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1 Hesse cubic curves
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:c% -+ a:'i’ -+ wg’ — 3uxgriro

if p gets closer to oo




xg + o3 + x5 — 3pxoxiws = 0 (1 € Z[(3,1/3])

if p gets much closer to oo




w% + wi’ + m‘;’ — 3pxgrizs =0 (u3 =1 oroo)

It degenerates into 3 copies of P!




2 Moduli of cubic curves

Thm 1| (classical form over C) (Hesse 1849)

A1 3 : = {nonsing. cubics with 9 inflection pts}/ isom.
~ C\ {1, (s, C?%} ~ H/T'(3) (H : upper half plane)

SQ1,3:= A13

= {stable cubics with 9 inflection pts}/ isom.

— {Hesse cubics} /isom=id
= A1 3U {C’(u);u?’ = lor oo} ~ pl

= {moduli of compact objects}



We wish to extend this to aribitrary dimension

1. over Z[{n,1/N] (Today) or over Z[(nN]

2. to define a representable functor of compact obj.

F := SQg4 k| (fine moduli)

3. to relate SQ, g to GIT stability, (This is new)

4.| GIT stable objects = our model PSQASes|:

Projectively Stable Quasi Abelian Scheme

5. to relate 3 known compactif.

Alexeev’s moduli |Ag g4

SQg,K

9

toric
S Qg,K




Thm 2
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3 Moduli over Z[{n,1/N]

(a new version of the theorem of Hesse)

1
SC@13 = Pzies1/3),

the projective fine moduli

(1) The universal cubic curve

po(zg + x4 + x3) — pi1zozTiT2 = 0

where (o, p1) € SQ1,3 = PL.
(2) when k is alg. closed and char. k # 3



SQ1,3(k)

Aq,3(k)
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closed orbit cubics

/isom.
with level 3-structure /k
)
Hesse cubics
> /isom.=id.
with level 3-str. /k
/

\

closed orbit nonsing. cubics .
> /isom.

with level 3-str. /k

nonsing. Hesse cubics i .
isom.=id.

with level 3-structure /k
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Thm 3| (N. 1999) There exists the fine moduli SQ, i

projective over Z[(n,1/N], N = /|K|, For k closed

\
closed orb. deg. abelian sch. /k .
SQq.k(k) = > /isom.
with level G(K)-structure

G (K)-invariant PSQAS /k

with level G(K)-structure

/isom.

Ag,K(k)
with level G(K)-structure

{ (nonsingular) abelian schemes /k
{ G (K)-inv. abelian schemes /k

with level G(K)-structure
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4 Comparison of three compactifications

Summary

N = \/|K70N:Z[CN71/N]7d>O°

1. SQ, K is a proj. fine moduli over O [N99],

2. S Qtorlc is a proj. coarse mod. over Op; [NO1] [N10],

3. AP, 4 = {(P,G,D)} is a proper separated coarse

moduli over Z [Alexeev02],

4. dim SQ4 g = dim SQtOHC =g(g+1)/2,

5.dim AP, 4 = g(g +1)/2+d — 1,

6. 3 a bij. mor. sq : SQt(’”C — SQg Kk [N10]

(SQtorlc norm ~, SQnorm (1)
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SQqg.k,1/N := SQq K : proj. over Z[(n,1/N]| (1999)
AP, N : by Alexeev, over Z, dim. excessive by N — 1

(2002)

A, N : by Olsson, over Z, proper separated (2008)



Thm 4
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3 a finite Galois morph. over Opn, N = /| K|,

sqap : SQZ?%C x (PN=1\ H, i) = AP, N Q@ On

(P, ¢, 7) X v — (P, Aut’®(P), Div(¢*(v))

such that for any fixed v € PN~1\ H K

(P, ¢, 7) — (P, Aut’(P), Div(¢*(v))

is a closed immersion of SQ;O%C.
9
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5 Tate curve and PSQAS

