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Abstract. For G a finite abelian subgroup of SL(3, k) we construct a
crepant resolution of the quotient variety A3/G in a canonical way.

0. Introduction

Let k be any algebraically closed field and G a finite subgroup of SL(3, k)
of order prime to the characteristic of k. The group G acts on affine 3-space
A3 and the quotient space A3/G is a normal Gorenstein variety with trivial
canonical sheaf. General theories such as the theory of minimal models in
birational geometry and the theory of torus embeddings do not seem to
provide any natural choice of a crepant smooth resolution of A3/G. In this
article we give a crepant smooth resolution of A3/G canonical in a certain
sense when G is abelian.
In fact, the G-orbit Hilbert scheme (or The Hilbert scheme of G-orbits)

HilbG := HilbG(A3) introduced in [IN96] is such a resolution. The G-orbit
Hilbert scheme is, by definition, the scheme parametrizing all G-invariant
smoothable zero-dimensional subschemes of A3 of length n := |G|, the order
of G. A smoothable zero-dimensional subscheme of A3 of length n is a
kind of substitute for n-points in A3, so that a G-invariant smoothable
zero-dimensional subscheme of length n is a substitute for a G-orbit in A3

consisting of n distinct points. Hence HilbG is a substitute of A3/G, the
space of G-orbits. We will prove that for G abelian HilbG is a smooth torus
embedding associated to a certain fan in R3 with apices junior elements of
G (Theorem 4.2). As a corollary to it, we will see

Theorem 0.1. For any abelian subgroup G of SL(3, k) of order prime to
the characteristic of k, HilbG(A3) is a crepant smooth resolution of A3/G.

Theorem 0.1 might sound a little unexpected because Hilbn(A3) is known
to be very singular. We conjecture that the same is true for any finite
subgroup G of SL(3, k) if the order of G is prime to the characteristic of
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k. The first half of the present article is devoted to describing HilbG as a
toric variety in arbitrary dimension. In the second half of it we will prove
that if G is an abelian subgroup of SL(3, k), the fan associated with HilbG

is nonsingular, that is, HilbG is smooth. Some examples will be given in
Section 5 and Section 6. See also [Reid97] and Ito-Nakajima [INkjm98].
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1. Lattices and G-graphs

1.1. Abelian subgroups. Let G be a finite abelian subgroup of GL(r, k)
of order prime to the characteristic of k and n the order of G. Without loss
of generality we may assume that any element of G is a diagonal matrix.
Let µn be the group of n-th roots of unity and Gm the group of units in

k. We choose and fix a primitive n-th root ζ of unity. Given a set F we
denote its cardinality by |F |. We denote by Z+ (resp. R+) the set of all
non-negative integers (resp. non-negative real numbers).

Definition 1.2. Let N0 := ⊕r
i=1Zei be a free Z module with ei a Z-basis,

M0 := HomZ(N0,Z) = ⊕r
i=1Zfi and ∆ :=

∑r
i=1 R+ei where fi(ej) = δij .

In what follows we assume that any element of the group G is a diagonal
r × r-matrix, therefore we denote it by an r-vector consisting of r diagonal
coefficients. Given a nontrivial element g of G, we write g = (ζa1 , · · · , ζar )
for some 0 ≤ ai < n and identify it with an r-vector (a1/n)e1 + · · · +
(ar/n)er ∈ N0⊗ZQ. We define N := N0+

∑
g∈G Zg andM = HomZ(N,Z).

We note N/N0 � G and M0/M � G∨. In fact, we see that e2α(g)πi ∈ µn is
well-defined for α ∈M0/M and g ∈ G, which gives a nondegenerate pairing
N/N0 ×M0/M → µn. This pairing enables us to identify G∨ with M0/M .
We call this isomorphism weight and denote it by wt : M0/M → G∨. We
denote a ≡ b for a, b ∈M0 if wt(a) = wt(b), as is the same, a− b ∈M .
1.3. The semigroup S(I). Let M0

0 (resp. M
+
0 ) be the semigroup gener-

ated by 0 and fi (resp. fi) (1 ≤ i ≤ r).
Since by the semigroup homomorphism fi �→ xi there is an obvious bi-

jection between the set of subsemigroups of M0
0 and the set of monomial

subsemigroups in the polynomial ring k[Ar ] = k[x1, · · · , xr], we will often
identify them if no confusion is possible.
Suppose that an ideal I of k[Ar] is generated by monomials. The mono-

mial generators of I, in an obvious manner, give rise to a subsemigroup S(I)
of k[Ar]. Let S(I)� be the set of monomials in xi which do not belong to
S(I). Then we easily see that 1 /∈ S(I), fS(I) ⊂ S(I) for any monomial f .
From a certain reason we will explain in Subsection 2.1, we are particularly
interested in those I satisfying the condition (ii) in Definition 1.4.
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Definition 1.4. For a subsemigroup S of M+
0 we define a subset S

� of M0
0

by S� := M0
0 \ S. The subset S� of M0

0 is called a G-graph if the following
conditions are satisfied:
(i) S+M+

0 ⊂ S, or as is equivalent, if a+ b ∈ S� for some a, b ∈M0
0 , then

a ∈ S� and b ∈ S�,
(ii) wt : S� → G∨ is a bijection
where wt(α)(g) = α(g) (α ∈ S(I)�, g ∈ G).
We denote S� by Γ(S�) or simply by Γ. We note 0 ∈ Γ(S�) because

S ⊂M+
0 . If G ⊂ SL(r, k), then f1 + f2 + · · ·+ fr �∈ Γ(S�). Therefore Γ(S�)

consists of at most r (r− 1) -dimensional graphs Γk := Γ(S�)∩ (∑i�=k Rfi).

Definition 1.5. Let Γ be a G-graph. We define the weight map wtΓ :
M0

0 → Γ as follows. For any u ∈ M0
0 there exists a unique element v ∈ Γ

such that wt(v) ≡ wt(u). We denote v by wtΓ(u). Then we define cones
σ(Γ) and

∨
σ(Γ) by

σ(Γ) := {α ∈ N0 ⊗Z R;α(v − wtΓ(v))) ≥ 0,∀v ∈M0
0 },

∨
σ(Γ) := {v ∈M0 ⊗Z R;α(v) ≥ 0,∀α ∈ σ(Γ)},

We define S(Γ) to be the semigroup of M generated by v−wtΓ(v) (∀v ∈
M0

0 ), and M(Γ) the sublattice of M generated by v − wtΓ(v) (∀v ∈M0
0 ).

Lemma 1.6. For any finite abelian subgroup G of GL(r, k), there exists a
G-graph.

Proof. Assume first that G is a cyclic group of order n. Then let g =
(· · · , 1/n) be a generator of G. Then Γ = {xfr;x ∈ [0, n− 1]} is a G-graph.
If G is not cyclic, then we prove Lemma by the induction on r. We may
assume there exists a g ∈ G such that g = (· · · , 1/�) is of the maximal order
in G where � ≥ 2. Then there exists a subgroup H of G ∩ GL(r − 1, k)
such that G/H (� Z/�Z) is generated by the image of g. By the induction
hypothesis there exists anH-graph Γ′ ⊂ ⊕r−1

i=1Zfi. Let Γ := Γ
′×([0, �−1]fr).

Then it is clear that Γ is a G-graph.

Lemma 1.7. Let Γ be a G-graph. Then S(Γ) is a finitely generated semi-
group and M(Γ) =M .

Proof. Though it seems clear, we give a proof. First we note thatM(Γ) ⊂M
and M ∩M0

0 ⊂ M(Γ) because wtΓ(v) = 0 for v ∈M ∩M0
0 . Since M ∩M0

0

generates M as a group, M ⊂ M(Γ). It follows M(Γ) = M . There exists
a finite subset A of M0

0 such that M
0
0 is generated by A and M ∩M0

0 as a
semigroup. Any w ∈ M0

0 is written as w = v + a (∃a ∈ A, v ∈ M ∩M0
0 ).

