Compactification of the moduli of abelian varieties and

> Morphisms of $SQ_{g,K}$ to Alexeev's Moduli

> > Iku Nakamura

(Hokkaido University)

2012 November 15, Hokkaido University

Compactification of the moduli of abelian varieties and

> Morphisms of $SQ_{g,K}$ to Alexeev's Moduli

> > Iku Nakamura

(Hokkaido University)

2012 November 15, Hokkaido University

Table of contents

- Hesse cubics
- **PSQAS** as analogue to Tate curves
- Heisenberg groups G(K), G(3)
- Stability
- $SQ_{g,K}$: Moduli of PSQASes over $\mathbf{Z}[\zeta_N, 1/N]$
- Another compactification $SQ_{g,K}^{\text{toric}} \xrightarrow{\exists} SQ_{g,K}$
- Alexeev's moduli $\overline{AP_{g,d}}$
- Closed immersions of $SQ_{g,K}^{\text{toric}}$ into $\overline{AP_{g,d}}$
- Delaunay/Voronoi decompositions

1 Hesse cubic curves

$$egin{aligned} C(\mu) : x_0^3 + x_1^3 + x_2^3 - 3\mu \, x_0 x_1 x_2 &= 0 \ & (\mu \in \mathrm{P}^1_{\mathrm{Z}[\zeta_3, 1/3]}) \end{aligned}$$

$$x_0^3 + x_1^3 + x_2^3 - 3\mu x_0 x_1 x_2 = 0$$

if μ gets closer to ∞

 $x_0^3+x_1^3+x_2^3-3\mu x_0x_1x_2=0~(\mu\in \mathrm{Z}[\zeta_3,1/3])$ if μ gets much closer to ∞

 $x_0^3+x_1^3+x_2^3-3\mu x_0x_1x_2=0~(\mu^3=1~ ext{or}~\infty)$ It degenerates into 3 copies of P^1

2 Moduli of cubic curves

Thm 1(classical form over C) (Hesse 1849) $A_{1,3} := \{\text{nonsing. cubics with 9 inflection pts}\}/\text{ isom.}$ $\simeq C \setminus \{1, \zeta_3, \zeta_3^2\} \simeq H/\Gamma(3)$ (H : upper half plane) $SQ_{1,3} := \overline{A_{1,3}}$

= {stable cubics with 9 inflection pts}/ isom.

$$= \{\text{Hesse cubics}\}/\text{isom}=\text{id}$$

$$=A_{1,3}\cup\left\{C(\mu);\mu^3=1\,\mathrm{or}\,\infty
ight\}\simeq\mathrm{P}^1$$

= {moduli of compact objects}

We wish to extend this to aribitrary dimension

1. over $Z[\zeta_N, 1/N]$ (Today) or over $Z[\zeta_N]$

2. to define a representable functor of compact obj.

$$F := SQ_{g,K}$$
 (fine moduli)

- 3. to relate $SQ_{q,K}$ to GIT stability, (This is new)
- 4. GIT stable objects = our model PSQASes

Projectively Stable Quasi Abelian Scheme

5. to relate 3 known compactif. $SQ_{g,K}$, $SQ_{g,K}^{\text{toric}}$

Alexeev's moduli $\overline{A}_{q,d}$

3 Moduli over $Z[\zeta_N, 1/N]$

(a new version of the theorem of Hesse)

$$SQ_{1,3}=\mathrm{P}^1_{\mathrm{Z}[\zeta_3,1/3]},$$

the projective fine moduli

(1) The universal cubic curve

$$\mu_0(x_0^3+x_1^3+x_2^3)-\mu_1x_0x_1x_2=0$$

where
$$(\mu_0, \mu_1) \in SQ_{1,3} = P^1$$
.

(2) when k is alg. closed and char. $k \neq 3$

$$SQ_{1,3}(k) = \begin{cases} \text{closed orbit cubics} \\ \text{with level 3-structure } /k \end{cases} /\text{isom.}$$

$$= \begin{cases} \text{Hesse cubics} \\ \text{with level 3-str. } /k \end{cases} /\text{isom.}=\text{id.}$$

$$A_{1,3}(k) = \begin{cases} \text{closed orbit nonsing. cubics} \\ \text{with level 3-str. } /k \end{cases} /\text{isom.}$$

$$= \begin{cases} \text{nonsing. Hesse cubics} \\ \text{with level 3-structure } /k \end{cases} /\text{isom.}=\text{id.}$$

Thm 3 (N. 1999) There exists the fine moduli
$$SQ_{g,K}$$

projective over $Z[\zeta_N, 1/N], N = \sqrt{|K|}$, For k closed
 $SQ_{g,K}(k) = \begin{cases} \text{closed orb. deg. abelian sch. }/k \\ \text{with level } G(K)\text{-structure} \end{cases}$ /isom.
 $= \begin{cases} G(K)\text{-invariant PSQAS }/k \\ \text{with level } G(K)\text{-structure} \end{cases}$,
 $M_{g,K}(k) = \begin{cases} (\text{nonsingular}) \text{ abelian schemes }/k \\ \text{with level } G(K)\text{-structure} \end{cases}$ /isom.
 $= \begin{cases} G(K)\text{-inv. abelian schemes }/k \\ \text{with level } G(K)\text{-structure} \end{cases}$

$$\fbox{ Summary } N = \sqrt{|K|}, \ \mathcal{O}_N = \operatorname{Z}[\zeta_N, 1/N], \ d > 0.$$