R:DVR, L = Frac(R) = R|[1/q], q uniformizer.
Tate curve 00 0 Gy (L) /w — qw

Hesse cubics at oo 0 Gy (L) /w — q3w

Rewrite Tate curve asl] Gy (L) /w™ — q""w™ (n € Z)

Hesse cubics at co 00 G (L) /w™ — ¢3™"w™ (n € Z)

The general case : B pos. def. symmetric
Gm(L)9/w® — qB@Vb(x, y)w?,

b(z,y) e L* (x€ X,y€Y)
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The usual Tate curve over CDVR R

X : womg = :B:f — wow% + qacg

Or X:yzzmg—:pz—l—q
The generic fibre X, : y? =3 — 2% +¢ (g # 0)
The fibre X : y? = x%(x — 1) for ¢ = 0 : a limit of X

XO \ {07 0} — GTTL)

To compactify the moduli, need to find all nice limits !!




The general case : B pos. def. symmetric
The generic fibre:
Gm(L)? /w® — qB@Yb(x, y)w?,
b(x,y) e L (x€ X,y€Y)
PSQAS is the closed fibre of it

18



6 Review of Theta functions

An elliptic curve, w = e27%, q = ¢2™7/6

E(t) =C/(Z + Z7) = C*/w — wq®, q= e2™7/6

2
Theta function 0i(7,2) =) ,,c7 glk+3m)% kt3m

The map © embeds E(7) into P2,
© : E(T) >z [w()vwlawZ] — [90701792] € P2

To compactify the moduli

we find the limit of the image of ® as g — 0

General case will lead us to the next definition

19
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Before it,recall again w = ezm:z, q = e27iT /6

O (T, z + %) = (504 (T, 2),

O (2 + 2) = (qw) "' (7 2),
600, 01, 02](T, =z + g) = [01, 02, 60](T, 2)
o, T are the liftings to GL(3),

z — z + % is lifted to o(0y) = ¢50,
z — z + 7 is lifted to 7(0y) = 01,1

G(3) := the group (o, T)

The image of ® is a Hesse cubic.
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7 Heisenberg groups G(K), G(3)

G(3) = (o, T) acts on V, order |G(3)| = 27,
V = Rxg + Rxy + Rxa,
o () = Chwiy  T(xi) = zip (i € Z/32)
(3 is a primitive cube root of 1, R > (3,1/3

o :L‘% + azi’ + w‘;’, Tor1Lo € S3V only are G(3)-invariant

e GG(3) determines x; "uniquely” (.- V:G(3)-irred,)

e x; are |classical theta| over C

General case will lead us to the next definition
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In terms of theta, w = €272 g = ¢2™i7/6

O (T, z + %) = (504 (T, 2),

O (2 + 2) = (qw) "' (7 2),
600, 01, 02](T, =z + g) = [01, 02, 60](T, 2)
o, T are the liftings to GL(3),

z — z + % is lifted to o(0y) = ¢50,
z — z + 7 is lifted to 7(0y) = 01,1

G(3) := the group (o, T)
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8 Definition of PSQAS

R : DVR, g a uniformizer of R,

k(0) = R/m, k(n) = R[1/q] : the fraction field of R
Suppose (Gy, Ly) : abelian variety over k(n)

(G, L) is the (connected) Néron model of (G, Ly)

Let A(Ly) : Gy — Gy = PicO(Gn)
(*G,*L) : the (connected) Néron model of (!Gp,*Ly)
Suppose Gg a split torus over k(0),

Then (!Gy, Lg) is a split torus over k(0)
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For the Tate curve over CDVR R

The generic fibre Gy : y? =3 — 2% +¢ (g # 0)
The fibre Xg : y? = z%(x — 1) for ¢ = 0 : a limit of X

XO \ {07 O} — Gma

This is the key assumption Gg a split torus



w% + w% + mg’ — 3uxorizre =0 (u3 =1 oroo)

It degenerates into 3 copies of P!

p = oo, xgxrixre = 0 contains Gy, X Z/37Z

This is the key assumption G a split torus

25
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Definition of PSQAS

R : DVR, q a uniformizer of R,

k(0) = R/m, k(n) = R[1/q] : the fraction field of R
Suppose (Gy, Ly) : abelian variety over k(n)