Therefore

w − wtΓ(w) = v + a−wtΓ(a)
because wtΓ v = 0. Since M ∩ M0

0 is finitely generated, S(Γ) is finitely
generated. The proof shows that S(Γ) is generated by A and M ∩M0

0 .
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Lemma 1.8. Let Γ be a G-graph with dimσ(Γ) = r and A a finite subset
of M0

0 \Γ such that M0
0 \Γ = A+M0

0 . Then S(Γ) is generated by v−wtΓ(v)
(v ∈ A) as a semigroup.

Proof. Let λ(v) := v − wtΓ(v) and we denote by S(λ(A)), the semigroup
generated by λ(A). We see nfi ∈ ∨

σ(Γ)∩M because n = |G| and wtΓ(nfi) =
0. Hence σ(Γ) ⊂ ∆. Since dimσ(Γ) = r, we can find α ∈ Int(σ(Γ)) such
that α(λ(v)) > 0 (∀v ∈M0

0 \ Γ).
We choose and fix such an α ∈ Int(σ(Γ)). Then since σ(Γ) ⊂ ∆, we see

that α(v) > 0 for any v ∈M+
0 . Now we prove our Lemma by the induction

on the value α(z) (z ∈M0
0 \Γ). If z ∈ A, then λ(z) ∈ S(λ(A)). Let z ∈M0

0 .
By the assumption there exist v ∈ A and b ∈ M0

0 such that z = v + b. We
see λ(z) = λ(v) + λ(wtΓ(v) + b). Since α(z) = α(v) + α(b) > α(wtΓ(v) + b),
we have λ(wtΓ(v) + b) ∈ S(λ(A)) by the induction hypothesis. Hence
λ(z) ∈ S(λ(A)). This completes the proof.
The condition dimσ(Γ) = r is always satisfied in view of Corollary 2.4.

Definition 1.9. For any G-graph Γ we define

Uσ(Γ) := Spec k[
∨
σ(Γ) ∩M ], V (Γ) := Speck[S(Γ)],

I(Γ) := (wv ; v ∈M0
0 \ Γ) ⊂ k[Ar ],

Ivers(Γ) := (wv − sv−wtΓ(v)wwtΓ(v); v ∈M0
0 )

⊂ k[S(Γ)] ⊗k k[Ar] ⊂ k[
∨
σ(Γ) ∩M ]⊗k k[Ar]

where wv resp. sv is the monomial in k[Ar ] resp. in k[M ] corresponding to
v ∈M0

0 resp. v ∈M . We note that Uσ(Γ) is the normalization of V (Γ). Let
Z(Γ) (resp. Zvers(Γ)) be a G-invariant subscheme ofAr (resp. a G-invariant
subscheme of Ar

V (Γ)) defined by the ideal I(Γ) (resp. I
vers(Γ)).

2. The G-orbit Hilbert scheme

2.1. The G-orbit Hilbert scheme. Let G be a finite subgroup of GL(r, k)
and n = |G|. Let Hilbn(A3) be the Hilbert scheme of n points in Ar and
Sn(Ar) the n-th symmetric product of Ar . We have a natural morphism
πn from Hilbn(Ar) onto Sn(Ar). Since πn is G-equivariant, we have a nat-
ural morphism between their G-fixed point sets. We see easily that the
quotient variety Ar/G is one of the irreducible components of the G-fixed
point set Sn(Ar)G−inv with reduced structure. Then the G-orbit Hilbert
scheme HilbG := HilbG(Ar) is by definition the unique irreducible compo-
nent, endowed with reduced structure, of the G-fixed point set of Hilbn(Ar)
which dominates Ar/G by the map πn. Let π be the natural morphism
from HilbG(Ar) onto Ar/G. We call a zero-dimensional subscheme (resp. a
G-invariant subscheme) Z of Ar of length n a cluster (resp. a G-cluster).
A G-cluster Z is smoothable if and only if Z ∈ HilbG(Ar). Let I be the
ideal defining a smoothable cluster (resp. a G-invariant smoothable cluster).
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Then we write I ∈ Hilbn(Ar) resp. I ∈ HilbG(Ar) since there seems to be
no fear of confusion.
For instance, if r = 3 and G is generated by g = (1/6,2/6,3/6), then

(x6, y, z), (x2, y3, z), and (x2, xy, y2, z2) are examples of ideals generated by
monomials in HilbG(A3). See Table 2.
By [IN98, Lemma 9.4] if I ∈ HilbG(Ar), then the quotient module k[Ar]/I

is isomorphic to the group algebra k[G] (the regular representation of G) as a
G-module. In other words, dim(k[Ar]/I)ρ = 1 (∀ρ ∈ G∨) where (k[Ar ]/I)ρ

is the ρ-eigensubspace of k[Ar]/I for any character ρ ∈ G∨. This is just the
condition (ii) in Definition 1.4.

Definition 2.2. Let HilbGnorm(A
r) be the normalization of HilbG(Ar). Since

HilbGnorm(A
r) is a normal torus embedding, it is covered with finitely many

toric charts. To each chart there corresponds a cone of N ⊗ Q. Since
Hilb|G|(Ar) is projective over S|G|(Ar), so is HilbG(Ar) over Ar/G. As is

well known Ar/G � Spec k[
∨
∆ ∩M ] Therefore there exists a fan {σ} with

support ∆ and a covering of HilbG(Ar) consisting of toric charts Uσ with
dimσ = r, each of which has a unique zero-dimensional toric stratum cor-
responding to a G-cluster Zσ ∈ HilbG(Ar) defined by a monomial G-ideal
Iσ of k[Ar]. There exists a G-graph Γ such that Zσ = Z(Γ), Iσ = I(Γ),
equivalently σ = σ(Γ), hence dimσ(Γ) = r. In particular, dimσ(Γ) = r for
any smoothable G-cluster Z(Γ). However we will see below that Z(Γ) is
smoothable for any G-graph Γ.

Lemma 2.3. Let Γ be a G-graph, Z := Zvers(Γ) and V := V (Γ) in Defini-
tion 1.9. Let Zs be a closed fibre of Z over s ∈ V (k). Then

(i) Z is V -flat and Zs ∈ HilbG for any s ∈ V (k). In particular, Z(Γ) ∈
HilbG.

(ii) Γ is a k-basis of k[Ar ]/Ivers(Γ)⊗ k(s) for any s ∈ V (k).
(iii) At any point s ∈ V (k) Z is versal for flat G-equivariant deformations

of Zs with generic support (in the sense defined below in the proof).

