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1 Hesse cubic curves

C(μ) : x3
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1 + x3
2 − 3μ x0x1x2 = 0
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x3
0 + x3

1 + x3
2 − 3μx0x1x2 = 0 (μ ∈ Z[ζ3, 1/3])

if μ gets much closer to ∞
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x3
0 + x3

1 + x3
2 − 3μx0x1x2 = 0 (μ3 = 1 or∞)

It degenerates into 3 copies of P1
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2 Moduli of cubic curves

Thm 1 (classical form over C) (Hesse 1849)

A1,3 : = {nonsing. cubics with 9 inflection pts}/ isom.

� C \ {1, ζ3, ζ2
3} � H/Γ(3) (H : upper half plane)

SQ1,3 : = A1,3

= {stable cubics with 9 inflection pts}/ isom.

= {Hesse cubics}/isom=id

= A1,3 ∪
{

C(μ); μ3 = 1 or∞
}
� P1

= {moduli of compact objects}
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We wish to extend this to aribitrary dimension

1. over Z[ζN, 1/N ] (Today) or over Z[ζN ]

2. to define a representable functor of compact obj.

F := SQg,K (fine moduli)

3. to relate SQg,K to GIT stability, (This is new)

4. GIT stable objects = our model PSQASes :

Projectively Stable Quasi Abelian Scheme

5. to relate 3 known compactif. SQg,K , SQtoric
g,K

Alexeev’s moduli Ag,d
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3 Moduli over Z[ζN, 1/N ]

Thm 2 (a new version of the theorem of Hesse)

SQ1,3 = P1
Z[ζ3,1/3],

the projective fine moduli

(1) The universal cubic curve

μ0(x
3
0 + x3

1 + x3
2)− μ1x0x1x2 = 0

where (μ0, μ1) ∈ SQ1,3 = P1.

(2) when k is alg. closed and char. k �= 3
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SQ1,3(k) =

⎧⎪⎨
⎪⎩

closed orbit cubics

with level 3-structure /k

⎫⎪⎬
⎪⎭ /isom.

=

⎧⎪⎨
⎪⎩

Hesse cubics

with level 3-str. /k

⎫⎪⎬
⎪⎭ /isom.=id.

A1,3(k) =

⎧⎪⎨
⎪⎩

closed orbit nonsing. cubics

with level 3-str. /k

⎫⎪⎬
⎪⎭ /isom.

=

⎧⎪⎨
⎪⎩

nonsing. Hesse cubics

with level 3-structure /k

⎫⎪⎬
⎪⎭ /isom.=id.
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Thm 3 (N. 1999) There exists the fine moduli SQg,K

projective over Z[ζN, 1/N ], N =
√|K|, For k closed

SQg,K(k) =

⎧⎪⎨
⎪⎩

closed orb. deg. abelian sch. /k

with level G(K)-structure

⎫⎪⎬
⎪⎭ /isom.

=

⎧⎪⎨
⎪⎩

G(K)-invariant PSQAS /k

with level G(K)-structure

⎫⎪⎬
⎪⎭ ,

Ag,K(k) =

⎧⎪⎨
⎪⎩

(nonsingular) abelian schemes /k

with level G(K)-structure

⎫⎪⎬
⎪⎭ /isom.

=

⎧⎪⎨
⎪⎩

G(K)-inv. abelian schemes /k

with level G(K)-structure

⎫⎪⎬
⎪⎭
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4 Comparison of three compactifications

Summary N =
√|K|, ON = Z[ζN, 1/N ], d > 0.

1. SQg,K is a proj. fine moduli over ON [N99],

2. SQtoric
g,K is a proj. coarse mod. over ON [N01] [N10],

3. AP g,d = {(P, G, D)} is a proper separated coarse

moduli over Z [Alexeev02],

4. dim SQg,K = dim SQtoric
g,K = g(g + 1)/2,

5. dim AP g,d = g(g + 1)/2+d− 1,

6. ∃ a bij. mor. sq : SQtoric
g,K → SQg,K[N10]

(SQtoric
g,K )norm � SQnorm

g,K (1)
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SQg,K,1/N := SQg,K : proj. over Z[ζN, 1/N ] (1999)

AP g,N : by Alexeev, over Z, dim. excessive by N − 1

(2002)

Ag,N : by Olsson, over Z, proper separated (2008)
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Thm 4 ∃ a finite Galois morph. over ON , N =
√|K|,

sqap : SQtoric
g,K × (PN−1 \Hg,K)→ AP g,N ⊗ON

(P, φ, τ )× v 
→ (P, Aut†0(P ), Div(φ∗(v))

such that for any fixed v ∈ PN−1 \Hg,K

(P, φ, τ ) 
→ (P, Aut†0(P ), Div(φ∗(v))

is a closed immersion of SQtoric
g,K .
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5 Tate curve and PSQAS

R:DVR, L = Frac(R) = R[1/q], q uniformizer.