- 1. $SQ_{g,K}$ is a proj. fine moduli over \mathcal{O}_N [N99],
- 2. $SQ_{g,K}^{\text{toric}}$ is a proj. coarse mod. over \mathcal{O}_N [N01] [N10],
- 3. $\overline{AP}_{g,d} = \{(P,G,D)\}$ is a proper separated coarse

moduli over Z [Alexeev02],

- 4. dim $SQ_{g,K} = \dim SQ_{g,K}^{\text{toric}} = g(g+1)/2$,
- 5. dim $\overline{AP}_{g,d} = g(g+1)/2 + d 1$,
- 6. \exists a bij. mor. $\mathbf{sq} : SQ_{g,K}^{\text{toric}} \to SQ_{g,K}[N10]$

$$(SQ_{g,K}^{\text{toric}})^{\text{norm}} \simeq SQ_{g,K}^{\text{norm}}$$
 (1)

 $SQ_{g,K,1/N} := SQ_{g,K}$: proj. over $\mathbb{Z}[\zeta_N, 1/N]$ (1999) $\overline{AP}_{g,N}$: by Alexeev, over Z, dim. excessive by N-1(2002)

 $\overline{A}_{g,N}$: by Olsson, over Z, proper separated (2008)

is a closed immersion of $SQ_{g,K}^{\text{toric}}$.

5 Tate curve and PSQAS

R:DVR, L = Frac(R) = R[1/q], q uniformizer. $Tate \text{ curve } : G_m(L)/w \mapsto qw$ $Hesse \text{ cubics at } \infty : G_m(L)/w \mapsto q^3w$ $Rewrite \text{ Tate curve as } G_m(L)/w^n \mapsto q^{mn}w^n \ (n \in \mathbb{Z})$ $Hesse \text{ cubics at } \infty : G_m(L)/w^n \mapsto q^{3mn}w^n \ (n \in \mathbb{Z})$

The general case : B pos. def. symmetric $\mathrm{G}_m(L)^g/w^x\mapsto q^{B(x,y)}b(x,y)w^x,$ $b(x,y)\in L^{ imes}~(x\in X,y\in Y)$

The usual Tate curve over CDVR R

$$egin{aligned} X:x_0x_2^2 &= x_1^3 - x_0x_1^2 + qx_0^3 \ & ext{Or} \quad X:y^2 &= x^3 - x^2 + q \ & ext{The generic fibre} \quad X_\eta:y^2 &= x^3 - x^2 + q \quad (q
eq 0) \end{aligned}$$
 The fibre $X_0:y^2 &= x^2(x-1)$ for $q=0:$ a limit of X_q $X_0 \setminus \{0,0\} = \mathrm{G}_m,$

To compactify the moduli, need to find all nice limits !!

The general case : B pos. def. symmetric The generic fibre: $G_m(L)^g/w^x \mapsto q^{B(x,y)}b(x,y)w^x,$ $b(x,y) \in L^{\times} \quad (x \in X, y \in Y)$ PSQAS is the closed fibre of it 6 Review of Theta functions

An elliptic curve, $w = e^{2\pi i z}$, $q = e^{2\pi i \tau/6}$

$$E(au)=\mathrm{C}/(\mathrm{Z}+\mathrm{Z} au)=\mathrm{C}^*/w\mapsto wq^6,\quad q=e^{2\pi i au/6}$$

Theta function $heta_k(au,z) = \sum_{m\in {
m Z}} q^{(k+3m)^2} w^{k+3m}.$

The map Θ embeds $E(\tau)$ into P^2 .

 $\Theta: E(au)
i z \mapsto [x_0, x_1, x_2] = [heta_0, heta_1, heta_2] \in \mathrm{P}^2$

To compactify the moduli

we find the limit of the image of Θ as $q \to 0$

General case will lead us to the next definition

Before it, recall again $w=e^{2\pi i z},\,q=e^{2\pi i \tau/6}$

$$\begin{split} \theta_k(\tau, z + \frac{1}{3}) &= \zeta_3^k \theta_k(\tau, z), \\ \theta_k(\tau, z + \frac{\tau}{3}) &= (qw)^{-1} \theta_{k+1}(\tau, z), \\ [\theta_0, \theta_1, \theta_2](\tau, z + \frac{\tau}{3}) &= [\theta_1, \theta_2, \theta_0](\tau, z) \\ \sigma, \tau \text{ are the liftings to GL(3)}, \\ z \mapsto z + \frac{1}{3} \text{ is lifted to } \sigma(\theta_k) &= \zeta_3^k \theta_k \\ z \mapsto z + \frac{\tau}{3} \text{ is lifted to } \tau(\theta_k) &= \theta_{k+1} \\ G(3) &:= \text{ the group } \langle \sigma, \tau \rangle \\ \end{split}$$

7 Heisenberg groups
$$G(K)$$
, $G(3)$
 $G(3) = \langle \sigma, \tau \rangle$ acts on V , order $|G(3)| = 27$,
 $V = Rx_0 + Rx_1 + Rx_2$,
 $\sigma(x_i) = \zeta_3^i x_i$, $\tau(x_i) = x_{i+1}$ $(i \in \mathbb{Z}/3\mathbb{Z})$
 ζ_3 is a primitive cube root of 1, $R \ni \zeta_3$, 1/3

- $x_0^3 + x_1^3 + x_2^3$, $x_0 x_1 x_2 \in S^3 V$ only are G(3)-invariant
- G(3) determines x_i "uniquely" ($\because V:G(3)$ -irred,)
- x_i are classical theta over C