Proof. The scheme Z as well as V admits a torus action wv �→ λvwv,
sv−wtΓ(v) �→ λv−wtΓ(v)sv−wtΓ(v) (∀v ∈ M0

0 , λ ∈ Gr
m). For s ∈ Gr

m(k), the
number of solutions of the system of the equations

wv = sv−wtΓ(v)wwtΓ(v) (∀v ∈M0
0 )(1)

is equal to |Γ| = |G| by Lemma 1.7. Hence Z is flat overGr
m (⊂ V ). Let B be

the subscheme of V consisting of all s ∈ V such that dimk k[Ar]/Ivers(Γ)⊗
k(s) ≥ |G|+ 1. The subset B is invariant under λ ∈ Gr

m, whence if B �= ∅,
then B contains s = 0, the unique 0-stratum of V because B is closed.
However dimk k[Ar]/I(Γ) = |G| because Γ is a G-graph. It follows that
B = ∅, Z is V -flat. In particular, Zs is smooth for s ∈ Gr

m and Zs ∈ HilbG
for any s ∈ V (k). This proves (i).
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Next we prove (ii). Let B′ = {s ∈ V ; Γ is not a k(s)-basis of k[Ar]/Ivers(Γ)⊗
k(s)}. Then B′ is a closed Gr

m-invariant subscheme of V . It is easy to see
that 0 �∈ B′. This shows B′ = ∅, which proves (ii).
Let R be a complete local domain with R/m � k and K the quotient

field, m the maximal ideal of R. Choose and fix s0 ∈ V (k).
Let X be an R-flat (embedded) G-equivariant deformation of Zs0 with

generic support, in other words, the support of XK is not contained in
Ar

K \ Gr
m,K . Let J be a G-invariant ideal of Γ(OAr

R
) defining X. Since

X is flat and X0 = Zs0 , Γ is a free R-basis of Γ(OX) � R ⊗ k[Ar ]/J by
(ii). Therefore for any wv there exist a unique γ ∈ Γ and qv ∈ R such that
wv = qv · wγ mod J . In other words, wv − qvw

wtΓ(v) ∈ J . Moreover J
is generated by the elements of this form because Γ(OX) � R ⊗ k[Ar ]/J.
Hence we see that

J =
(
wv − qvw

wtΓ(v) (∀v ∈M0
0 \ Γ)

)
(2)

for some qv ∈ R. Since X0 = Zs0 , we have qv(s0) = s
v−wtΓ(v)
0 . Suppose that

we are given vj , ui ∈ M0
0 such that

∑
j(vj − wtΓ(vj)) =

∑
i(ui − wtΓ(ui)).

Then we prove ∏
j

qvj =
∏
i

qui .(3)

In fact, let a :=
∑

j wtΓ(vj) and b :=
∑

iwtΓ(ui). Then

wa+b
∏
j

qvj = wb
∏
j

wvj = wa
∏
i

wuj = wa+b
∏
i

quj mod J.

Since X has generic support, the relation (3) follows. This proves (iii).

Corollary 2.4. Z(Γ) is smoothable and dimσ(Γ) = r for any G-graph Γ.
The map I �→ Γ(S(I)�) is a bijection between the set of I ∈ HilbG(Ar)
generated by monomials and the set of G-graphs.

Proof. By Theorem 2.3, Z(Γ) is smoothable for any G-graph Γ. Hence Z(Γ)
is a 0-stratum of a toric chart of HilbG(Ar) over Ar/G. This implies that
dimσ(Γ) = r. The rest is clear.
See also [INkjm98] for the case where G ⊂ SL(3, k).

Lemma 2.5. Let Γ be a G-graph and σ(Γ) the same as before. Let τ be
a codimension one face of σ(Γ). Then there exists v∗ := v− − v+ ∈ M
indivisible in M by any positive integer ≥ 2 such that v− ∈ M0

0 , v+ =
wtΓ(v−) ∈ Γ and v± has no common factors in M0

0 (that is, there is no
nonzero u ∈ M0

0 such that v± − u ∈ M0
0 ), τ = σ(Γ) ∩ (v∗)⊥ and σ(Γ) ⊂

{v− ≥ v+}, v∗ is a generator of the lattice τ⊥ ∩M .

Proof. Since τ is codimension one in σ(Γ), there exists v∗ := v− − v+ ∈ M
such that v+ = wtΓ(v−) and τ = σ(Γ) ∩ {v∗}⊥, σ(Γ) ⊂ {v− ≥ v+} for
some v± ∈ M0. We note that if v∗ := v− − v+ ∈ M such that v− ∈ M0

0 ,
v+ = wtΓ(v−) ∈ Γ and if v± has a common factor u, then v+ − u ∈ Γ
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because Γ is a G-graph. Similarly v− − u ∈M0
0 and wtΓ(v− − u) = v+ − u.

Hence without loss of generality we may assume that v± has no factors in
common. Moreover we may assume that v− − v+ is primitive in M , that
is, v− − v+ is divisible in M by no positive integer ≥ 2. In fact, suppose
that there exist e± ∈ M0

0 with no common factors and a positive integer
� such that v− − v+ = �(e− − e+) and e− − e+ ∈ M . Since M is free, it
follows from v− + �e+ = v+ + �e− that v± = �e±. Since Γ is a G-graph,
e+ ∈ Γ whence e− /∈ Γ and wtΓ(e−) = e+ because e− − e+ ∈M . Moreover
τ = σ∩{e− = e+}, σ ⊂ {e− ≥ e+}. Thus we may assume v−−v+ is divisible
in M by no positive integer ≥ 2. This also shows that v∗ is a generator of
the lattice τ⊥ ∩M . This completes the proof of Lemma.
Definition 2.6. Let Γ be a G-graph, v∗, v+ and v− as in Lemma 2.5. Sup-
pose v± �= 0. A G-igsaw transform Γ′ of Γ is then defined to be

Gig(v+, v−)(v) = v + c+max(v)(v− − v+) ∈ Γ′,(4)

Γ′ := Gig(v+, v−)(Γ) = {Gig(v+, v−)(v); v ∈ Γ}(5)

where c+max(v) := max{c ∈ Z; v − cv+ ∈M0
0}.

The effect by Gig(v+, v−) is to chop elements off one extreme edge of the
G-graph Γ, and glue them back at the opposite extreme to preserve the
condition Definition 1.4 (ii). See Section 5 and Figures 2 and 3. We will see
in Lemma 2.8 that Γ′ is also a G-graph adjacent to Γ in the sense that σ(Γ)
and σ(Γ′) are adjacent, i.e. have a codimension one face in common.

2.7. One parameter family of clusters. Let m and n be respectively the
maximal ideal of k[Ar] at the origin, and the ideal of k[Ar] generated by all
G-invariant monomials vanishing at the origin.
Let I ∈ HilbG(Ar) and {I(q); q ∈ A1} an A1-flat G-equivariant deforma-

tion of I. Suppose I(q) ⊂ m. Then n ⊂ I(q) because k[Ar]/I(q) � k[G],
hence the G-invariant part of k[Ar ]/I(q) is spanned by constant functions.
Then dimk k[Ar ]/I(q) is independent of q so that it determines a natural
morphism φ : A1 = P1 \ {∞} → Gr(V, n) into the Grassmann variety
Gr(V, n) of codimension n subspaces of V where V := k[Ar ]/n, n = |G|.
Since Gr(V, n) is projective, φ extends to P1. We denote by the same φ the
extension of φ to P1. Since φ(∞) ∈ Gr(V, n), it determines a unique ideal
Iφ(∞) of k[Ar] such that φ(∞) = Iφ(∞)/n ∈ Gr(V, n).
Lemma 2.8. Let Γ be a G-graph, τ and v∗ := v− − v+ the same as in
Lemma 2.5. Suppose v± �= 0. Define a deformation {I(Γ, v∗)(q)}q∈A1 of
I(Γ) in the v∗-direction by

I(Γ, v∗)(q) = (wv− − qwv+ , wv (v ∈M0
0 \ Γ, v −wtΓ(v) �∈ τ⊥)).(6)

Then I(Γ, v∗)(∞) := (limq→∞ I(Γ, v∗)(q)/n) + n = I(Gig(v+, v−)(Γ)). In
particular, Gig(v+, v−)(Γ) is a G-graph.
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Proof. First we prove I(Γ, v∗)(0) = I(Γ). Let σ = σ(Γ) and J(Γ) :=
I(Γ, v∗)(0). Let sv (v ∈ M) be the torus coordinate of the torus embed-
ding Uσ := Spec k[

∨
σ ∩M ]. Let q = sv−−v+. It is clear that J(Γ) ⊂ I(Γ).