Tate curve 　：　Gm(L)/w 
→ qw

Hesse cubics at ∞ ： Gm(L)/w 
→ q3w

Rewrite Tate curve as　Gm(L)/wn 
→ qmnwn (n ∈ Z)

Hesse cubics at ∞ ：　Gm(L)/wn 
→ q3mnwn (n ∈ Z)

The general case : B pos. def. symmetric

Gm(L)g/wx 
→ qB(x,y)b(x, y)wx,

b(x, y) ∈ L× (x ∈ X, y ∈ Y )
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The usual Tate curve over CDVR R

X : x0x
2
2 = x3

1 − x0x
2
1 + qx3

0

Or X : y2 = x3 − x2 + q

The generic fibre Xη : y2 = x3 − x2 + q (q �= 0)

The fibre X0 : y2 = x2(x− 1) for q = 0 : a limit of Xq

X0 \ {0, 0} = Gm,

To compactify the moduli, need to find all nice limits !!
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The general case : B pos. def. symmetric

The generic fibre:

Gm(L)g/wx 
→ qB(x,y)b(x, y)wx,

b(x, y) ∈ L× (x ∈ X, y ∈ Y )

PSQAS is the closed fibre of it
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6 Review of Theta functions

An elliptic curve, w = e2πiz, q = e2πiτ/6

E(τ ) = C/(Z + Zτ ) = C∗/w 
→ wq6, q = e2πiτ/6

Theta function θk(τ, z) =
∑

m∈Z q(k+3m)2wk+3m.

The map Θ embeds E(τ ) into P2.

Θ : E(τ ) � z 
→ [x0, x1, x2] = [θ0, θ1, θ2] ∈ P2

To compactify the moduli

we find the limit of the image of Θ as q → 0

General case will lead us to the next definition
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Before it,recall again w = e2πiz, q = e2πiτ/6

θk(τ, z +
1

3
) = ζk

3θk(τ, z),

θk(τ, z +
τ

3
) = (qw)−1θk+1(τ, z),

[θ0, θ1, θ2](τ, z +
τ

3
) = [θ1, θ2, θ0](τ, z)

σ, τ are the liftings to GL(3),

z 
→ z + 1
3 is lifted to σ(θk) = ζk

3θk

z 
→ z + τ
3 is lifted to τ (θk) = θk+1

G(3) := the group 〈σ, τ 〉
The image of Θ is a Hesse cubic.
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7 Heisenberg groups G(K), G(3)

G(3) = 〈σ, τ 〉 acts on V , order |G(3)| = 27,

V = Rx0 + Rx1 + Rx2,

σ(xi) = ζi
3xi, τ (xi) = xi+1 (i ∈ Z/3Z)

ζ3 is a primitive cube root of 1, R � ζ3, 1/3

• x3
0 + x3

1 + x3
2, x0x1x2 ∈ S3V only are G(3)-invariant

• G(3) determines xi ”uniquely” (∵ V :G(3)-irred,)

• xi are classical theta over C

General case will lead us to the next definition
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In terms of theta, w = e2πiz, q = e2πiτ/6

θk(τ, z +
1

3
) = ζk

3θk(τ, z),

θk(τ, z +
τ

3
) = (qw)−1θk+1(τ, z),

[θ0, θ1, θ2](τ, z +
τ

3
) = [θ1, θ2, θ0](τ, z)

σ, τ are the liftings to GL(3),

z 
→ z + 1
3 is lifted to σ(θk) = ζk

3θk

z 
→ z + τ
3 is lifted to τ (θk) = θk+1

G(3) := the group 〈σ, τ 〉
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8 Definition of PSQAS

R : DVR, q a uniformizer of R,

k(0) = R/m, k(η) = R[1/q] : the fraction field of R

Suppose (Gη, Lη) : abelian variety over k(η)

(G, L) is the (connected) Néron model of (Gη, Lη)

Let λ(Lη) : Gη → tGη = Pic0(Gη)

(tGη, tLη) dual AV, tGη = Pic0(Gη).