General case will lead us to the next definition

In terms of theta, $w=e^{2\pi i z},\,q=e^{2\pi i \tau/6}$

$$egin{aligned} & heta_k(au,z+rac{1}{3})=\zeta_3^k heta_k(au,z),\ & heta_k(au,z+rac{ au}{3})=(qw)^{-1} heta_{k+1}(au,z),\ & heta_k(au, au+rac{ au}{3})=[heta_1, heta_2, heta_0](au,z)\ & au, au ext{ are the liftings to GL(3),}\ & au& oxet{z}\mapsto extstyle +rac{1}{3} ext{ is lifted to } \sigma(heta_k)=\zeta_3^k heta_k\ & extstyle oxet{z}\mapsto extstyle +rac{ au}{3} ext{ is lifted to } au(heta_k)= heta_{k+1}\ & extstyle G(3):= ext{ the group } \langle \sigma, au
angle \end{aligned}$$

8 Definition of PSQAS

R: DVR, q a uniformizer of R,

 $k(0)=R/m,\,k(\eta)=R[1/q]:$ the fraction field of R

Suppose (G_{η}, L_{η}) : abelian variety over $k(\eta)$

(G,L) is the (connected) Néron model of (G_η,L_η)

Let
$$\lambda(L_{\eta}) : G_{\eta} \to {}^{t}G_{\eta} = \operatorname{Pic}^{0}(G_{\eta})$$

 $({}^{t}G_{\eta}, {}^{t}L_{\eta})$ dual AV, ${}^{t}G_{\eta} = \operatorname{Pic}^{0}(G_{\eta}).$
 $({}^{t}G, {}^{t}L) :$ the (connected) Néron model of $({}^{t}G_{\eta}, {}^{t}L_{\eta})$
Suppose G_{0} a split torus over $k(0)$,
Then $({}^{t}G_{0}, {}^{t}L_{0})$ is a split torus over $k(0)$

For the Tate curve over CDVR R

The generic fibre $G_\eta: y^2=x^3-x^2+q \quad (q
eq 0)$ The fibre $X_0: y^2=x^2(x-1)$ for q=0: a limit of X_q $X_0\setminus\{0,0\}=\mathrm{G}_m,$

This is the key assumption G_0 a split torus

$$x_0^3 + x_1^3 + x_2^3 - 3\mu x_0 x_1 x_2 = 0 \ (\mu^3 = 1 \ \text{or} \ \infty)$$

It degenerates into 3 copies of P^1

 $\mu = \infty, \, x_0 x_1 x_2 = 0 \, \, {
m contains} \, \, {
m G}_m imes {
m Z}/3{
m Z}$

This is the key assumption G_0 a split torus

R: DVR, q a uniformizer of R, $k(0) = R/m, k(\eta) = R[1/q]:$ the fraction field of RSuppose $(G_{\eta}, L_{\eta}):$ abelian variety over $k(\eta)$ (G, L) is the (connected) Néron model of (G_{η}, L_{η})

Let
$$\lambda(L_{\eta}) : G_{\eta} \to {}^{t}G_{\eta} = \operatorname{Pic}^{0}(G_{\eta})$$

 $({}^{t}G_{\eta}, {}^{t}L_{\eta})$ dual AV, ${}^{t}G_{\eta} = \operatorname{Pic}^{0}(G_{\eta}).$
 $({}^{t}G, {}^{t}L) :$ the (connected) Néron model of $({}^{t}G_{\eta}, {}^{t}L_{\eta})$
Suppose G_{0} a split torus over $k(0)$,
Then $({}^{t}G_{0}, {}^{t}L_{0})$ is a split torus over $k(0)$

Let $X = \text{Hom}(G_0, G_m), \quad Y = \text{Hom}({}^tG_0, G_m).$ Hence $X \simeq Z^g, Y \simeq Z^g,$ $\lambda(L_\eta)$ extends, \exists a surjection $G_0 \to {}^tG_0$ Hence Y: a sublattice of $X, [X:Y] < \infty.$

 $K_\eta:=\ker\lambda(L_\eta),\,N:=|K_\eta|.$

 $K{:=} ext{the closure of } K_\eta. ext{ May assume } ext{Over } \mathbb{Z}[\zeta_N, 1/N]$ $K\simeq (X/Y)\oplus (X/Y)^ee,$

This finite group helps us to take up the necessary data

From G and K we can construct

• G(K): Heisenberg group scheme

$$egin{aligned} &1 o\mu_N o G(K) o K o 0 \ (ext{exact})\ &(a,z,lpha)\cdot(b,w,eta)=(abeta(z),z+w,lpha+eta), \end{aligned}$$

- $R[X/Y] = \oplus_{x \in X/Y} R \ v(x)$ (group alg. of X/Y) $v(0) = 1, \ v(x+y) = v(x)v(y)$
- G(K) acts on R[X/Y] by

$$(a,z,lpha)\cdot v(x)=alpha(x)v(z+x)$$
 $a,b\in \mu_N;\ z,x\in (X/Y);\ lpha,eta\in (X/Y)^ee$

Facts. G: conn. Néron model of G_{η} ,

$$K_\eta := \ker(\lambda(L_\eta)) \simeq (X/Y) \oplus (X/Y)^{\vee},$$

- $V := H^0(G, L)$: finite *R*-free, G(K)-irreducible
- $V = H^0(G, L) \simeq R[X/Y]$ as G(K)-module
- $H^0(G,L) \ni \exists heta_x \stackrel{G(K) ext{-isom}}{\longleftrightarrow} v(x) \in R[X/Y]$ gp alg

 $heta_x$ can be thought as "classical theta"

Idea: Find the limit of the image $[\theta_x]_{x \in X/Y}$

Let G_{for} : the formal completion of G along G_0 Key Fact:

$$G_{\mathrm{for}} \simeq (\mathrm{G}^g_{m,R})_{\mathrm{for}}$$

Fourier expansion of $heta_x$ $(x \in X/Y)$ on G_{for} :

$$heta_x = \sum_{y \in Y} a(x+y) w^{x+y}$$

a(x+y) : Fourier coeff. of $heta_x$

called Faltings-Chai's degeneration data of (G, L)