(G, L) is the (connected) Néron model of (G, Ly)

Let A(Lyp) : Gp — Gy = PicO(Gn)
(*G,*L) : the (connected) Néron model of (!Gp,*Ly)
Suppose Gg a split torus over k(0),

Then (!Gg,*Ly) is a split torus over k(0)
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Let X = Hom(Go, Gm), Y = Hom(*Gg,Gm).
Hence X ~79,Y ~ 79,
A(Ly) extends, 3 a surjection Gy — tGy

Hence Y : a sublattice of X, [X : Y] < oco.

Kfr’ «— keI‘ A(L'r’), N = |K'r’|.
K:=the closure of K;. May assume Over Z[(x,1/N|
K~ (X/Y)® (X/Y)Y,

This finite group helps us to take up the necessary data



From G and K we can construct

G(K) : Heisenberg group scheme
1 — py — G(K) — K — 0 (exact)

(a, z,a) - (b, w, B) = (abB(z),z + w, a + B),
RIX/Y] = @,cx/yR v(z) (group alg. of X/Y)
v(0) =1, v(z +y) = v(z)v(y)

G(K) acts on R[X/Y] by
(@, 2z, a) - v(z) = ac(z)v(z + )

a,b € pn; z,x € (X/Y); a,8€ (X/Y)"

28



Facts. G : conn. Néron model of Gy,

Ky :=ker(A(Ly)) ~ (X/Y) & (X/Y)Y,

o V:= HYG,L): finite R-free, G(K)-irreducible

oV =H"G,L) ~ R[X/Y] as G(K)-module
G(K)-i

o HO(G, L) > 30, ™ L(2) € RIX/Y] gp alg

0. can be thought as ”classical theta”

Idea: Find the limit of the image [0x],cx /v

29
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Let Gy, : the formal completion of G along G|

Key Fact:

Gor =~ (G%,R)for

Fourier expansion of 8, (x € X/Y ) on G, :

9:13 p— Zer (1,(213 —|— y)'w“""y

a(x + y) : Fourier coeff. of 0,
called Faltings-Chai’s degeneration data of (G, L)

o B(z,y) := valg(a(xz + y)a(x) " ta(y) 1) is pos. def.
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generalized Tate curves
The general case : B pos. def. symmetric
The generic fibre:
Gm(L)? /w® — qB@Yby(z, y)w?,
bo(x,y) e L* (x € X,y€Y)
PSQAS is the closed fibre of a gener. Tate curve



We construct a canonical gen. of Tate curves.

~

R := Rla(x)w*d,x € X], 1:deg one

Pro J(ﬁ) : locally of finite type over R
X : the formal completion of Proj(R)

The Quotient X /Y is a degenerating family of AV

(X/Y,0x,y(1)) is a generalization of Tate curves

32



Grothendieck (EGA) guarantees
3 a projective R-scheme (Z,07(1))
s.t. the formal completion Zg,,. of Z
Ziow = X/Y, (Zn,07,1)) = (G, L)

(the stable reduction theorem)

The central fiber (Zg,0z,(1)) is our (P)SQAS.

Projectively Stable QQuasi Abelian Scheme

G(K) acts on (Z,07(1))

33



Summary| Let R be CDVR over Z[{x,1/N]

e There is a natural choice of 8, € H°(G, L)

ea(x +1vy), y€Y is Fourier coeff of 0, x € X/Y

e all a(x) recover the given Gy, over k(n) := Frac(R)
e There is an extention X' /Y of Gj to R so that

(a) it is a canonical generalization of Tate curves,

(b) |G(K) acts on (X/Y, 04 /y (1))

(c) hence |G(K) acts on (Z,0%(1))

(d) the closed fibre (Zy,0z,(1)) is a PSQAS.

34



Exam 1

g:]_,X:Z,Y:?)Z.