Conversely let v ∈ M0
0 \ Γ. If v − wtΓ(v) �∈ τ⊥, then wv ∈ J(Γ). As-

sume v − wtΓ(v) ∈ τ⊥. It follows that there exists n ≥ 1 such that
v − wtΓ(v) = n(v− − v+). Hence v − nv− ∈ M0

0 and wtΓ(v) − nv+ ∈ M0
0 .

Hence wv = wnv−wv−nv− ∈ wnv−k[Ar] ⊂ J(Γ). Therefore I(Γ) = J(Γ).
Let Γ′ := Gig(v+, v−)(Γ). Then we see

M0
0 \ Γ′ = {v �∈ Γ, v − wtΓ(v) �∈ τ⊥} ∪ {v ∈ Γ; v − v+ ∈M0

0 }.(7)

In fact, if v �∈ Γ, then v �∈ Γ′ if and only if v−wtΓ(v) �∈ τ⊥. If v ∈ Γ, then
v ∈ Γ′ if and only if v − v+ �∈ M0

0 . In other words, if v ∈ Γ, then v �∈ Γ′ if
and only if v − v+ ∈M0

0 . This proves (7).
We can easily prove that I(Γ, v∗)(q) is coflat overA1

v∗ � Spec k[q] and that
Γ is a k-basis of k[A3]/I(Γ, v∗)(q). Since I(Γ, v∗)(q) ⊂ m, this implies that
n ⊂ I(Γ, v∗)(q). Therefore we can define I(Γ, v∗)(∞) := limq→∞ I(Γ, v∗)(q)
as in Subsection 2.7. Hence n ⊂ I(Γ, v∗)(∞). Since I(Γ, v∗)(∞) is Gr

m-
invariant, there is a G-graph Γ′′ such that I(Γ, v∗)(∞) = I(Γ′′). We prove
Γ′ = Γ′′. Since |Γ′| = |Γ′′| = |G|, it suffices to prove Γ′′ ⊂ Γ′. If v �∈ Γ and
v − wtΓ(v) �∈ τ⊥, then wv ∈ I(Γ, v∗)(q) for any q, hence wv ∈ I(Γ, v∗)(∞).
If v ∈ Γ and v − v+ ∈ M0

0 , then wv = wv−v+wv+ ∈ I(Γ, v∗)(∞). Hence
by (7) we see (M0

0 \ Γ′) ⊂ (M0
0 \ Γ′′). Hence Γ′′ ⊂ Γ′. It follows that

I(Γ, v∗)(∞) = I(Gig(v+, v−)(Γ)). This completes the proof.

Corollary 2.9. Let Γ be a G-graph and Γ′ := Gig(v+, v−)(Γ). Let v∗ :=
v− − v+, v+ ∈ Γ, v− ∈ Γ′ and h := sv−−v+ the same as before. Then
k[S(Γ)][1/h] � k[S(Γ′)][h].

Proof. For any v ∈ M0
0 , there exists a unique integer n ≥ 0 such that

wtΓ′(v) = wtΓ(v)+n(v−−v+), that is, v−wtΓ(v) = v−wtΓ′(v)+n(v−−v+).
In particular, v+ −wtΓ′(v+) = v+ − v−. Hence we have

wv−wtΓ(v) = wv−wtΓ′(v)wn(v−−v+)(8)

wv−−v+ = (wv+−v−)−1.(9)

This proves the isomorphism.

Remark 2.10. Thus by Corollary 2.9 we can glue together all V (Γ) (Γ ∈
Graph(G)) to obtain an irreducible varietyW (G) := TM(Graph(G)). We see
also that there is a zero-dimensional universal subscheme Zvers over W (G)
such that Zvers ×W (G) V (Γ) � Zvers(Γ). The torus embedding TM (Fan(G))
is the normalization of W (G). It is not known whether V (Γ) as well as
HilbG is normal.

Theorem 2.11. Let G be a finite abelian subgroup of GL(r, k) whose order
is prime to the characteristic of k. Let Graph(G) be the set of all G-graphs
and Fan(G) the set of all σ(Γ) with Γ ∈ Graph(G). Then
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(i) Fan(G) is a finite fan with its support ∆,
(ii) Fan(G) is obtained from a G-graph by G-igsaw tranformations,
(iii) TM(Graph(G)) � HilbG(Ar) and it is projective over Ar/G,
(iv) TM(Fan(G)) is the normalization of HilbG(Ar), projective over Ar/G.

Proof. First we notice that Ar/G � Spec k[
∨
∆ ∩M ], the latter of which we

denote by TM (∆) where
∨
∆ is the dual cone of ∆ in MR :=M ⊗R.

Now we prove (iii) and (iv). In fact, let W (G) = TM (Graph(G)) and X
the normalization of it. By the universality of Hilb(Ar) the subscheme Zvers

gives rise to a morphism h : W (G)→ HilbG := HilbG(Ar). We prove that h
is an isomorphism. Let H be the normalization of HilbG. Since HilbG hence
H admits a TM -action, H is a normal torus embedding. Hence we have a
sequence of morphisms of normal torus embeddings

X
h̃→ H → Ar/G

where h̃ is the morphism induced from h : X → HilbG. If h̃ is not an
isomorphism, some toric 1-strata will be contracted by h̃, hence by h because
X is finite over W (G). This contradicts Lemma 2.3 (iii). Hence X � H,
whence W (G) is finite and generically bijective over HilbG. Since W (G)
is locally isomorphic to HilbG by Lemma 2.3 (iii), W (G) � HilbG. Hence
W (G) is projective over Ar/G. The normalization TM(Fan(G)) of W (G) is
also projective over Ar/G because it is finite over W (G).
Next we prove (i) and (ii). Since TM(Fan(G)) � HilbG(Ar) is projective

over Ar/G � TM (∆), the support of Fan(G) is exactly ∆. Let B := nM+
0 +

M0
0 . Since w

v ∈ I(Γ) (∀v ∈ B) for any G-graph Γ, Γ is contained in the
fixed finite subset M0

0 \ B of M0
0 . Therefore there are only finitely many

G-graphs. Hence Fan(G) is a finite fan with its support ∆. For any G-graph
Γ, the subscheme Z(Γ) is smoothable by Lemma 2.3. Hence by Lemmas 2.5
and 2.8 and the connectivity of ∆ any G-graph is obtained from a given
G-graph by G-igsaw transformations.

3. G-graphs in dimension three

In what follows we study HilbG(A3) when G ⊂ SL(3, k).
3.1. G-admissible fans. Let n = |G| and g = (a/n, b/n, c/n) ∈ G such
that 0 ≤ a, b, c ≤ n− 1. Then the sum (a + b+ c)/n is equal to either 1 or
2 if g is not the identity of G. If it is equal to 1 (resp. 2), then we call g
junior (resp. senior). Let Jun(G) be the set of all junior elements in G, and
Jun∗(G) := {e1, e2, e3} ∪ Jun(G).
We notice A3/G � TM(∆), a torus embedding. We subdivide ∆ into

simplicies with apices in Jun∗(G) in an arbitrary manner to get a fan FAN.
FAN is called G-admissible if any 3-dimensional cone τ ∈ FAN is generated
by three vertices v1, v2, v3 ∈ Jun∗(G) such that τ ∩ N = {v1, v2, v3}. By
[Roan94], the torus embedding TM (FAN) is a crepant smooth resolution of
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A3/G if FAN is G-admissible. Any crepant smooth resolution of A3/G is
obtained this way.
The purpose of this section is to prove that given an abelian subgroup

G of SL(3, k) the fan Fan(G) is G-admissible in the above sense and that
HilbG � TM (Fan(G)).