•
$$B(x,y) := \operatorname{val}_q(a(x+y)a(x)^{-1}a(y)^{-1})$$
 is pos. def.

generalized Tate curves

The general case : B pos. def. symmetric The generic fibre: $G_m(L)^g/w^x \mapsto q^{B(x,y)}b_0(x,y)w^x,$ $b_0(x,y) \in L^{\times} \quad (x \in X, y \in Y)$ PSQAS is the closed fibre of a gener. Tate curve We construct a canonical gen. of Tate curves.

$$\widehat{R}:=R[a(x)w^{x}artheta,x\in X], \hspace{0.2cm} artheta:$$
deg one

 $\operatorname{Proj}(\widetilde{R})$: locally of finite type over R \mathcal{X} : the formal completion of $\operatorname{Proj}(\widetilde{R})$ The Quotient \mathcal{X}/Y is a degenerating family of AV $(\mathcal{X}/Y, O_{\mathcal{X}/Y}(1))$ is a generalization of Tate curves Grothendieck (EGA) guarantees \exists a projective *R*-scheme $(Z, O_Z(1))$ s.t. the formal completion Z_{for} of Z $Z_{\text{for}} \simeq \mathcal{X}/Y, \quad (Z_{\eta}, O_{Z_{\eta}}(1)) \simeq (G_{\eta}, L_{\eta})$ (the stable reduction theorem) The central fiber $(Z_0, O_{Z_0}(1))$ is our (P)SQAS.

Projectively Stable Quasi Abelian Scheme

G(K) acts on $(Z, O_Z(1))$

Summary Let R be CDVR over $Z[\zeta_N, 1/N]$

- There is a natural choice of $\theta_x \in H^0(G,L)$
- $a(x+y), y \in Y$ is Fourier coeff of $\theta_x, x \in X/Y$
- all a(x) recover the given G_η over $k(\eta) := \operatorname{Frac}(R)$
- \bullet There is an extention \mathcal{X}/Y of G_η to R so that

(a) it is a canonical generalization of Tate curves,

(b)
$$G(K)$$
 acts on $(\mathcal{X}/Y, O_{\mathcal{X}/Y}(1))$

(c) hence G(K) acts on $(Z, O_Z(1))$

(d) the closed fibre $(Z_0, O_{Z_0}(1))$ is a PSQAS.

Recall

Thm 5 Over $Z[\zeta_3, 1/3]$

 $egin{aligned} &A_{1,3}:=\{ ext{nonsing. cubics with 9 inflection pts}\}/ ext{ isom.}\ &SQ_{1,3}:=\overline{A_{1,3}}\ &=\{ ext{stable cubics with 9 inflection pts}\}/ ext{ isom.}\ &=\{ ext{Hesse cubics}\}/ ext{isom=id}\ &=A_{1,3}\cup\left\{C(\mu);\mu^3=1\, ext{or}\,\infty
ight\}\simeq\mathrm{P}^1. \end{aligned}$

Hesse cubics are PSQASes in dimension one, level 3.
We wish to extend this to arbitrary dimension

1. over $Z[\zeta_N, 1/N]$ or over $Z[\zeta_N]$

2. to define a representable functor of compact obj.

$$F := SQ_{g,K}$$
 (fine moduli)

3. to relate to GIT stability, that is,

to aim at F(k) = GIT stable objects for k alg. closed

 $SQ_{g,K,1/N} := SQ_{g,K}$: proj. over $\mathbb{Z}[\zeta_N, 1/N]$ (1999) $\overline{AP}_{g,N}$: over Z, dim. excessive by N - 1 (2002) Olsson : over Z, nonseparated nonproper stack (2008) Olsson uses the same model as ours (Alexeev-Nakamura's model)

We prefer to separated moduli.

It is easy to construct nonseparated stack moduli.

9 Separatedness of the moduli

There are difficulties never seen in dimension one

- Classical level structure = base of n-divison points,
- Singular limits of Abelian varieties are very reducible
- Classical level str. gives non-separated moduli
- We need to prove in any dimension,

Lemma. (Valuative Lemma for Separatedness) $R : DVR, L = Frac(R), X, Y \in F(R).$ If $X_L \simeq Y_L$, then $X \simeq Y$. In other words, Isom. over L implies isom. over R.

- separated = Hausdorff, (e.g. if X projective, then separated)
- X: non-separated = non Hausdorff,
- If non-Hausdorff, then $\exists P_n \in X \ (n = 1, 2, \cdots),$

 $P = \lim P_n, Q = \lim P_n$. But $P \neq Q$

• This really happens in geometry.

Example R: DVR, q: uniformizer of R, L = R[1/q], E, E': elliptic curves over R

$$E: y^2 = x^3 - q^6, \quad E': Y^2 = X^3 - 1$$

Let us consider
$$P_n := E_L, Q_n := E'_L$$

$$P_n = Q_n$$
, i.e. $E_L \simeq E'_L$

because

$$E_L: (y/q^3)^2 = (x/q)^3 - 1,$$

 $E'_L: Y^2 = X^3 - 1$

Example R: DVR, q: uniformizer of R, L = R[1/q], E, E': elliptic curves over R

$$E: y^2 = x^3 - q^6, \quad E': Y^2 = X^3 - 1$$

 $egin{aligned} ext{Let us consider } P_n &:= E_L, Q_n := E'_L \ P &:= E_0 = \lim E_L, Q := E'_0 = \lim E'_L \ P_n &= Q_n, ext{ i.e. } E_L \simeq E'_L \ ext{But} P \neq Q \ P &:= E_0 : y^2 = x^3, \quad Q := E'_0 : Y^2 = X^3 - 1 \end{aligned}$

To overcome the difficulty of level str/n-div. pts :

- Non-abelian Heisenberg gp. G := G(K)
- New level str. = Framing of irred. reps. of G
- To prove Val. Lemma for Separatedness, we use

• Separatedness of the moduli follows from G(K)-Irreducibility of $V = H^0(X, L)$, $(X, L) = (Z_0, O_{Z_0}(1))$: any PSQAS, level $N \ge 3$ if $K \simeq \ker(\lambda(L) : G_\eta \to G_\eta^t$ (dual)).