X = Proj(R), a(z)=q", (z € X)

S_3 S—3
Voo Vi W Vi \Z Vs Vi

35
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Recall

Thm 5/ Over Z[(3,1/3]

A1 3 : = {nonsing. cubics with 9 inflection pts}/ isom.

SQ1,3:= A13
= {stable cubics with 9 inflection pts}/ isom.
— {Hesse cubics}/isom=id

= A1 3 U {C’(u);u?’ = lor oo} ~ pl,

Hesse cubics are PSQASes in dimension one, level 3.
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We wish to extend this to arbitrary dimension

1. over Z[{;N,1/N] or over Z[(N]

2. to define a representable functor of compact obj.

F := SQg4 k| (fine moduli)

3. to relate to GIT stability, that is,

to aim at F'(k) =GIT stable objects|for k alg. closed
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SQqg.k,1/N := SQq K : proj. over Z[(n,1/N]| (1999)
AP,  : over Z, dim. excessive by N — 1 (2002)

Olsson : over Z, nonseparated nonproper stack (2008)
Olsson uses the same model as ours (Alexeev-Nakamura’s
model)

We prefer to separated moduli.

It is easy to construct nonseparated stack moduli.
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9 Separatedness of the moduli

There are difficulties never seen in dimension one
e Classical level structure = base of n-divison points,
e Singular limits of Abelian varieties are very reducible
e Classical level str. gives non-separated moduli

e We need to prove in any dimension,

Lemma. (Valuative Lemma for Separatedness)

R : DVR, L = Frac(R), X,Y € F(R).

If X; ~Yr, then X ~ Y. In other words,

Isom. over L implies isom. over R.
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e separated = Hausdorff, (e.g. if X projective, then
separated)

e X: non-separated = non Hausdorft,

e If non-Hausdorff, then |3 P, € X (n =1,2,---),

P=1mP,, Q=1imP,. But [P ZQ

e This really happens in geometry.



Example| R : DVR, q : uniformizer of R, L = R|[1/q],

E, E’ : elliptic curves over R

E:yzzw?’—qﬁ, E:Y?=Xx%-1

Let us consider |Py := Ep, Qpn := E]

Pn — Qn, i.e. EL ~ E}J

because

Er: (y/q°)* = (z/q)® — 1,

Ep :Y?=X5-1

41



Example| R : DVR, q : uniformizer of R, L = R|[1/q],

E, E’ : elliptic curves over R

E:yzzw?’—qﬁ, E:Y?=Xx%-1

Let us consider |Py := Ep, Qpn := E]

P := FEyg=1limE, Q := E(') — limEi

P::Eozyzzacg, Q::E6:Y2:X3—1



To overcome the difficulty of level str/n-div. pts :
e Non-abelian Heisenberg gp. G := G(K)

e New level str. = Framing of irred. reps. of G

e To prove Val. Lemma for Separatedness, we use

43

Let |G| = N,

R : a ring over Z[(n,1/N], V : free R-mod.

V :irr. G-mod. of wt one, (= G C GL(V®RR))
Let h € GL(V Q R). If gh = hg for V g € G,

then h is scalar.




Summary

e Separatedness of the moduli
follows from G(K)-Irreducibility of V = H°(X, L),
(X, L) = (Z0p,0z,(1)) : any PSQAS, level N > 3
if K ~ ker(A(L) : Gy — G% (dual)).

44
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We re-start with

Thm 6/ Over Z[(3,1/3]

A1 3 : = {nonsing. cubics with 9 inflection pts}/ isom.
A1 3 : = {stable cubics with 9 inflection pts}/ isom.
= {Hesse cubics}/isom=id

= A1 3U {C(u);u?’ = lor oo} ~ Pl

We convert it into G(3)-equivariant theory

G (3): Heisenberg group of level 3
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10 Heisenberg groups G(K), G(3)