(tG, tL) : the (connected) Néron model of (tGη, tLη)

Suppose G0 a split torus over k(0),

Then (tG0,
tL0) is a split torus over k(0)
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For the Tate curve over CDVR R

The generic fibre Gη : y2 = x3 − x2 + q (q �= 0)

The fibre X0 : y2 = x2(x− 1) for q = 0 : a limit of Xq

X0 \ {0, 0} = Gm,

This is the key assumption G0 a split torus
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x3
0 + x3

1 + x3
2 − 3μx0x1x2 = 0 (μ3 = 1 or∞)

It degenerates into 3 copies of P1

μ =∞, x0x1x2 = 0 contains Gm × Z/3Z

This is the key assumption G0 a split torus
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Definition of PSQAS

R : DVR, q a uniformizer of R,

k(0) = R/m, k(η) = R[1/q] : the fraction field of R

Suppose (Gη, Lη) : abelian variety over k(η)

(G, L) is the (connected) Néron model of (Gη, Lη)

Let λ(Lη) : Gη → tGη = Pic0(Gη)

(tGη, tLη) dual AV, tGη = Pic0(Gη).

(tG, tL) : the (connected) Néron model of (tGη, tLη)

Suppose G0 a split torus over k(0),

Then (tG0,
tL0) is a split torus over k(0)
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Let X = Hom(G0, Gm), Y = Hom(tG0, Gm).

Hence X � Zg, Y � Zg,

λ(Lη) extends, ∃ a surjection G0→ tG0

Hence Y : a sublattice of X, [X : Y ] <∞.

Kη := ker λ(Lη), N := |Kη|.
K:=the closure of Kη. May assume Over Z[ζN, 1/N ]

K � (X/Y )⊕ (X/Y )∨,

This finite group helps us to take up the necessary data
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From G and K we can construct

• G(K) : Heisenberg group scheme

1→ μN → G(K)→ K → 0 (exact)

(a, z, α) · (b, w, β) = (abβ(z), z + w, α + β),

• R[X/Y ] = ⊕x∈X/Y R v(x) (group alg. of X/Y )

v(0) = 1, v(x + y) = v(x)v(y)

• G(K) acts on R[X/Y ] by

(a, z, α) · v(x) = aα(x)v(z + x)

a, b ∈ μN ; z, x ∈ (X/Y ); α, β ∈ (X/Y )∨
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Facts. G : conn. Néron model of Gη,

Kη := ker(λ(Lη)) � (X/Y )⊕ (X/Y )∨,

• V := H0(G, L): finite R-free, G(K)-irreducible

• V = H0(G, L) � R[X/Y ] as G(K)-module

•H0(G, L) � ∃θx
G(K)-isom←→ v(x) ∈ R[X/Y ] gp alg

θx can be thought as ”classical theta”

Idea: Find the limit of the image [θx]x∈X/Y
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Let Gfor : the formal completion of G along G0

Key Fact:

Gfor � (G
g
m,R)for

Fourier expansion of θx (x ∈ X/Y ) on Gfor :

θx =
∑

y∈Y a(x + y)wx+y

a(x + y) : Fourier coeff. of θx

called Faltings-Chai’s degeneration data of (G, L)

• B(x, y) := valq(a(x + y)a(x)−1a(y)−1) is pos. def.
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generalized Tate curves

The general case : B pos. def. symmetric

The generic fibre:

Gm(L)g/wx 
→ qB(x,y)b0(x, y)wx,

b0(x, y) ∈ L× (x ∈ X, y ∈ Y )

PSQAS is the closed fibre of a gener. Tate curve
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We construct a canonical gen. of Tate curves.

R̃ := R[a(x)wxϑ, x ∈ X], ϑ:deg one

Proj(R̃) : locally of finite type over R

X : the formal completion of Proj(R̃)

The Quotient X/Y is a degenerating family of AV

(X/Y, OX/Y (1)) is a generalization of Tate curves
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Grothendieck (EGA) guarantees

∃ a projective R-scheme (Z, OZ(1))

s.t. the formal completion Zfor of Z

Zfor � X/Y , (Zη, OZη(1)) � (Gη, Lη)

(the stable reduction theorem)

The central fiber (Z0, OZ0
(1)) is our (P)SQAS.

Projectively Stable Quasi Abelian Scheme

G(K) acts on (Z, OZ(1))
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Summary Let R be CDVR over Z[ζN, 1/N ]

• There is a natural choice of θx ∈ H0(G, L)

• a(x + y), y ∈ Y is Fourier coeff of θx, x ∈ X/Y

• all a(x) recover the given Gη over k(η) := Frac(R)

• There is an extention X/Y of Gη to R so that

(a) it is a canonical generalization of Tate curves,

(b) G(K) acts on (X/Y, OX/Y (1))

(c) hence G(K) acts on (Z, OZ(1))

(d) the closed fibre (Z0, OZ0
(1)) is a PSQAS.
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Exam 1 g = 1, X = Z, Y = 3Z.