We re-start with

Thm 6 Over $Z[\zeta_3, 1/3]$

 $egin{aligned} &A_{1,3}:=\{ ext{nonsing. cubics with 9 inflection pts}\}/ ext{ isom.}\ &\overline{A_{1,3}}:=\{ ext{stable cubics with 9 inflection pts}\}/ ext{ isom.}\ &=\{ ext{Hesse cubics}\}/ ext{isom=id}\ &=A_{1,3}\cup\left\{C(\mu);\mu^3=1\, ext{or}\,\infty
ight\}\simeq\mathrm{P}^1. \end{aligned}$

We convert it into G(3)-equivariant theory

G(3): Heisenberg group of level 3

10 Heisenberg groups G(K), G(3)

 $G(3) = \langle \sigma, \tau \rangle ext{ acts on } V, ext{ order } |G(3)| = 27,$

$$egin{aligned} V &= Rx_0 + Rx_1 + Rx_2, \ \sigma(x_i) &= \zeta_3^i x_i, \quad au(x_i) = x_{i+1} \quad (i \in \mathrm{Z}/3\mathrm{Z}) \end{aligned}$$

 ζ_3 is a primitive cube root of 1, $R
i \zeta_3, 1/3$

Fact

- $x_0^3 + x_1^3 + x_2^3$, $x_0 x_1 x_2 \in S^3 V$ only are G(3)-invariant
- G(3) determines x_i "uniquely" (: V:G(3)-irred,)

• x_i are classical theta over C

Summary G(K): Heisenberg gp. e.g. G(3)

- G(K) chooses a basis of $V = H^0(X, L), X$:PSQAS
- G(K) chooses a basis of $H^0(G, L)$, G:Néron model
- G(K) determines Faltings-Chai degeneration data
- G(K) extends G_{η} to define $(Z, O_Z(1)), Z = \mathcal{X}/Y$
- Separatedness of the moduli follows from G(K)-Irreducibility of $V = H^0(X, L)$,

X: any PSQAS, level $N \ge 3$

11 The space of closed orbits

X	the set of geometric objects	
G	the group of isomorphisms	
x, x' are isom.	G-orbits are the same $O(x) = O(x')$	
X_{ps}	the set of properly-stable objects	
X_{ss}	the set of semistable objects	
$X_{ss}//G$	"compact moduli"	

What is the quotient of C^2 by G?

- Simple answer : the set of G-orbits (\times)
- Answer : Spec(the ring of all G-invariant poly.)()
- t := xy is the unique G-inv. !

$$\mathrm{C}^2/\!/G := \operatorname{Spec} \mathrm{C}[t] = \{t \in \mathrm{C}\}$$

But this is different from "the set of G-orbits".

• $C^2//G = \{t \in C\}$ is the set of all closed orbits.

- t = 0 is a point of $C = C^2 / / G = \operatorname{Spec} C[t]$.
- But $\{xy = 0\}$ consists of three *G*-orbits

 $C^* \times \{0\}, \quad \{0\} \times C^*, \quad \{(0,0)\}$

• $\{(0,0)\}$ is the only closed orbit in $\{xy = 0\}$

Def 7 The same notation as before. Let $p \in X$.

- (1) semistable if $\exists G$ -inv. homog. poly. $F, F(p) \neq 0$,
- (2) Kempf-stable (= closed orbit)
 - if the orbit O(p) is closed in X_{ss} ,
- (3) properly-stable if (2) and Stab(p) finite.

Thm 8 (Seshadri,Mumford) G: reductive, acting on a scheme X, (e.g. $G = G_m$). Let X_{ss} = the set of semistable points. Then

- $X_{ss}//G :=$ Spec(all *G*-inv.) = the set of closed orbits.
- $X_{ss}//G$ is a scheme, $X_{ps}//G$ is also a scheme,
- $X_{ss}//G$ compactifies $X_{ps}//G$.

Rem The set of points with closed orbits is not an algebraic subscheme.

Thus we consider only those objects with closed orbits

As its consequence we will see

- Abelian varieties have closed orbits (Kempf), and
- our PSQASes have closed orbits,

Conversely

• Any degenerate abelian scheme with closed orbit

is one of our PSQASes

- There is a simple characterization of our PSQASes,
- This characterization enables us to compactify

the moduli of abelian varieties.

12 Stable curves of Deligne-Mumford

Def 9 C is a stable curve of a genus g if

(1) connected projective reduced with finite autom.,
(2) the singularities of C are like xy = 0(3) dim $H^1(O_C) = g$

Let $\overline{M_g}$: moduli of stable curves of genus g, M_g : moduli of nonsing. curves of genus g.