Lemma 3.2. Assume G ⊂ SL(3, k). Let Γ be a G-graph and pk = max{u ∈
Z;ufk ∈ Γ} (k ∈ Z/3Z). Then there exist unique non-negative integers
ak+1, bk−1 such that

(pk + 1)fk ≡ ak+1fk+1 + bk−1fk−1 ∈ Γ.
Proof. We prove that (p1 + 1)f1 ≡ νf2 + µf3 ∈ Γ for some ν, µ. In fact,
by the definition of p1 we have (p1 + 1)f1 �∈ Γ. Then by Definition 1.4
there exists a unique λf1 + νf2 + µf3 ∈ Γ such that (p1 + 1)f1 ≡ λf1 +
νf2 + µf3 ∈ Γ. In particular, (p1 + 1)f1 �= λf1 + νf2 + µf3. If λ ≥ 1, then
(λ−1)f1+νf2 +µf3 ∈ Γ by Definition 1.4, which contradicts Definition 1.4
because p1f1 ≡ (λ−1)f1+νf2+µf3 ∈ Γ and p1f1 ∈ Γ. Therefore λ = 0.
Lemma 3.3. (Unique Valley Lemma) Suppose r ≥ 0, s ≥ 0. Assume

rfk+1 + sfk−1 ∈ Γ, (r + 1)fk+1 + sfk−1 ∈ Γ,
rfk+1 + (s+ 1)fk−1 ∈ Γ, (r + 1)fk+1 + (s+ 1)fk−1 �∈ Γ.

Then r = ak+1, s = bk−1 and (pk + 1)fk ≡ rfk+1 + sfk−1.

Proof. Let k = 1 for simplicity. By Definition 1.4 there exists af1 + bf2 +
cf3 ∈ Γ such that (r + 1)f2 + (s+ 1)f3 ≡ af1 + bf2 + cf3. Since (r+ 1)f2 +
(s+1)f3 �∈ Γ, we have (r+1)f2+ (s+1)f3 �= af1+ bf2 + cf3. If b ≥ 1, then
rf2+ (s+ 1)f3 ≡ af1+ (b− 1)f2+ cf3 ∈ Γ, which contradicts Definition 1.4
because rf2 + (s + 1)f3 ∈ Γ. Hence b = 0. Similarly c = 0. It follows
that (r + 1)f2 + (s + 1)f3 ≡ af1 ∈ Γ. Since f1 + f2 + f3 ≡ 0, we have
rf2 + sf3 ≡ (a + 1)f1, where rf2 + sf3 ∈ Γ. It follows from Definition 1.4
that (a+ 1)f1 �∈ Γ. Therefore a = p1.

Definition 3.4. We call vk := ak+1fk+1 + bk−1fk−1 (k ∈ Z/3Z) a virtual
valley of Γ if the condition of Lemma 3.2 is satisfied. We also call sk := pkfk
a summit of Γ. The vector rfk+1 + sfk−1 of Γ is called a valley of Γ if
the conditions in Lemma 3.3 are satisfied. By definition Γ has always three
virtual valleys, but may not have valleys.

Lemma 3.3 is true even if r = 0 or if s = 0. By Lemma 3.3 Γ has at most
a unique valley on Γk := Γ ∩ (Rfi +Rfj) (i, j �= k). It gives a geometric
way of computing ak and bk.

3.5. Classification of G-graphs. By Lemma 3.3 any G-graph Γ is one of
the following:
(i) a linear graph,
(ii) a planar graph with no valleys,
(iii) a planar graph with a valley,
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(iv) three planar graphs with no valleys,
(v) a planar graph with a valley and two planar graph with no valleys,
(vi) two planar graphs, each with a valley and a planar graph with no

valley,
(vii) three planar graphs, each with a valley.

Definition 3.6. Let Γ be a G-graph. Let vi := ai+1fi+1 + bi−1fi−1 be the
virtual valleys of Γ (i ∈ Z/3Z). Then we define

vi := (pi + 1)fi − vi,

wi := f1 + f2 + f3 − vi,

vc = wc := f1 + f2 + f3.

A G-graph Γ is called v-crepant (resp. w-crepant) if v1 + v2 + v3 =
f1 + f2 + f3 (resp. w1 + w2 +w3 = f1 + f2 + f3).
We call Γ crepant if Γ is either v-crepant or w-crepant. We remark that

no G-graph Γ is v-crepant and w-crepant.

Lemma 3.7. Let Γ be a G-graph. Then S(Γ) =
∨
σ(Γ) ∩ M . If Γ is v-

crepant (resp. w-crepant), then S(Γ) = Z+v1 +Z+v2 +Z+v3 (resp. S(Γ) =
Z+w1 + Z+w2 + Z+w3). In particular, S(Γ) =

∨
σ(Γ) ∩M .

Proof. By Lemma 1.8 and Subsection 3.5, S(Γ) is generated by vi, wi and vc
(i = 1, 2, 3). If Γ is v-crepant, then vc = v1+v2+v3 and wi = vc−vi. Hence
S(Γ) = Z+v1 +Z+v2 +Z+v3. Since M =M(Γ), we have S(Γ) =

∨
σ(Γ)∩M .

The rest is similar.

Notation 3.8. Let Γ be a G-graph. For a = (a1, a2, a3), b = (b1, b2, b3) we
denote Γ by Γ = Γ(a, b) (resp. Γ∗(a, b)) if Γ is v-crepant (resp. w-crepant).
For the same a and b we also define

‖a‖ = a1 + a2 + a3, a ∗ b = a1b2 + a2b3 + a3b1,

d(a, b) = 1 + ‖a‖+ ‖b‖+ a ∗ a+ a ∗ b+ b ∗ b.
Lemma 3.9. Let Γ be a G-graph. With the same notation as above,
(i) If Γ = Γ(a, b), then wi = vi−1 + vi+1, pi = ai + bi and |Γ| = d(a, b),
(ii) If Γ = Γ∗(a, b), then vi = wi−1 + wi+1, pi = ai + bi + 1 and |Γ| =

3 + ‖a‖+ ‖b‖+ d(a, b).

Proof. Clear.

3.10. Crepant G-graphs. Any v-crepant Γ in the first six classes is viewed
as one of the special cases of crepant graphs in (vii). In fact, if at least one
of ai or bj equals zero, (vii) is reduced to the cases (i)-(vi). For instance,
Γk := Γ∩ {xk = 0} has no valley if and only if ak−1bk+1 = 0, while the case
(i) is obtained by setting a = (a1, 0, 0) and b = (b1, 0, 0) with a1 > 0, b1 > 0,
in which case Γ = Γ(a, b) = {if1; i ∈ [0, a1 + b1]}. It is v-crepant but is not
w-crepant. Since various proofs and computations are carried out more or
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less in the same manner as (vii), we mainly discuss the case (vii) in what
follows. In the case (vii) Γ is given by

Γ =
{
ifk + jfk+1; (i, j) ∈ [0, pk] × [0, bk+1] or
(k ∈ Z/3Z) (i, j) ∈ [0, ak]× [bk+1 + 1, pk+1]

}

where pk = ak + bk.
Let Γ = Γ∗(a, b) be a w-crepant G-graph. Then pi = ai + bi + 1 ≥ 1 by

Lemma 3.9. Therefore (i)-(iii) is impossible.
Let us consider the case (iv). Then by Lemma 3.9 we have

|Γ| = 1 + ‖p‖+ p ∗ p = 4 + 2‖p‖+ a ∗ a+ a ∗ b+ b ∗ a+ b ∗ b.
Hence 3 + ‖a‖+ ‖b‖+ b ∗ a = 0, which is impossible. Similarly we derive

a contradiction in the cases (v) and (vi). Thus there are no w-crepant
G-graphs in (i)-(vi). However there do exist infinitely many w-crepant G-
graphs in (vii). If Γ is w-crepant with ak = bk = 0, then Γ = {0, f1, f2, f3},
and G is an abelian group � Z/2Z⊕Z/2Z of order 4 consisting of diagonal
matrices with entries ±1 and determinant one. See also Corollary 2.4.
The following Lemmas follow from Definition 2.6 readily.