X = Proj(R̃), a(x) = qx2
, (x ∈ X)

V−2 V−1 V0 V1 V2 V3 V4

S−3 S−3
� �

� � � � � � �

X0/Y

��
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�

�
�

�
�

�
�

�
�

�
�

�
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Recall

Thm 5 Over Z[ζ3, 1/3]

A1,3 : = {nonsing. cubics with 9 inflection pts}/ isom.

SQ1,3 : = A1,3

= {stable cubics with 9 inflection pts}/ isom.

= {Hesse cubics}/isom=id

= A1,3 ∪
{

C(μ); μ3 = 1 or∞
}
� P1.

Hesse cubics are PSQASes in dimension one, level 3.
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We wish to extend this to arbitrary dimension

1. over Z[ζN, 1/N ] or over Z[ζN ]

2. to define a representable functor of compact obj.

F := SQg,K (fine moduli)

3. to relate to GIT stability, that is,

to aim at F (k) =GIT stable objects for k alg. closed
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SQg,K,1/N := SQg,K : proj. over Z[ζN, 1/N ] (1999)

AP g,N : over Z, dim. excessive by N − 1 (2002)

Olsson : over Z, nonseparated nonproper stack (2008)

Olsson uses the same model as ours (Alexeev-Nakamura’s

model)

We prefer to separated moduli.

It is easy to construct nonseparated stack moduli.
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9 Separatedness of the moduli

There are difficulties never seen in dimension one

• Classical level structure = base of n-divison points,

• Singular limits of Abelian varieties are very reducible

• Classical level str. gives non-separated moduli

•We need to prove in any dimension,

Lemma. (Valuative Lemma for Separatedness)

R : DVR, L = Frac(R), X, Y ∈ F (R).

If XL � YL, then X � Y . In other words,

Isom. over L implies isom. over R.
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• separated = Hausdorff, (e.g. if X projective, then

separated)

• X: non-separated = non Hausdorff,

• If non-Hausdorff, then ∃ Pn ∈ X (n = 1, 2, · · · ),
P = lim Pn, Q = lim Pn. But P �= Q

• This really happens in geometry.
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Example R : DVR, q : uniformizer of R, L = R[1/q],

E, E′ : elliptic curves over R

E : y2 = x3 − q6, E′ : Y 2 = X3 − 1

Let us consider Pn := EL, Qn := E′L

Pn = Qn, i.e. EL � E′L
because

EL : (y/q3)2 = (x/q)3 − 1,

E′L : Y 2 = X3 − 1
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Example R : DVR, q : uniformizer of R, L = R[1/q],

E, E′ : elliptic curves over R

E : y2 = x3 − q6, E′ : Y 2 = X3 − 1

Let us consider Pn := EL, Qn := E′L
P := E0 = lim EL, Q := E′0 = lim E′L
Pn = Qn, i.e. EL � E′L ButP �= Q

P := E0 : y2 = x3, Q := E′0 : Y 2 = X3 − 1
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To overcome the difficulty of level str/n-div. pts :

• Non-abelian Heisenberg gp. G := G(K)

• New level str. = Framing of irred. reps. of G

• To prove Val. Lemma for Separatedness, we use

Schur’s Lemma over R. Let |G| = N ,

R : a ring over Z[ζN, 1/N ], V : free R-mod.

V : irr. G-mod. of wt one, (⇒ G ⊂ GL(V ⊗R))

Let h ∈ GL(V ⊗ R). If gh = hg for ∀ g ∈ G,

then h is scalar.
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Summary

• Separatedness of the moduli

follows from G(K)-Irreducibility of V = H0(X, L),

(X, L) = (Z0, OZ0
(1)) : any PSQAS, level N ≥ 3

if K � ker(λ(L) : Gη → Gt
η (dual)).
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We re-start with

Thm 6 Over Z[ζ3, 1/3]

A1,3 : = {nonsing. cubics with 9 inflection pts}/ isom.

A1,3 : = {stable cubics with 9 inflection pts}/ isom.

= {Hesse cubics}/isom=id

= A1,3 ∪
{

C(μ); μ3 = 1 or∞
}
� P1.

We convert it into G(3)-equivariant theory

G(3): Heisenberg group of level 3
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10 Heisenberg groups G(K), G(3)

G(3) = 〈σ, τ 〉 acts on V , order |G(3)| = 27,

V = Rx0 + Rx1 + Rx2,

σ(xi) = ζi
3xi, τ (xi) = xi+1 (i ∈ Z/3Z)

ζ3 is a primitive cube root of 1, R � ζ3, 1/3

Fact

• x3
0 + x3

1 + x3
2, x0x1x2 ∈ S3V only are G(3)-invariant

• G(3) determines xi ”uniquely” (∵ V :G(3)-irred,)

• xi are classical theta over C
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Summary G(K) : Heisenberg gp. e.g. G(3)