Thm 10 $\overline{M_g}$ compactifies M_g

(Deligne-Mumford 1969)

Definition of stable curves is irrelevant to GIT stability

Nevertheless

Thm 11The following are equivalent(1) C is a stable curve (moduli-stable)(2) any Hilbert point of $\Phi_{|mK|}(C)$ is GIT-stable(3) any Chow point of $\Phi_{|mK|}(C)$ is GIT-stable

(1) \Leftrightarrow (2) Gieseker 1982 (before Mumford 1977) (1) \Leftrightarrow (3) Mumford 1977 (suggested by Gieseker 1982)

13 Stability of cubic curves

CUBIC CURVES	STABILITY	STAB GP.
smooth elliptic	stable	finite
3-gon	closed orbit	2-dim
a line+a conic (transv.)	semistable	1-dim
irred. with a node	semistable	finite
others	unstable	1-dim

Thm 12 For a cubic C, the following cond. are equiv.

- (1) C has a closed SL(3)-orbit in $(S^3V)_{ss}$
- (2) C is a Hesse cubic curve, that is, G(3)-invariant
- (3) C is either smooth elliptic or a 3-gon

14 Stability in higher-dim.

Thm 13 (Kempf) (A, L) an abelian variety, $V = H^0(A, L)$ very ample, w:=Hilbert point of (A, L). Then SL(V)w is closed in P_{ss} : the semistable locus of a big proj. space.

Thm 14 (N.1999)

(X, L) : PSQAS of level G(K),

 $V = H^0(X, L)$ very ample. Then

any Hilbert point of (X, L) has a closed SL(V)-orbit.

Thm 15 (N.1999)

Assume (X, L) is a limit of abelian varieties Awith ker $(\lambda(L)) = K$, $\lambda(L) : A \to A^t$ (dual)

Then the following are equivalent:

(1) X has a closed SL(V)-orbit (GIT-stable)
(2) X is invariant under G(K) (G(K)-stable)
(3) X is one of our PSQASes (moduli-stable)

To be more precise,

Thm 16 (N.1999)

Assume (X, L) is a limit of AV A's with $ker(\lambda(L)) = K$ Then the following are equivalent:

- (1) The *m*-th Hilbert point of X has a closed SL(V)orbit in $P(\bigwedge^{M} S^{m}V)_{ss}$ (GIT-stable)
- (2) X is invariant under G(K) (G(K)-stable)
- (3) X is one of our PSQASes (moduli-stable)

where $M := \dim H^0(X, mL)$.

Thm 17 For cubics the following are equiv:

(1) it has a closed SL(3)-orbit (GIT-stable) (2) it is a Hesse cubic, that is , G(3)-inv. (G(3)-stable)

(3) it is smooth ell. or a 3-gon. (moduli-stable)

Thm 18 Let X be a degenerate AV. The following are equiv. under natural assump.:

(1) it has a closed SL(V)-orbit (GIT-stable)

(2) X is G(K)-inv (G(K)-stable)

(3) it is a PSQAS (p.20) (moduli-stable)

Thus we see

- Abelian varieties have closed orbits (Kempf), and
- our PSQASes have closed orbits,

Conversely

• Any degenerate abelian scheme with closed orbit

is one of our PSQASes

- X is our PSQAS iff X is G(K)-stable,
- This characterization will compactify

the moduli of abelian varieties.

The characterization of PSQASes will compactify

the moduli of abelian varieties. We recall

"Closed orbit" is not a Zariski open/closed condition.

Exam 3

Let
$$G := \{(s, t, u) \in (G_m)^3; stu = 1\}$$

 $C_{a,b,c} : ax_0^3 + bx_1^3 + cx_2^3 - x_0x_1x_2 = 0.$
 G acts on $A^3 : (a, b, c) \mapsto (sa, tb, uc)A^3$
Closed $(G_m)^2$ -orbit iff $abc \neq 0$ or $(a, b, c) = (0, 0, 0).$

15 Moduli over $Z[\zeta_N, 1/N]$

(1) The universal cubic curve

$$\mu_0(x_0^3 + x_1^3 + x_2^3) - \mu_1 x_0 x_1 x_2 = 0$$

where $(\mu_0, \mu_1) \in SQ_{1,3} = P^1$.

(2) when k is alg. closed and char. $k \neq 3$

$$\begin{aligned} SQ_{1,3}(k) &= \begin{cases} \text{closed orbit cubics} \\ \text{with level 3-structure } /k \end{cases} \text{/isom.} \\ &= \begin{cases} \text{Hesse cubics} \\ \text{with level 3-str. } /k \end{cases} \text{/isom.=id.} \\ \text{Mathematication} \\$$

Thm 20 (N. 1999) There exists the fine moduli
$$SQ_{g,K}$$

projective over $Z[\zeta_N, 1/N], N = \sqrt{|K|}$, For k closed
 $SQ_{g,K}(k) = \begin{cases} \text{closed orb. deg. abelian sch. }/k \\ \text{with level } G(K)\text{-structure} \end{cases}$ /isom.
 $= \begin{cases} G(K)\text{-invariant PSQAS }/k \\ \text{with level } G(K)\text{-structure} \end{cases}$,
 $M_{g,K}(k) = \begin{cases} (\text{nonsingular}) \text{ abelian schemes }/k \\ \text{with level } G(K)\text{-structure} \end{cases}$ /isom.
 $= \begin{cases} G(K)\text{-inv. abelian schemes }/k \\ \text{with level } G(K)\text{-structure} \end{cases}$

Summary G(K): Heisenberg gp. e.g. G(3)

(A) $H^0(X,L)$ is G(K)-irred for X: PSQAS

- (A) implies Stability of X with L very ample,
- (A) implies Separatedness of the moduli,
- (A) gives a simple characterization of PSQASes,
- G(K) finds a compact separated moduli $SQ_{g,K}$

Recall Grothendieck (EGA) guarantees

 \exists a projective *R*-scheme $(Z, O_Z(1))$

s.t. the formal completion Z_{for} of Z

 $Z_{ ext{for}} \simeq \mathcal{X}/Y, \quad (Z_\eta, O_{Z_\eta}(1)) \simeq (G_\eta, L_\eta)$

The central fiber $(Z_0, O_{Z_0}(1))$ is our (P)SQAS.