Lemma 3.11. Let Γ = Γ(a, b) be a v-crepant G-graph, and v1 = v− − v+,
v− = (p1 + 1)f1 and v+ = a2f2 + b3f3. Then the G-igsaw transformation
Gig(v−, v+)(Γ) of Γ is a crepant G-graph adjacent to Γ and it is given by

Gig(v+, v−)(Γ) =



Γ∗(a− f2, b− f3) if a2 ≥ 1, b3 ≥ 1
Γ(a′, b′) if a2 ≥ 1, b3 = 0
Γ(a′′, b′′) if a2 = 0, b3 ≥ 1

(10)

where

a′ = (([p2/a2] − 1)(p1 + 1) + a1, (1 + [p2/a2])a2 − p2 − 1, 0),
b′ = (p1 + 1, p2 − [p2/a2]a2, a3),
a′′ = (p1 + 1, b2, p3 − [p3/b3]b3),

b′′ = (([p3/b3]− 1)(p1 + 1) + b1, 0, (1 + [p3/b3])a3 − p3 − 1).
Proof. Let vi be as before and Γ′ = Gig(v+, v−)(Γ). Then by Lemma 2.8,
Γ′ is a G-graph. Therefore we have v′i := vi(Γ′) and w′

i := wi(Γ′) by Defini-
tion 3.6. The G-graph Γ′ is given as above. In fact, suppose a2 ≥ 1, b3 ≥ 1.
Then we see that p1(Γ′) = p1(Γ)+1, a2(Γ′) = a2(Γ)−1 and b3(Γ′) = b3(Γ)−1
and for the other invariants ai(Γ′) = ai(Γ) (i = 1, 3), bj(Γ′) = bj(Γ)
(j = 1, 2) and pk(Γ′) = pk(Γ) (k = 2, 3). Therefore p2(Γ′) = a2(Γ′) + b2(Γ′),
Γ′ = Γ∗(a−f2, b−f3) and wi(Γ′) = (1−δi1)(f1+f2+f3)−vi. In particular,
w′
1 = −v1, w′

1 +w′
2 + w′

3 = f1 + f2 + f3. Hence Γ′ is w-crepant.
If a2 ≥ 1, b3 = 0, then v′1 = (k + 1)v1 + v2, v′2 = −v1, v′3 = v3 − (k − 1)v1

where k = [p2/a2]. Hence v′1 + v′2 + v′3 = f1 + f2 + f3. This proves that Γ′
is v-crepant. The rest is similar.
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Lemma 3.12. Let Γ = Γ∗(a, b) be a w-crepant G-graph and w1 = w−−w+,
w− = (a2 + 1)f2 + (b3 + 1)f3 and w+ = p1f1. Then Gig(w+, w−)(Γ)) =
Γ(a+ f2, b+ f3) and it is v-crepant and adjacent to Γ.

Proof. This case is the converse to the first case in Lemma 3.11.

Lemma 3.13. Any G-graph is crepant if G ⊂ SL(3, k).
Proof. Suppose that there is at least a crepant G-graph Γ. Then any G-
graph adjacent to Γ is obtained by a G-igsaw transformation from Γ by
Theorem 2.11 and it is crepant by Lemmas 3.11 and 3.12. Thus we can
find adjacent crepant G-graphs successively so that we can eventually cover
the whole cone ∆ with σ(Γ) for crepant G-graphs Γ. It remains to find a
crepant G-graph.
If G is cyclic, then let g = (r/n, s/n, 1/n) be a generator with 1 ≤ r ≤

s ≤ n − 1 and 1 + r + s = n. Let Γ be a linear graph in Subsection 3.5 (i)
with Γ = {xf3;x ∈ [0, n − 1]}. Then it is easy to check that Γ is a crepant
G-graph. We see Γ = Γ(a, b) where ai = bi = 0 (i = 1, 2), a3 = s and b3 = r.
Next consider an abelian group G with two generators. Let m be the

maximal order of elements in G. Then without loss of generality we may
assume that G is a group of order �m generated by g := (r/m, s/m, 1/m)
and f := (−1/�,1/�, 0) for some 2 ≤ � ≤ m. Let Γ = {pf2 + qf3; p ∈
[0, � − 1], q ∈ [0,m − 1]}, a planar G-graph in Subsection 3.5 (ii) with no
valleys. Let a1 = b1 = b2 = 0, a2 = � − 1, a3 the unique integer such that
0 ≤ a3 ≤ m− 1, a3 = �s modm, and b3 := m − 1− a3 (≥ 0). Let a = (ai),
b = (bi). Then it turns out that Γ = Γ(a, b) and Γ is v-crepant. This proves
the existence of crepant G-graphs. This completes the proof of Lemma.

Table 1. G-graphs

type v/w conditions valleys

(i) v ak = ak+1 = bk = bk+1 = 0 none
(ii) v ak = bk = ak−1bk+1 = 0 none
(iii) v ak = bk = 0 vk

(iv) v a2b1 = a3b2 = a1b3 = 0 none
(v) v akbk−1 = ak+1bk = 0 vk

(vi) v ak+1bk = 0 vk,vk+1

(vii) v ak ≥ 1, bk ≥ 1 vk (k = 1, 2, 3)
(vii) w ak ≥ 0, bk ≥ 0 vk (k = 1, 2, 3)

3.14. Generators of σ(Γ). By Definition 1.5 σ(Γ) is given explicitly. Let

a(a, b) =


F (a2, a3, b2, b3)
F (a3, a1, b3, b1)
F (a1, a2, b1, b2)


(11)

where a = (a1, a2, a3), b = (b1, b2, b3) and F (x, y, u, v) = (xy + xv+ uv)/|Γ|.
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It turns out that σ(Γ) is generated by three junior elements of G via the
isomorphism G � N/N0. Let Γ = Γ(a, b) and

A = A(Γ) =


a1 + b1 + 1 −a2 −b3

−b1 a2 + b2 + 1 −a3
−a1 −b2 a3 + b3 + 1


 .(12)

Then we have

A−1 := (a1(Γ), a2(Γ), a3(Γ))(13)

:= (a(a+ f2, b+ f3), a(a+ f3, b+ f1), a(a+ f1, b+ f2)).

The column vectors ak(Γ) are junior elements of G via the isomorphism
G � N/N0 because (1, 1, 1)A = (1, 1, 1) by the v-crepancy of Γ. Next take
Γ = Γ∗(a, b) and set

A∗ = A∗(Γ) =


−a1 − b1 − 1 a2 + 1 b3 + 1

b1 + 1 −a2 − b2 − 1 a3 + 1
a1 + 1 b2 + 1 −a3 − b3 − 1


(14)

and (A∗)−1 = (a∗1(Γ), a∗2(Γ), a∗3(Γ)). The vectors a∗k(Γ) are junior elements
of G via the isomorphism G � N/N0 where

a∗1(Γ) = a(a+ f3 + f1, b+ f1 + f2),

a∗2(Γ) = a(a+ f1 + f2, b+ f2 + f3),(15)

a∗3(Γ) = a(a+ f2 + f3, b+ f3 + f1).

Thus σ(Γ(a, b)) is generated by ak(Γ(a, b)) (k ∈ Z/3Z), while σ(Γ∗(a, b))
is generated by a∗k(Γ

∗(a, b)) (k ∈ Z/3Z).

4. A crepant smooth resolution

Lemma 4.1. Let Graph(G) be the set of all G-graphs. Let Fan(G) be the
set of all σ(Γ) such that Γ ∈ Graph(G). Then Fan(G) is a finite fan with ∆
its support, which consists of exactly |G| 3-dimensional G-cones and their
faces. The associated torus embedding TM(Fan(G)) is a crepant smooth
resolution of TM(∆) � A3/G.