G(3) = (o, T) acts on V, order |G(3)| = 27,
V = Rxg+ Rx1 + Rxa,
o(x;) = Cxyy  T(x5) =m0y (3 € Z/3Z)
(3 is a primitive cube root of 1, R 5 (3,1/3
Fact

o w% + mi’ — m‘;’, rox1xe € S°V only are G(3)-invariant

e G(3) determines x; "uniquely” (. V:G(3)-irred,)

e x; are |classical theta| over C




Summary

G(K) : Heisenberg gp. c.g. G(3)

e G(K) chooses a basis of V = HY(X, L), X:PSQAS

e G(K) chooses a basis of HY(G, L), G:Néron model

e G(K) determines Faltings-Chai degeneration data

e G(K) extends Gy to define (Z,0z(1)), Z = X/Y

e Separatedness of the moduli

follows from G(K)-Irreducibility of V = H°(X, L),

X : any PSQAS, level N > 3

47



11 The space of closed orbits

X
G

x, ©’' are isom.

the set of geometric objects
the group of isomorphisms
G-orbits are the same O(x) = O(z’)
the set of properly-stable objects
the set of semistable objects

”compact moduli”

48



Exam 2

Action on C? of G = Gm(= C*),

C25 (w,y) — (az,a~ly) (a € Gm)

What is the quotient of C? by G ?

e Simple answerl] the set of G-orbits (X)

e Answerl] Spec(the ring of all G-invariant poly.)(o )

et := xy is the unique G-inv. !

C?//G := SpecC[t] = {t € C}

But this is different from ”the set of G-orbits”.

e C2//G = {t € C} is the set of all closed orbits.

49



xy =0

O(d,1) O(c,1)
= {te C}

o =a3y:0

(c > 0,d < 0)

et =0 is a point of C = C?//G = Spec C[t].
e But {xy = 0} consists of three G-orbits

C* x {0}, {0} xC% {(0,0)}
e {(0,0)} is the only closed orbit in {xy = 0}

50
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Def 7 The same notation as before. Let p € X.

(1) semistable if 3 G-inv. homog. poly. F, F(p) # 0,
(2) Kempf-stable (= closed orbit)
if the orbit O(p) is closed in Xgg,

(3) properly-stable if (2) and Stab(p) finite.

Rem stable —> closed orbit —> semistable




Thm 8
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(Seshadri,Mumford) G : reductive, acting on

a scheme X, (e.g. G = Gy,). Let X33 = the set of

semistable points. Then

e Xs5//G := Spec(all G-inv.) = the set of closed orbits.

e X;5//G is a scheme, Xys//G is also a scheme,

e (X;ss//G compactifies Xps//G.

Rem

The set of points with closed orbits is not an

algebraic subscheme.



Thus we consider only those objects with closed orbits

As its consequence we will see

e Abelian varieties have closed orbits (Kempf), and

e our PSQASes have closed orbits,

Conversely

Any degenerate abelian scheme with closed orbit

is one of our PSQASes

53

e There is a simple characterization of our PSQASes,

This characterization enables us to compactify

the moduli of abelian varieties.
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12 Stable curves of Deligne-Mumford

Det 9 ( is a stable curve of a genus g if

(1) connected projective reduced with finite autom.,
(2) the singularities of C are like xy = 0

(3) dimH'(O¢) = g

Let ﬁg : moduli of stable curves of genus g,

Mg : moduli of nonsing. curves of genus g.

Thm 10 ﬁg compactifies Mg

(Deligne-Mumford 1969)
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Definition of stable curves is irrelevant to GIT stability

Nevertheless

Thm 11| The following are equivalent

(1) C is a stable curve (moduli-stable)
(2) any Hilbert point of ®,,,|(C) is GIT-stable
(3) any Chow point of @, |(C) is GIT-stable

(1)<(2) Gieseker 1982 (before Mumford 1977)

(1)<=(3) Mumford 1977 (suggested by Gieseker 1982)




13 Stability of cubic curves

CUBIC CURVES STABILITY STAB GP.
smooth elliptic stable finite
3-gon closed orbit 2-dim
a line+a conic (transv.) semistable 1-dim
irred. with a node semistable finite

others unstable 1-dim

56
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Thm 12| For a cubic C, the following cond. are equiv.