The normalization Z^{norm} of Z with Z_0^{norm} reduced

gives a bit different central fiber

 $(Z_0^{\text{norm}}, O_{Z_0^{\text{norm}}}(1))$, we call it TSQAS.

Thm 21 (N. 2010) over $Z[\zeta_N, 1/N]$,

 \exists another cano. compactif. $SQ_{q,K}^{\text{toric}}$

:coarse moduli of TSQASes with level-G(K) str.

 \exists cano. bij. birat. morphism

$$egin{aligned} \mathrm{sq}:SQ_{g,K}^{\mathrm{toric}} &
ightarrow SQ_{g,K} \ && (P,\phi, au) \mapsto (Q,\phi_Q, au_Q), \quad Q := \mathrm{Proj}(\mathrm{Sym}(\phi)) \end{aligned}$$

when any generic fibre of P is an abelian var.

Corollary

The normalizations of $SQ_{g,K}^{\text{toric}}$ and $SQ_{g,K}$ are isom.

Recall $(P, \phi, \tau) \in SQ_{g,K}^{ ext{toric}}$

- P:TSQAS=modified PSQAS,
- $\phi: P \to \mathbb{P}^{N-1} = \mathbb{P}(k[H^{\vee}])$ is a finite morphism

•
$$L = \phi^*(O_{\mathbf{P}^{N-1}}(1)),$$

- $H^0(P,L) \stackrel{\phi^*}{\simeq} k[H^{\vee}] = H^0(O_{\mathbb{P}^{N-1}}(1))$
- τ : a compatible action of G(K) on the pair (P, L)
- τ on P = translation by K when P = A : AV

 $(Q,\phi_Q, au_Q)\in SQ_{g,K}$

- Q:PSQAS,
- $\phi_Q: Q \to \mathbf{P}^{N-1} = \mathbf{P}(k[H^{\vee}])$ is a closed immersion
- $L_Q = \phi^*(O_{\mathbb{P}^{N-1}}(1)),$
- $H^0(Q, L_Q) \simeq H^0(P, L) \stackrel{\phi^*}{\simeq} k[H^{\vee}] = H^0(O_{\mathbb{P}^{N-1}}(1))$
- au_Q : a compatible action of G(K) on the pair (Q, L_Q)
- au_Q on Q = translation by K when Q = A : AV

Definition of sq : For $(P, L, \phi, \tau) \in SQ_{g,K}^{\text{toric}}(T)$ Suppose (P, L, ϕ, τ) is a T-TSQAS such that any generic fibre is AV. Then let $Q = \phi(P) := \text{Proj}(\text{Sym}(\phi))$ Can define (Q, L_Q, ϕ_Q, τ_Q) T-PSQAS, Then the morphism sq is

 $\operatorname{sq}(P,L,\phi,\tau) = (Q,L_Q,\phi_Q,\tau_Q) \in SQ_{g,K}(T)$
$$\fbox{ Summary } N = \sqrt{|K|}, \ \mathcal{O}_N = \mathrm{Z}[\zeta_N, 1/N], \ d > 0.$$

- 1. $SQ_{g,K}$ is a proj. fine moduli over \mathcal{O}_N [N99],
- 2. $SQ_{g,K}^{\text{toric}}$ is a proj. coarse mod. over \mathcal{O}_N [N01] [N10],
- 3. $\overline{AP}_{g,d} = \{(P, G, D)\}$ is a proper separated coarse

moduli over Z [Alexeev02],

- 4. dim $SQ_{g,K} = \dim SQ_{g,K}^{\text{toric}} = g(g+1)/2$,
- 5. dim $\overline{AP}_{g,d} = g(g+1)/2 + d 1$,
- 6. \exists a canonical bij. birat. morphism [N10]

$$\operatorname{sq}: SQ_{g,K}^{\operatorname{toric}} \to SQ_{g,K}$$

Alexeev's moduli $\overline{AP}_{g,d} = \{(P, G, D)\}$

- P is semi-normal proj. with L ample line bundle
- $\bullet~G$ semi-abelian acting on P with extra cond.
- $D \in H^0(P, L)$ a Cartier divisor
- \bullet D contains no G-orbits

• dim
$$\overline{AP}_{g,d}$$
 = dim $A_g + d - 1$.

k alg. closed

 $SQ_{1,K}, K = (Z/3Z)^2$, Roughly

 $SQ_{1,K}(k) = \{C \text{ a nonsing. cubic or a 3-gon cubic}\}$

 $\overline{AP}_{1,3}(k) = \{(C,G,D)\}$

C nonsingular elliptic or a 3-gon,

or a conic plus a line, rational with a node

G = C (elliptic) or $G_m, D \in H^0(C, L)$, degree D = 3.