• G(K) chooses a basis of V = H0(X, L), X:PSQAS

• G(K) chooses a basis of H0(G, L), G:Néron model

• G(K) determines Faltings-Chai degeneration data

• G(K) extends Gη to define (Z, OZ(1)), Z = X/Y

• Separatedness of the moduli

follows from G(K)-Irreducibility of V = H0(X, L),

X : any PSQAS, level N ≥ 3
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11 The space of closed orbits

X the set of geometric objects

G the group of isomorphisms

x, x′ are isom. G-orbits are the same O(x) = O(x′)

Xps the set of properly-stable objects

Xss the set of semistable objects

Xss//G ”compact moduli”
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Exam 2 Action on C2 of G = Gm(= C∗),

C2 � (x, y) 
→ (αx, α−1y) (α ∈ Gm)

What is the quotient of C2 by G ?

• Simple answer：the set of G-orbits (×)

• Answer：Spec(the ring of all G-invariant poly.)(○)

• t := xy is the unique G-inv. !

C2//G := Spec C[t] = {t ∈ C}

But this is different from ”the set of G-orbits”.

• C2//G = {t ∈ C} is the set of all closed orbits.
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�

∼= {t ∈ C}
�

�

xy = 0

xy = 0

�

O(c, 1)

(c > 0, d < 0)

�

O(d, 1)

• t = 0 is a point of C = C2//G = Spec C[t].

• But {xy = 0} consists of three G-orbits

C∗ × {0}, {0} × C∗, {(0, 0)}
• {(0, 0)} is the only closed orbit in {xy = 0}
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Def 7 The same notation as before. Let p ∈ X.

(1) semistable if ∃ G-inv. homog. poly. F , F (p) �= 0,

(2) Kempf-stable (= closed orbit)

if the orbit O(p) is closed in Xss,

(3) properly-stable if (2) and Stab(p) finite.

Rem stable =⇒ closed orbit =⇒ semistable
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Thm 8 (Seshadri,Mumford) G : reductive, acting on

a scheme X, (e.g. G = Gm). Let Xss = the set of

semistable points. Then

• Xss//G := Spec(all G-inv.) = the set of closed orbits.

• Xss//G is a scheme, Xps//G is also a scheme,

• Xss//G compactifies Xps//G.

Rem The set of points with closed orbits is not an

algebraic subscheme.
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Thus we consider only those objects with closed orbits

As its consequence we will see

• Abelian varieties have closed orbits (Kempf), and

• our PSQASes have closed orbits,

Conversely

• Any degenerate abelian scheme with closed orbit

is one of our PSQASes

• There is a simple characterization of our PSQASes,

• This characterization enables us to compactify

the moduli of abelian varieties.
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12 Stable curves of Deligne-Mumford

Def 9 C is a stable curve of a genus g if

(1) connected projective reduced with finite autom.,

(2) the singularities of C are like xy = 0

(3) dim H1(OC) = g

Let Mg : moduli of stable curves of genus g,

Mg : moduli of nonsing. curves of genus g.

Thm 10 Mg compactifies Mg

(Deligne-Mumford 1969)
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Definition of stable curves is irrelevant to GIT stability

Nevertheless

Thm 11 The following are equivalent

(1) C is a stable curve (moduli-stable)

(2) any Hilbert point of Φ|mK|(C) is GIT-stable

(3) any Chow point of Φ|mK|(C) is GIT-stable

(1)⇔(2) Gieseker 1982 (before Mumford 1977)

(1)⇔(3) Mumford 1977 (suggested by Gieseker 1982)
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13 Stability of cubic curves

CUBIC CURVES STABILITY STAB GP.

smooth elliptic stable finite

3-gon closed orbit 2-dim

a line+a conic (transv.) semistable 1-dim

irred. with a node semistable finite

others unstable 1-dim
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Thm 12 For a cubic C, the following cond. are equiv.

(1) C has a closed SL(3)-orbit in (S3V )ss　

(2) C is a Hesse cubic curve, that is, G(3)-invariant

(3) C is either smooth elliptic or a 3-gon
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14 Stability in higher-dim.

Thm 13 (Kempf) (A, L) an abelian variety,

V = H0(A, L) very ample, w:=Hilbert point of (A, L).

Then SL(V )w is closed in Pss : the semistable locus of

a big proj. space.