Proof. By Lemma 3.7 TM(Fan(G)) is smooth. It remains to prove crepancy.
Let Γ ∈ Graph(G) and let ui be a v-basis or a w-basis of M . Then X :=
TM(Fan(G)) has a globally well-defined rational 3-form

ωrat :=
3∏

i=1

dwui/wui = |G|
3∏

i=1

dwfi/wfi .(16)

By the crepancy of Γ ∈ Graph(G), wf1+f2+f3ωrat is a nonvanishing regular
3-form on X because char. k is prime to n = |Γ|, whence the dualizing sheaf
of X is trivial. This proves Lemma.

Theorem 4.2. TM(Fan(G)) � HilbG(A3).
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Proof. By Theorem 2.11 and Lemma 3.7 we see HilbG � TM(Graph(G)) �
TM(Fan(G)).

Remark 4.3. The crepancy of G-graphs is interpreted almost as smooth-
ness of versal generic-support-deformation spaces of Z(Γ) whenG ⊂ SL(3, k).
With the notation in Subsection 3.1A3 � Spec k[

∨
∆∩M0] � Spec k[x, y, z]

where x,y and z are the torus coordinates corresponding to the characters
of M0 f1, f2 and f3 respectively. We also denote k[x, y, z] by k[A3].
Let Γ be a G-graph and Z(Γ) the associated G-cluster.
The generic-support G-equivariant deformation theory of the cluster Z(Γ)

is more or less the same for any crepant G-graph Γ. The cases (i)-(vi) are
obtained by specialization of the case (vii)v. Now suppose that Γ := Γ(a, b)
is a v-crepant G-graph in the class (vii). The ideal I(Γ) defining Z(Γ) is
given by

I(Γ) :=
(

xp1+1, yp2+1, zp3+1, xyz
ya2+1zb3+1, za3+1xb1+1, xa1+1yb2+1

)
.

Let Av := k[s1, s2, s3] and Zv a G-invariant subscheme of A3
Av defined by

the ideal

Iv(Γ)(s) :=


xp1+1 − s1y

a2zb3 , yp2+1 − s2z
a3xb1 , zp3+1 − s3x

a1yb2

ya2+1zb3+1 − s2s3x
p1 , za3+1xb1+1 − s3s1y

p2

xa1+1yb2+1 − s1s2z
p3 , xyz − s1s2s3


 .

This is the versal deformation given in Lemma 2.3. Similarly for a w-
crepant G-graph Γ := Γ∗(a, b) the versal deformation of Zw := Z(Γ) is
given by

Iw(Γ)(t) :=


xp1+1 − t2t3y

a2zb3 , yp2+1 − t3t1z
a3xb1 , zp3+1 − t1t2x

a1yb2

ya2+1zb3+1 − t1x
p1 , za3+1xb1+1 − t2y

p2

xa1+1yb2+1 − t3z
p3 , xyz − t1t2t3


 .

Thus in each case the distinguished term xyz − s1s2s3 or xyz − t1t2t3 is
present in the ideal defining a versal deformation, which implies crepancy of
HilbG(A3).
By Lemma 3.7 Uσ(Γ) := Spec k[

∨
σ(Γ) ∩M ] turns out to be

Uσ(Γ(a,b)) : = Spec k[w
v1 , wv2 , wv3 ] � Spec k[s1, s2, s3],

Uσ(Γ∗(a,b)) : = Spec k[w
w1 , ww2 , ww3 ] � Spec k[t1, t2, t3].

See Definition 3.6 for the notation.

4.4. The exceptional set. Let π : HilbG → A3/G be the natural mor-
phism and E(G) the execeptional set of π. Any irreducible component of
E(G) is by Theorem 4.2 a smooth torus embedding corresponding to a junior
element g ∈ G, which we denote by E(g). Hence E(G) = ∪g∈Jun(G) E(g).
Let Graph(G,g) be the set of Γ ∈ Graph(G) with g ∈ σ(Γ), and Ug(σ(Γ)) :=
Speck[

∨
σ(Γ)∩g⊥∩M ]. ThenE(g) is covered with Ug(σ(Γ)) (Γ ∈ Graph(G,g)).
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Definition 4.5. Let gi ∈ Jun(G) (i = 1, 2, 3) be distinct elements. Then
E(g1) ∩ E(g2) is a smooth rational curve if and only if Graph(G,g1) ∩
Graph(G,g2) �= ∅ if and only if σ(g1, g2) := R+ g1 + R+ g2 ∈ Sk2 Fan(G).
Similarly ∩i=1,2,3 E(gi) is a point if and only if ∩i=1,2,3 Graph(G,gi) �= ∅
if and only if σ(g1, g2, g3) :=

∑
i=1,2,3 R+ gi ∈ Sk3 Fan(G). In this case

|∩i=1,2,3 Graph(G,gi)| = 1. Thus E(G) is stratified into 0,1,2-strata labeled
by Skp Fan(G) (p = 3, 2, 1) respectively. Let τ ∈ Skp Fan(G) and E0(τ) a
(3− p)-stratum of E(G) corresponding to τ and E(τ) the closure of E0(τ).
This means that E0(σ) ∩ E0(τ) = ∅ for σ �= τ and E(σ) ⊂ E(τ) if τ ≺ σ

(τ, σ ∈ Fan(G)), where E0(τ) = Spec k[τ⊥ ∩M ] �G3−p
m .

Definition 4.6. For a subset A of M0 and τ ∈ Fan(G) we define
Graph(G,τ) := ∩g∈τ∩Jun(G)Graph(G,g),

Γ(τ) := ∩Γ∈Graph(G,τ ) Γ, Γ(τ,A) := ∩A⊂Γ∈Graph(G,τ ) Γ.

Now one easily sees

Lemma 4.7. Let Γ = Γ(a − f2, b − f3) with ai, bj ≥ 1 and g := a1(Γ) =
a(a, b) with the notation in Subsection 3.14. Then

Graph(G,g) =
{
Γ∗(a− fi − fi+1, b− fi+1 − fi−1)
Γ(a− fi+1, b− fi+2) (i ∈ Z/3Z)

}
.

Corollary 4.8. Let the G-graph Γ and the junior element g be as above.
Then E(g) is a regular hexagon – P2 blown up at three distinct points.

Remark 4.9. As in [IN98] there is a certain (rather complicated) corre-
spondence between the set of irreducible exceptional subvarieties and the
set of minimal G-submodules generating I ∈ HilbG. This would be a kind of
phenomenon generalizing [McKay80] from the view point of representations
of G. However it seems difficult to understand this correspondence only from
irreducible decompositions of tensor products. We omit it. A generalization
of McKay correspondence in dimension three analogous to [GSV83] is given
in [INkjm98].