(1) C has a closed SL(3)-orbit in (S3V )50
(2) C is a Hesse cubic curve, that is, G(3)-invariant

(3) C is either smooth elliptic or a 3-gon
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14 Stability in higher-dim.

Thm 13| (Kempf) (A, L) an abelian variety,

V = HY%(A, L) very ample, w:=Hilbert point of (A, L).
Then SL(V)w is closed in Pgs : the semistable locus of

a big proj. space.

Thm 14] (N.1999)

(X,L) : PSQAS of level G(K),
V = H%(X, L) very ample. Then
any Hilbert point of (X, L) has a closed SL(V)-orbit.



Thm 15| (IN.1999)

Assume (X, L) is a limit of abelian varieties A
with ker(A(L)) = K, A\(L) : A — A? (dual)

Then the following are equivalent:

(1) X has a closed SL(V)-orbit (GIT-stable)
(2) X is invariant under G(K) (G(K)-stable)
(3) X is one of our PSQASes (moduli-stable)

59
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To be more precise,

Thm 16

(N.1999)

Assume (X, L) is a limit of AV A’s with ker(A(L)) = K

Then the following are equivalent:

(1) The m-th Hilbert point of X has a closed SL(V)-

M
orbit in P(AS™V)ss (GIT-stable)

(2) X is invariant under G(K) (G(K)-stable)

(3) X is one of our PSQASes (moduli-stable)

where M := dim H°(X,mL).
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Thm 17| For cubics the following are equiv:

(1) it has a closed SL(3)-orbit (GIT-stable)[
(2) it is a Hesse cubic, that is0 G(3)-inv. (G(3)-stable)

(3) it is smooth ell. or a 3-gon. (moduli-stable)

Thm 18| Let X be a degenerate AV. The following are

equiv. under natural assump.:

(1) it has a closed SL(V)-orbit (GIT-stable)
(2) X is G(K)-inv (G(K)-stable)
(3) it is a PSQAS (p.20) (moduli-stable)



Thus we see

e Abelian varieties have closed orbits (Kempf), and
e our PSQASes have closed orbits,

Conversely

e |Any degenerate abelian scheme with closed orbit

is one of our PSQASes

e X is our PSQAS iff X is G(K)-stable,

e | This characterization will compactify

the moduli of abelian varieties.

62
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The characterization of PSQASes will compactify

the moduli of abelian varieties.| We recall

”Closed orbit” is not a Zariski open/closed condition.

Exam 3
Let G := {(s,t,u) € (Gm)>; stu = 1}
C .3 3 3 _
a,b,c + AL + biﬂl + CI o xrorixro = 0.

G acts on A3 : (a,b,c) — (sa,tb,uc)A3

Closed (G )?-orbit iff abe # 0 or (a, b, c) = (0,0,0).



Thm 19
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15 Moduli over Z[{n,1/N]

(a new version of the theorem of Hesse)

1
5C13 = Prigs/3)

the projective fine moduli

(1) The universal cubic curve

uo@% + w? T fb’g’) — p1xoxrire =0

where (o, 1) € SQ1,3 = Pl
(2) when k is alg. closed and char. k # 3



SQ1,3(k)

Aq,3(k)
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closed orbit cubics

/isom.
with level 3-structure /k
)
Hesse cubics
> /isom.=id.
with level 3-str. /k
/

\

closed orbit nonsing. cubics .
> /isom.

with level 3-str. /k

nonsing. Hesse cubics i .
isom.=id.

with level 3-structure /k



66

Thm 20| (N. 1999) There exists the fine moduli SQ, g

projective over Z[(n,1/N], N = /|K|, For k closed

\
closed orb. deg. abelian sch. /k .
SQq.k(k) = > /isom.
with level G(K)-structure

G (K)-invariant PSQAS /k

with level G(K)-structure

/isom.