Thm 14 (N.1999)

(X, L) : PSQAS of level G(K),

V = H0(X, L) very ample. Then

any Hilbert point of (X, L) has a closed SL(V )-orbit.
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Thm 15 (N.1999)

Assume (X, L) is a limit of abelian varieties A

with ker(λ(L)) = K, λ(L) : A→ At (dual)

Then the following are equivalent:

(1) X has a closed SL(V )-orbit (GIT-stable)

(2) X is invariant under G(K) (G(K)-stable)

(3) X is one of our PSQASes (moduli-stable)
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To be more precise,

Thm 16 (N.1999)

Assume (X, L) is a limit of AV A’s with ker(λ(L)) = K

Then the following are equivalent:

(1) The m-th Hilbert point of X has a closed SL(V )-

orbit in P(
M∧SmV )ss (GIT-stable)

(2) X is invariant under G(K) (G(K)-stable)

(3) X is one of our PSQASes (moduli-stable)

where M := dim H0(X, mL).
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Thm 17 For cubics the following are equiv:

(1) it has a closed SL(3)-orbit (GIT-stable)　

(2) it is a Hesse cubic, that is，G(3)-inv. (G(3)-stable)

(3) it is smooth ell. or a 3-gon. (moduli-stable)

Thm 18 Let X be a degenerate AV. The following are

equiv. under natural assump.:

(1) it has a closed SL(V )-orbit (GIT-stable)

(2) X is G(K)-inv (G(K)-stable)

(3) it is a PSQAS (p.20) (moduli-stable)
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Thus we see

• Abelian varieties have closed orbits (Kempf), and

• our PSQASes have closed orbits,

Conversely

• Any degenerate abelian scheme with closed orbit

is one of our PSQASes

• X is our PSQAS iff X is G(K)-stable,

• This characterization will compactify

the moduli of abelian varieties.
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The characterization of PSQASes will compactify

the moduli of abelian varieties. We recall

”Closed orbit” is not a Zariski open/closed condition.

Exam 3

Let G := {(s, t, u) ∈ (Gm)3; stu = 1}

Ca,b,c : ax3
0 + bx3

1 + cx3
2 − x0x1x2 = 0.

G acts on A3 : (a, b, c) 
→ (sa, tb, uc)A3

Closed (Gm)2-orbit iff abc �= 0 or (a, b, c) = (0, 0, 0).
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15 Moduli over Z[ζN, 1/N ]

Thm 19 (a new version of the theorem of Hesse)

SQ1,3 = P1
Z[ζ3,1/3],

the projective fine moduli

(1) The universal cubic curve

μ0(x
3
0 + x3

1 + x3
2)− μ1x0x1x2 = 0

where (μ0, μ1) ∈ SQ1,3 = P1.

(2) when k is alg. closed and char. k �= 3
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SQ1,3(k) =

⎧⎪⎨
⎪⎩

closed orbit cubics

with level 3-structure /k

⎫⎪⎬
⎪⎭ /isom.

=

⎧⎪⎨
⎪⎩

Hesse cubics

with level 3-str. /k

⎫⎪⎬
⎪⎭ /isom.=id.

A1,3(k) =

⎧⎪⎨
⎪⎩

closed orbit nonsing. cubics

with level 3-str. /k

⎫⎪⎬
⎪⎭ /isom.

=

⎧⎪⎨
⎪⎩

nonsing. Hesse cubics

with level 3-structure /k

⎫⎪⎬
⎪⎭ /isom.=id.
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Thm 20 (N. 1999) There exists the fine moduli SQg,K

projective over Z[ζN, 1/N ], N =
√|K|, For k closed

SQg,K(k) =

⎧⎪⎨
⎪⎩

closed orb. deg. abelian sch. /k

with level G(K)-structure

⎫⎪⎬
⎪⎭ /isom.

=

⎧⎪⎨
⎪⎩

G(K)-invariant PSQAS /k

with level G(K)-structure

⎫⎪⎬
⎪⎭ ,

Ag,K(k) =

⎧⎪⎨
⎪⎩

(nonsingular) abelian schemes /k

with level G(K)-structure

⎫⎪⎬
⎪⎭ /isom.

=

⎧⎪⎨
⎪⎩

G(K)-inv. abelian schemes /k

with level G(K)-structure

⎫⎪⎬
⎪⎭
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Summary G(K) : Heisenberg gp. e.g. G(3)

(A) H0(X, L) is G(K)-irred for X: PSQAS

• (A) implies Stability of X with L very ample,

• (A) implies Separatedness of the moduli,

• (A) gives a simple characterization of PSQASes,

• G(K) finds a compact separated moduli SQg,K
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16 The Second Compactification over Z[ζN, 1/N ]

Recall Grothendieck (EGA) guarantees

∃ a projective R-scheme (Z, OZ(1))

s.t. the formal completion Zfor of Z

Zfor � X/Y , (Zη, OZη(1)) � (Gη, Lη)

The central fiber (Z0, OZ0
(1)) is our (P)SQAS.