5. Examples in dimension 3

5.1. The case G = G1,2,3. We will explain the theory in the previous sec-
tions by the examples in smaller values. Let G be a cyclic group of order
6, g = (1, 2, 3)/6 a generator of G. We denote G = G1,2,3 when necessary.
Figure 1 plots all the junior elements for G = G1,2,3. Any Γ ∈ Graph(G) is
one of the following table (Table 2). DefΓ is the set of toric parameters for
deforming the G-cluster Z(Γ).
First we start with the ideal I(Γ1) = (x6, y, z). It is clear dim k[A3]/I(Γ1) =

6, and that k[A3]/I(Γ1) is spanned by Γ1. We can deform Z(Γ1) into smooth
G-subschemes by (x6− s, y, z), whence Z(Γ1) ∈ HilbG. The versal deforma-
tion of Z(Γ1) is given by the ideal

(x6 − s, y − tx2, z − ux3, x4y − st, x3z − us, xyz − stu)
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where x2 and x3 are the unique elements of Γ1 such that wt(y) = wt(x2),
wt(z) = wt(x3). DefΓ1 is now understood as 3 free parameters s, t, u hence
may be understood as x6, yx−2 and zx−3. In this case there are two direc-
tions yx−2 and zx−3 of deformations which give rise to monomial G-ideals
(i.e. G-ideals generated by monomials). This is written in Figure 2 as b−2a
and c− 3a. The graph Γ2 is obtained from Γ1 by replacing 2a in any vector
of Γ1 by b repeatedly. In general, in the process of taking the limit of clus-
ters in the direction v− − v+ the second G-graph is obtained from the first
G-graph by replacing v+ by v− repeatedly.
For instance v+ = a+ b and v− = c in the process from Γ2 to Γ4. Hence

a + b ∈ Γ2 (resp. a + 2b) is transformed into c (resp. b + c) so that Γ2
is changed into Γ4 under (G1,2,3)ig(a + b, c). Figure 2 lists the possible
solutions to the jigsaw puzzle (the G-igsaw puzzle !) between G-graphs
when G = G1,2,3.

Table 2. G1,2,3-graphs/cones

No. Γ I(Γ)

1 {1, x, x2 , x3, x4, x5} (x6, y, z)
2 {1, x, y, xy, y2 , xy2} (x2, y3, z)
3 {1, y, z, yz, y2 , y2z} (x, y3, z2)
4 {1, x, y, z, yz, y2} (xy, y2z, zx, x2 , y3, z2)
5 {1, x, y, z, yz, zx} (x2, xy, y2 , z2)
6 {1, x, x2, z, xz, x2z} (x3, y, z2)

No. DefΓ σ(Γ)

1 x6, y/x2, z/x3 (e2, e3, g)
2 x2/y, y3, z/xy (e3, g, g3)
3 x/y2z, y3, z2 (e1, g3, g4)
4 xy/z, y2z/x, zx/y2 (g, g3, g4)
5 x2/y, y2/zx, z2 (g, g2, g4)
6 x3/z, y/x2 , z2 (e2, g, g2)

5.2. Jigsaw puzzles. For a given G-graph the possible solutions to the
jigsaw puzzle are clear at first sight if the graph is complicated enough, as
we see in the case of G1,5,31 below. See Figure 3. Let Γ = Γ(g10, g11, g17).
Then the G-graph Γ is v-crepant. There are exactly three jigsaw puzzle
solutions only in the vk-directions where vk is among 4a−2b− c, 5c−2a− b
and 4b−a−3c. For instance, the adjacent G-graph of Γ in the (5c−2a−b)-
direction is obtained by moving the hook at 2a+b consisting of 4 small black
dots, each surrounded by a large white circle, into the position 5c as in the
lower-left of the Figure 3. On the other hand there are exactly three jigsaw
puzzle solutions only in the wk-directions for any w-crepant Γ, for instance,
Γ = Γ(g4, g10, g11). See also Table 3 for another example of G-graphs/cones.
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Table 3. G1,2,4-graphs/cones

No. Γ I(Γ)

0 {1, x, y, z, xy, yz, zx} (x2, y2, z2, xyz)
1 {1, y, z, z2 , z3, yz, yz2} (x, y2, z4, yz3)
2 {1, z, x, x2 , x3, zx, zx2} (y, z2, x4, zx3)
3 {1, x, y, y2, y3, xy, xy2} (z, x2, y4, zx3)
4 {1, z, z2, z3, z4, z5, z6} (x, y, z7)
5 {1, y, y2, y3, y4, y5, y6} (x, y7 , z)
6 {1, x, x2 , x3, x4, x5, x6} (x7, y, z)

No. DefΓ σ(Γ)

0 x2/y, y2/z, z2/x (g, g2, g4)
1 x/z2, z4/y, y2/z (e1, g2, g4)
2 y/x2, x4/z, z2/x (e2, g, g2)
3 z/y2, y4/x, x2/y (e3, g, g4)
4 z7, x/z2, y/z4 (e1, e2, g2)
5 y7, z/y2, x/y4 (e3, e1, g4)
6 x7, y/x2, z/x4 (e2, e3, g)

6. Miscellaneous remarks

6.1. A singular example in dimension four. There is an example of
singular HilbG(A4). Let G be an abelian subgroup of SL(4, k) consisting
of all diagonal matrices with entries ±1, which we denote by G23 . We will
prove that HilbG(A4) is singular. The group G has order 8 with 6 junior
elements and 12 monomial G-ideals. Among them there are essentially three
different types of G-ideals whose G-graphs are Γ1, Γ2 and Γ3 in the Table 4.
Let Uk := Speck[

∨
σ(Γk) ∩M ]. We see that Uk (k = 1, 2) is smooth, while

U3 is singular. Hence HilbG(A4) is singular. The versal generic-support-G-
equivariant deformation of Z(Γk) (k = 1, 2, 3) is given by the ideal

I(Γ1)(s) :=
(
x− s1yzw, y

2 − s2, z
2 − s3, w

2 − s4
xyzw − s1s2s3s4

)
,

I(Γ2)(t) :=


x2 − t1t2t3t4, y

2 − t1t4, z
2 − t2t4, w

2 − t3t4
xy − t1zw, xz − t2yw, xw − t3yz

yzw − t4x, xyzw − t1t2t3t
2
4


 ,

I(Γ3)(u) :=


x2 − u1, y2 − u2, z2 − u3, w2 − u4
yz − u5xw, yw − u6xz, zw − u7xy

xyzw − u1u2u7




where

u2u7 = u3u6 = u4u5, u2u3 = u1u4u
2
5,

u2u4 = u1u3u
2
6, u3u4 = u1u2u

2
7.
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Table 4. G23-graphs/cones

No. Γ I(Γ)

1 {1, y, z, w, yz, yw, zw, yzw} (x, y2, z2, w2)
2 {1, x, y, z, w, yz, yw, zw} (xy,xz, xw, x2 , y2, z2, w2, yzw)
3 {1, x, y, z, w, xy, xz, xw} (yz, yw, zw, x2 , y2, z2, w2)

6.2. The case of no crepant resolutions. There is an example of a
smooth HilbG(A4) which is not a crepant resolution of A4/G. For instance
let G be the subgroup of SL(4, k) of order two generated by minus the iden-
tity. We easily see that HilbG(A4) is smooth, while it is well known that
A4/G has no crepant resolutions because it is terminal.

6.3. Abelian subgroups in GL. There is also an example of singular
HilbG for a finite abelian subgroup G in GL(3, k) by Reid. Very recently
R. Kidoh [Kidoh98] gave a complete description of HilbG(A2) for an abelian
finite subgroup G of GL(2, k) by using two kinds of continued fractions.

6.4. Quot-schemes. There are infinitely many algebro-geometric relatives
of Hilbert schemes such as Grothedieck’s Quot-schemes of coherent sheaves.

Problem 6.5. Suppose G ⊂ SL(3, k). Then for which G-invariant coherent
sheaf F on A3 is QuotG(F ) a projective crepant resolution of A3/G ? Is
any projective crepant resolution ofA3/G isomorphic to QuotG(F ) for some
G-invariant coherent sheaf F on A3 ?

A similar problem was communicated to us by Nakajima in the quiver
variety formulation.
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Figure 1. FAN(G1,2,3)

�e3 � e1�

g3

σ2 σ3

�
e2

� g4
σ5

� g2σ6

�

g

σ1

σ4

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄

�
�

�
�

�
�

�
�

��

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁

�
�

�
�
�

❆
❆

❆
❆

❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

Figure 2. JIGSAW PUZZLE OF G1,2,3-GRAPHS
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Figure 3. JIGSAW PUZZLE OF G1,5,31-GRAPHS
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