Ag,K(k)
with level G(K)-structure

{ (nonsingular) abelian schemes /k
{ G (K)-inv. abelian schemes /k

with level G(K)-structure



Summary

G(K) : Heisenberg gp. c.g. G(3)

(A) HY%X,L) is G(K)-irred for X: PSQAS

e (A) implies Stability of X with L very ample,

e (A) implies Separatedness of the moduli,

e (A) gives a simple characterization of PSQA Ses,

¢ |G(K) finds a compact separated moduli S’Qg, K
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16 The Second Compactification over Z[(n,1/N]

Recall Grothendieck (EGA) guarantees
3 a projective R-scheme (Z,07(1))
s.t. the formal completion Z¢,,. of Z

Zfor = X/Ya (Zna OZn(l)) = (G‘m Ln)

The central fiber (Zg,0z,(1)) is our (P)SQAS.

The normalization Z%°MM of Z with Zgorm reduced

gives a bit different central fiber

(Zélorm, Ozgorm(l)), we call it TSQAS




Thm 21| (N. 2010) over Z[¢n,1/N],

d another cano. compactif. SQE(’%C

:coarse moduli of TSQASes with level-G(K) str.

3 cano. bij. birat. morphism

sq : SQtOI‘lC . SQg,K
(P, ¢, 7) — (Q, 9Q,7q), Q :=Proj(Sym(¢))

when any generic fibre of P is an abelian var.

Corollary

The normalizations of S’Qtorlc and SQ g are isom.
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Recall (P, ¢, T) € SQI°KS

e P:TSQAS=modified PSQAS,

e »: P— PN"1 =P(k[HV]) is a finite morphism

o L =¢*(Opn-1(1)),

e HY(P, L) 2 k[HY] = H°(Opn-1(1))

e 7 : a compatible action of G(K) on the pair (P, L)

e 7 on P = translation by K when P = A : AV
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(Q; 9q, Q) € SQ¢.Kk

e Q:PSQAS,

e g : Q — PN~ =P(k[HV]) is a closed immersion

o Ly = ¢*(Opn-1(1)),

e HY(Q,Lg) ~ HY(P, L) i k[HY] = H*(Opn-1(1))

e 7 : a compatible action of G(K) on the pair (Q, Lg)
e 7o on Q = translation by K when Q = A : AV
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Definition of sq : For (P, L,¢p,T) € SQ;?%C(T)
Suppose (P, L, ¢, T) is a T-TSQAS

such that any generic fibre is AV.

Then let [(Q = ¢(P) := Proj(Sym(¢))

Can define (Q, Lg, ¢, T7q) T-PSQAS, Then

the morphism sq is

Sq(Pa L, ¢, T) — (Qa LQ? QbQ, TQ) S SQg,K(T)
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17 Comparison of three compactifications

Summary

N = \/|K70N:Z[CN91/N]vd>O°

1. SQ, K is a proj. fine moduli over O [N99],

2. S Qtorlc is a proj. coarse mod. over Op; [NO1] [N10],

3. AP, 4 = {(P,G,D)} is a proper separated coarse

moduli over Z [Alexeev02],

4. dim SQ4 g = dim SQt‘)“C =g(g+1)/2,

5.dim AP, 4 = g(g +1)/2+d — 1,

6. d a canonical bij. birat. morphism [IN10]

Sq SQtOI‘lC — SQQ,K



Alexeev’s moduli AP, 4 = {(P,G, D)}

e P is semi-normal proj. with L ample line bundle
e (G semi-abelian acting on P with extra cond.
e D c HY(P, L) a Cartier divisor

e I contains no G-orbits

e dimAP, g =dimAg+d — 1.
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k alg. closed
SQ1,x, K = (Z/3Z)%, Roughly

SQ1,x(k) = {C a nonsing. cubic or a 3-gon cubic}

A—Pl,?)(k) — {(Ca G, D)}
C nonsingular elliptic or a 3-gon,

or a conic plus a line, rational with a node

G = C (elliptic) or G, D € HY(C, L), degree D = 3.
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To define a morphism from SQl,K to AP1,3

is equivalent to the following

For a given

a flat family over T

(Ca @, T) S SQl,K(T)

always ! construct (G, D) so that

(Cv G, D) S ﬁl,?)(T)
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Problem: Construct G and Find D