The normalization Znorm of Z with Znorm
0 reduced

gives a bit different central fiber

(Znorm
0 , OZnorm

0
(1)), we call it TSQAS.
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Thm 21 (N. 2010) over Z[ζN, 1/N ],

∃ another cano. compactif. SQtoric
g,K

:coarse moduli of TSQASes with level-G(K) str.

∃ cano. bij. birat. morphism

sq : SQtoric
g,K → SQg,K

(P, φ, τ ) 
→ (Q, φQ, τQ), Q := Proj(Sym(φ))

when any generic fibre of P is an abelian var.

Corollary

The normalizations of SQtoric
g,K and SQg,K are isom.
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Recall (P, φ, τ ) ∈ SQtoric
g,K

• P :TSQAS=modified PSQAS,

• φ : P → PN−1 = P(k[H∨]) is a finite morphism

• L = φ∗(OPN−1(1)),

• H0(P, L)
φ∗� k[H∨] = H0(OPN−1(1))

• τ : a compatible action of G(K) on the pair (P, L)

• τ on P = translation by K when P = A : AV
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(Q, φQ, τQ) ∈ SQg,K

• Q:PSQAS,

• φQ : Q→ PN−1 = P(k[H∨]) is a closed immersion

• LQ = φ∗(OPN−1(1)),

• H0(Q, LQ) � H0(P, L)
φ∗� k[H∨] = H0(OPN−1(1))

• τQ : a compatible action of G(K) on the pair (Q, LQ)

• τQ on Q = translation by K when Q = A : AV
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Definition of sq : For (P, L, φ, τ ) ∈ SQtoric
g,K (T )

Suppose (P, L, φ, τ ) is a T -TSQAS

such that any generic fibre is AV.

Then let Q = φ(P ) := Proj(Sym(φ))

Can define (Q, LQ, φQ, τQ) T -PSQAS, Then

the morphism sq is

sq(P, L, φ, τ ) = (Q, LQ, φQ, τQ) ∈ SQg,K(T )
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17 Comparison of three compactifications

Summary N =
√|K|, ON = Z[ζN, 1/N ], d > 0.

1. SQg,K is a proj. fine moduli over ON [N99],

2. SQtoric
g,K is a proj. coarse mod. over ON [N01] [N10],

3. AP g,d = {(P, G, D)} is a proper separated coarse

moduli over Z [Alexeev02],

4. dim SQg,K = dim SQtoric
g,K = g(g + 1)/2,

5. dim AP g,d = g(g + 1)/2+d− 1,

6. ∃ a canonical bij. birat. morphism [N10]

sq : SQtoric
g,K → SQg,K



74

Alexeev’s moduli AP g,d = {(P, G, D)}

• P is semi-normal proj. with L ample line bundle

• G semi-abelian acting on P with extra cond.

• D ∈ H0(P, L) a Cartier divisor

• D contains no G-orbits

• dim AP g,d = dim Ag + d− 1.
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k alg. closed

SQ1,K, K = (Z/3Z)2, Roughly

SQ1,K(k) = {C a nonsing. cubic or a 3-gon cubic}

AP 1,3(k) = {(C, G, D)}
C nonsingular elliptic or a 3-gon,

or a conic plus a line, rational with a node

G = C (elliptic) or Gm, D ∈ H0(C, L), degree D = 3.
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To define a morphism from SQ1,K to AP 1,3

is equivalent to the following

For a given

a flat family over T

(C, φ, τ ) ∈ SQ1,K(T )

always ! construct (G, D) so that

(C, G, D) ∈ AP 1,3(T )
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Problem: Construct G and Find D

For almost all v ∈ k[Z/3Z],

(P, φ, τ )× v


→ (P, Aut†0(P ), Div(φ∗(v))

Need to prove

Any T -TSQAS has a flat group scheme action

This is done in general

Thm 22 If (P, L) is an S-flat TSQAS, then

Aut
†0
S (P ) is S-flat semi-abelian group scheme
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Thm 23 ∃ a finite Galois morph. overON , N =
√|K|,

sqap : SQtoric
g,K × (PN−1 \Hg,K)→ AP g,N ⊗ON

(P, φ, τ )× 
→ (P, Aut†0(P ), Div(φ∗(v))

such that for any fixed v ∈ PN−1 \Hg,K

(P, φ, τ ) 
→ (P, Aut†0(P ), Div(φ∗(v))

is an injective morphism of SQtoric
g,K extending an injec-

tive immersion of Atoric
g,K .

• PN−1 = P(ON [H∨]∨), v ∈ ON [H∨].

• Hg,K is a hypersurf. of PN−1 of deg. known.

• dim SQtoric
g,K + N − 1 = dim AP g,N.
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SQg,K,1/N := SQg,K : over Z[ζN, 1/N ]

AP g,N : Alexeev, over Z, no level str.

