptic or a 3 -gon,
or a conic plus a line, rational with a node $G=C($ elliptic $)$ or $G_{m}, D \in H^{0}(C, L)$, degree $D=3$.

To define a morphism from $S Q_{1, K}$ to $\overline{A P}_{1,3}$ is equivalent to the following

For a given
a flat family over T

$$
(C, \phi, \tau) \in S Q_{1, K}(T)
$$

always ! construct (G, D) so that

$$
(C, G, D) \in \overline{A P}_{1,3}(T)
$$

Problem: Construct G and Find D
For almost all $v \in k[\mathrm{Z} / 3 \mathrm{Z}]$,

$$
(P, \phi, \tau) \times v
$$

$$
\mapsto\left(P, \operatorname{Aut}^{\dagger 0}(P), \operatorname{Div}\left(\phi^{*}(v)\right)\right.
$$

Need to prove
Any T-TSQAS has a flat group scheme action
This is done in general

Thm 22 If (P, L) is an S-flat TSQAS, then
$\operatorname{Aut}_{S}^{\dagger 0}(P)$ is S-flat semi-abelian group scheme

Thm $23 \exists$ a finite Galois morph. over $\mathcal{O}_{N}, N=\sqrt{|K|}$,

$$
\begin{gathered}
\text { sqap }: S Q_{g, K}^{\text {toric }} \times\left(\mathrm{P}^{N-1} \backslash H_{g, K}\right) \rightarrow \overline{A P}_{g, N} \otimes \mathcal{O}_{N} \\
(P, \phi, \tau) \times \mapsto\left(P, \operatorname{Aut}^{\dagger 0}(P), \operatorname{Div}\left(\phi^{*}(v)\right)\right.
\end{gathered}
$$

such that for any fixed $v \in \mathrm{P}^{N-1} \backslash H_{g, K}$

$$
(P, \phi, \tau) \mapsto\left(P, \operatorname{Aut}^{\dagger 0}(P), \operatorname{Div}\left(\phi^{*}(v)\right)\right.
$$

is an injective morphism of $S Q_{g, K}^{\text {toric }}$ extending an injective immersion of $A_{g, K}^{\text {toric }}$.

- $\mathrm{P}^{N-1}=\mathrm{P}\left(\mathcal{O}_{N}\left[\boldsymbol{H}^{\vee}\right]^{\vee}\right), v \in \mathcal{O}_{N}\left[\boldsymbol{H}^{\vee}\right]$.
- $H_{g, K}$ is a hypersurf. of P^{N-1} of deg. known.
- $\operatorname{dim} S Q_{g, K}^{\text {toric }}+N-1=\operatorname{dim} \overline{A P}_{g, N}$.
$S Q_{g, K, 1 / N}:=S Q_{g, K}:$ over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right]$
$\overline{A P}_{g, N}$: Alexeev, over Z, no level str.
$\bar{A}_{g, N}$: Olsson, over Z, no level str.

18 The shape of PSQASes - Delaunay decompositions

"Limits of theta functions are described by the

Delaunay decomposition."

PSQAS is a geometrization of limit of thetas PSQAS is a generalization of 3 -gons.
which is described by the Delaunay decomposition.

PSQAS : a generalization of Tate curve, $R: D V R$

$$
\text { Tate curve } \quad: \quad \mathrm{G}_{m}(R) / w \mapsto q w
$$

Hesse cubics at $\infty: \mathrm{G}_{m}(R) / w \mapsto q^{3} w$

Rewrite Tate curve as :

$$
\mathrm{G}_{m}(R) / w^{n} \mapsto q^{m n} w^{n}(m \in \mathrm{Z})
$$

Hesse cubics at $\infty: \quad \mathrm{G}_{m}(R) / w^{n} \mapsto q^{3 m n} w^{n}(m \in \mathrm{Z})$

The general case : B pos. def. symmetric

$$
\begin{gathered}
\mathrm{G}_{m}(R)^{g} / w^{x} \mapsto q^{B(x, y)} b(x, y) w^{x} \\
b(x, y) \in R^{\times} \quad(x \in X, y \in Y)
\end{gathered}
$$

Let $\boldsymbol{X}=\mathrm{Z}^{g}, \boldsymbol{B}$ a positive symmetric on $\boldsymbol{X} \times \boldsymbol{X}$.

$$
\|x\|=\sqrt{B(x, x)}: \text { a distance of } X \otimes R(\text { fixed })
$$

Def 24 Let $\alpha \in X_{R}$. a Delaunay cell $D(\alpha)$: the convex closure of points of X closest to α.

Exam 4 1-dim. $B(x, y)=2 x y, X / Y=\mathrm{Z} / n \mathrm{Z}$, then PSQAS Z_{0} is an n-gon of P^{1}

- All Delaunay cells for a B form a Delaunay decomp.
- Each PSQAS (its scheme struture) and its decomposition into torus orbits (its stratification) are described by Delaunay decomp.
- Each pos. symm. B defines a Delaunay decomp.
- Different B can yield the same Delaunay decomp. and the same PSQAS.

| Exam 5 |
| :---: |\(B=\left(\begin{array}{ll}1 \& 0

0 \& 1\end{array}\right)\)
$Z_{0}:=\mathcal{X}_{0} / Y$ is a union of $\mathrm{P}^{1} \times \mathrm{P}^{1}$

Exam $6 \quad B=\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$

1. This $(\bmod Y)$ is a PSQAS.

It is a union of P^{2}, each triangle stands for P^{2},
2. each line segment is a P^{1}, two P^{2} intersect along P^{1}
3. $\operatorname{six} \mathrm{P}^{2}$ meet at a point,
locally $k\left[x_{1}, \cdots, x_{6}\right] /\left(x_{i} x_{j},|i-j| \geq 2\right)$

Red one is the decomp. dual to the Delaunay decomp. called Voronoi decomp.

Voronoi decomposition

Def $25 D$: for Delaunay cells

$$
V(D):=\left\{\lambda \in X \otimes_{\mathrm{Z}} \mathrm{R} ; D=D(\lambda)\right\}
$$

We call it a Voronoi cell

$$
\overline{V(0)}=\left\{\lambda \in X \otimes_{\mathrm{Z}} \mathrm{R} ;\|\lambda\| \leqq\|\lambda-q\|,(\forall q \in X)\right\}
$$

This is a crystal of mica.

$$
\text { For } B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We get $\overline{V(0)}$, a cube (salt),

$$
\text { For } B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

then we get a hexagonal pillar (calcite), and then

$$
B=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

A Dodecahedron (Garnet)

$$
B=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

Apophyllite $\mathrm{KCa}_{4}\left(\mathrm{Si}_{4} \mathrm{O}_{10}\right)_{2} \mathrm{~F} \cdot 8 \mathrm{H}_{2} \mathrm{O}$

$$
B=\left(\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right)
$$

A Trunc. Octahed. - Zinc Blende $Z n S$