For almost all v € k[Z/37Z],

(P, ¢, 7) X v

— (P, Aut'(P), Div(¢*(v))

Need to prove

Any T-TSQAS has a flat group scheme action

This is done in general

Thm 22| If (P, L) is an S-flat TSQAS, then

AutTSO(P) is S-flat semi-abelian group scheme

T
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Thm 23| dafinite Galois morph. over Opn, N = \/W,
sqap : SQPES x (PN "1\ Hy k) — APy N ® On
(P, ¢, 7)x — (P, Aut'?(P), Div(¢*(v))

such that for any fixed v € PN~ \ H K
(P, ¢, 7) = (P, Aut'®(P), Div(¢*(v))

is an injective morphism of SQ;O}%C extending an injec-
9

tive immersion of Agoﬂvc.
9

o PNl =P(ON[HY]Y), v € ON[H"].
e H, i is a hypersurf. of PN—1 of deg. known.

o dim SQ!°R° + N — 1 = dim AP .



SQg.Kk,1/N = SQg,K : over Z[(N,1/N]

AP, N : Alexeev, over Z, no level str.

Ay N ¢ Olsson, over Z, no level str.
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18 The shape of PSQASes — Delaunay decompositions

”Limits of theta functions are described by the
Delaunay decomposition.”
PSQAS is a geometrization of limit of thetas
PSQAS is a generalization of 3-gons.[]

which is described by the Delaunay decomposition.
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PSQAS : a generalization of Tate curve, R:DVR
Tate curve 00 0 Gy (R)/w — qw

Hesse cubics at oo 0 G (R)/w — q3w

Rewrite Tate curve as [ []
Gm(R)/w™ — qm"w™ (m € Z)

Hesse cubics at co 0 0 G (R)/w™ — ¢ w™ (m € Z)

The general case : B pos. def. symmetric
Gm(R)I/w® — qB@V)b(x, y)w?,

b(z,y) e R* (z € X,y€Y)
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Let X = 79, B a positive symmetric on X X X.

||| = \/B(x,x) : a distance of X ® R (fixed)

Def 24 Let a € Xi. a Delaunay cell D(«) : the con-

vex closure of points of X closest to a.

Exam 4| 1-dim. B(x,y) = 2xy, X/Y = Z/nZ,
then PSQAS Zj is an n-gon of P!
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e All Delaunay cells for a B form a Delaunay decomp.

Each PSQAS (its scheme struture)

and its decom-

position into torus orbits (its stratification)

are described by Delaunay decomp.

e Each pos. symm. B defines a Delaunay decomp.

e Different B can yield the same Delaunay decomp.

and the same PSQAS.



10
Exam 5 B =

01
Zo := Xp/Y is a union of P! x P!
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//

. This (mod Y) is a PSQAS.

It is a union of P2, each triangle stands for P2,

/
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. each line segment is a P!, two P? intersect along P!

. six P2 meet at a point,

locally klx1,--- ,ze]/(xizj, |t — J] > 2)



/?

s
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Red one is the decomp. dual to the Delaunay decomp.

called Voronoi decomp.






Voronoi decomposition
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Def 25 D : for Delaunay cells
V(D):={A€ X ®zR;D =D(\)}
We call it a Voronoi cell

V(0) ={A € X @z R; ||All = [IA —qll; (Vg € X)}

/

//

This is a crystal of mica.
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[100)

For B=|1010

\001/

We get V(0), a cube (salt),

(10 o)

For B=|0 2 -1

\0—1 2)

then we get a hexagonal pillar (calcite)l

and then
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(2 10

B=|-12 -1

\0—12)

A Dodecahedron (Garnet)




(2 10

B=|-13 -1

\0—12)

Apophyllite KCay4(St401¢9)2F - 8H20
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A Trunc. Octahed. — Zinc Blende ZnS
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