To define a morphism from $SQ_{1,K}$ to $\overline{AP}_{1,3}$

is equivalent to the following

For a given

a flat family over T

$$(C,\phi, au)\in SQ_{1,K}(T)$$

always ! construct (G, D) so that

 $(C,G,D)\in \overline{AP}_{1,3}(T)$

Problem: Construct G and Find D

For almost all $v \in k[\mathbb{Z}/3\mathbb{Z}]$,

$$(P,\phi, au) imes v \ \mapsto (P,\operatorname{Aut}^{\dagger 0}(P),\operatorname{Div}(\phi^*(v))$$

Need to prove

Any *T*-TSQAS has a flat group scheme action

This is done in general

Thm 22 If
$$(P, L)$$
 is an *S*-flat TSQAS, then
 $\operatorname{Aut}_{S}^{\dagger 0}(P)$ is *S*-flat semi-abelian group scheme

$$\begin{array}{ll} \hline \text{Thm 23} & \exists \text{ a finite Galois morph. over } \mathcal{O}_N, N = \sqrt{|K|}, \\ & \text{sqap}: SQ_{g,K}^{\text{toric}} \times (\mathbb{P}^{N-1} \setminus H_{g,K}) \rightarrow \overline{AP}_{g,N} \otimes \mathcal{O}_N \\ & (P,\phi,\tau) \times \mapsto (P, \operatorname{Aut}^{\dagger 0}(P), \operatorname{Div}(\phi^*(v)) \\ & \text{such that for any fixed } v \in \mathbb{P}^{N-1} \setminus H_{g,K} \\ & (P,\phi,\tau) \mapsto (P, \operatorname{Aut}^{\dagger 0}(P), \operatorname{Div}(\phi^*(v)) \\ & \text{is an injective morphism of } SQ_{g,K}^{\text{toric}} \text{ extending an injective immersion of } A_{g,K}^{\text{toric}}. \end{array}$$

•
$$\mathbf{P}^{N-1} = \mathbf{P}(\mathcal{O}_N[H^{\vee}]^{\vee}), v \in \mathcal{O}_N[H^{\vee}].$$

- $H_{g,K}$ is a hypersurf. of \mathbb{P}^{N-1} of deg. known.
- dim $SQ_{g,K}^{\text{toric}} + N 1 = \dim \overline{AP}_{g,N}$.

$$\begin{split} &SQ_{g,K,1/N} := SQ_{g,K}: ext{ over } \mathbf{Z}[\zeta_N,1/N] \ &\overline{AP}_{g,N}: ext{ Alexeev, over } \mathbf{Z}, ext{ no level str.} \ &\overline{A}_{g,N}: ext{ Olsson, over } \mathbf{Z}, ext{ no level str.} \end{split}$$

"Limits of theta functions are described by the Delaunay decomposition." PSQAS is a geometrization of limit of thetas PSQAS is a generalization of 3-gons. which is described by the Delaunay decomposition. **PSQAS** : a generalization of Tate curve, *R*:DVR

Tate curve : $G_m(R)/w \mapsto qw$

Hesse cubics at ∞ : $\mathrm{G}_m(R)/w\mapsto q^3w$

Rewrite Tate curve as :

 $G_m(R)/w^n \mapsto q^{mn}w^n \ (m \in Z)$

Hesse cubics at ∞ : $\mathrm{G}_m(R)/w^n \mapsto q^{3mn}w^n \ (m \in \mathrm{Z})$

The general case : B pos. def. symmetric $\mathrm{G}_m(R)^g/w^x\mapsto q^{B(x,y)}b(x,y)w^x,$ $b(x,y)\in R^{ imes}~(x\in X,y\in Y)$

Let $X = \mathbb{Z}^g$, B a positive symmetric on $X \times X$.

$$\|x\| = \sqrt{B(x,x)}$$
 : a distance of $X \otimes \mathrm{R}$ (fixed)

Def 24 Let $\alpha \in X_{\mathbb{R}}$. a Delaunay cell $D(\alpha)$: the convex closure of points of X closest to α .

Exam 4 1-dim.
$$B(x,y) = 2xy, X/Y = Z/nZ$$
,
then PSQAS Z_0 is an *n*-gon of P¹

- All Delaunay cells for a B form a Delaunay decomp.
- Each PSQAS (its scheme struture) and its decom-

position into torus orbits (its stratification)

are described by Delaunay decomp.

- \bullet Each pos. symm. B defines a Delaunay decomp.
- Different B can yield the same Delaunay decomp. and the same PSQAS.

Exam 6
$$B = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

- 1. This (mod Y) is a PSQAS.
- It is a union of P², each triangle stands for P²,
 2. each line segment is a P¹, two P² intersect along P¹
 3. six P² meet at a point,

locally $k[x_1, \cdots, x_6]/(x_i x_j, |i - j| \ge 2)$

Red one is the decomp. dual to the Delaunay decomp. called Voronoi decomp.

Voronoi decomposition

Def 25 D: for Delaunay cells

 $V(D):=\{\lambda\in X\otimes_{\mathrm{Z}}\mathrm{R}; D=D(\lambda)\}$

We call it a Voronoi cell

 $\overline{V(0)} = \{\lambda \in X \otimes_{\mathrm{Z}} \mathrm{R}; \|\lambda\| \leqq \|\lambda - q\|, (orall q \in X)\}$

This is a crystal of mica.

For
$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

We get $\overline{V(0)}$, a cube (salt),

For
$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

then we get a hexagonal pillar (calcite) , and then

$$B = egin{pmatrix} 2 & -1 & 0 \ -1 & 2 & -1 \ 0 & -1 & 2 \end{pmatrix}$$

A Dodecahedron (Garnet)

$$B = egin{pmatrix} 2 & -1 & 0 \ -1 & 3 & -1 \ 0 & -1 & 2 \end{pmatrix}$$

Apophyllite $KCa_4(Si_4O_{10})_2F \cdot 8H_2O$

$$B = egin{pmatrix} 3 & -1 & -1 \ -1 & 3 & -1 \ -1 & -1 & 3 \end{pmatrix}$$

A Trunc. Octahed. — Zinc Blende ZnS