Ag,N : Olsson, over Z, no level str.
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18 The shape of PSQASes — Delaunay decompositions

”Limits of theta functions are described by the

Delaunay decomposition.”

PSQAS is a geometrization of limit of thetas

PSQAS is a generalization of 3-gons.　

which is described by the Delaunay decomposition.
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PSQAS : a generalization of Tate curve, R:DVR

Tate curve 　：　Gm(R)/w 
→ qw

Hesse cubics at ∞ ： Gm(R)/w 
→ q3w

Rewrite Tate curve as ：　

Gm(R)/wn 
→ qmnwn (m ∈ Z)

Hesse cubics at ∞ ：　Gm(R)/wn 
→ q3mnwn (m ∈ Z)

The general case : B pos. def. symmetric

Gm(R)g/wx 
→ qB(x,y)b(x, y)wx,

b(x, y) ∈ R× (x ∈ X, y ∈ Y )
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Let X = Zg, B a positive symmetric on X ×X.

‖x‖ =
√

B(x, x) : a distance of X ⊗ R (fixed)

Def 24 Let α ∈ XR. a Delaunay cell D(α) : the con-

vex closure of points of X closest to α.

Exam 4 1-dim. B(x, y) = 2xy, X/Y = Z/nZ,

then PSQAS Z0 is an n-gon of P1

� � � � � � �



83

• All Delaunay cells for a B form a Delaunay decomp.

• Each PSQAS (its scheme struture) and its decom-

position into torus orbits (its stratification)

are described by Delaunay decomp.

• Each pos. symm. B defines a Delaunay decomp.

• Different B can yield the same Delaunay decomp.

and the same PSQAS.
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Exam 5 B =

⎛
⎜⎝1 0

0 1

⎞
⎟⎠

Z0 := X0/Y is a union of P1 × P1

� � � � � �

� � � � � �

� � � � � �

� � � � � �
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Exam 6 B =

⎛
⎜⎝ 2 −1

−1 2

⎞
⎟⎠
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1. This (mod Y ) is a PSQAS.

It is a union of P2, each triangle stands for P2,

2. each line segment is a P1, two P2 intersect along P1

3. six P2 meet at a point,

locally k[x1, · · · , x6]/(xixj, |i− j| ≥ 2)
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Red one is the decomp. dual to the Delaunay decomp.

called Voronoi decomp.



88

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

��
��

�
�
�

��
���

�
�
�

��
���

�
�
�

��
���

�
�
�

��
��

�
�
�

��
���

�
�
�

��
���

�
�
�

��
���

�
�
�

��
��

�
�
�

��
���

�
�
�

��
���

�
�
�

��
���

�
�
�

��
��

�
�
�

��
���

�
�
�

��
���

�
�
�

��
���

�
�
�

�� ��� �� ��� �� ��� �� ���

�
��

�
��

�
��

�
��

���

���

���

���



89

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

��
��

�
�
�

��
���

�
�
�

��
���

�
�
�

��
���

�
�
�

��
��

�
�
�

��
���

�
�
�

��
���

�
�
�

��
���

�
�
�

��
��

�
�
�

��
���

�
�
�

��
���

�
�
�

��
���

�
�
�

��
��

�
�
�

��
���

�
�
�

��
���

�
�
�

��
���

�
�
�

�� ��� �� ��� �� ��� �� ���

�
��

�
��

�
��

�
��

���

���

���

���

Voronoi decomposition
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Def 25 D : for Delaunay cells

V (D) := {λ ∈ X ⊗Z R; D = D(λ)}

We call it a Voronoi cell

V (0) = {λ ∈ X ⊗Z R; ‖λ‖ � ‖λ− q‖, (∀q ∈ X)}
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This is a crystal of mica.
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For B =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎠

We get V (0), a cube (salt),　

For B =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 2 −1

0 −1 2

⎞
⎟⎟⎟⎟⎠

then we get a hexagonal pillar (calcite)，

and then
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B =

⎛
⎜⎜⎜⎜⎝

2 −1 0

−1 2 −1

0 −1 2

⎞
⎟⎟⎟⎟⎠

A Dodecahedron (Garnet)
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B =

⎛
⎜⎜⎜⎜⎝

2 −1 0

−1 3 −1

0 −1 2

⎞
⎟⎟⎟⎟⎠

Apophyllite KCa4(Si4O10)2F · 8H2O
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B =

⎛
⎜⎜⎜⎜⎝

3 −1 −1

−1 3 −1

−1 −1 3

⎞
⎟⎟⎟⎟⎠

A Trunc. Octahed. — Zinc Blende ZnS


