HILBERT SCHEMES OF G-ORBITS IN DIMENSION THREE

YASUSHI GOMI, IKU NAKAMURA, KEN-ICHI SHINODA

Abstract

We study the precise structure of Hilbert scheme $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$ of G-orbits in the space \mathbf{C}^{3} when the group G is a simple subgroup of $\mathrm{SL}(3, \mathbf{C})$ of either 60 or 168 . These are the only possible non-abelian simple subgroups of $\operatorname{SL}(3, \mathbf{C})$.

0. Introduction

For a given finite subgroup G of $\operatorname{SL}(3, \mathbf{C})$ a somewhat complicated scheme, the Hilbert scheme $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$ of G-orbits has been introduced for the purpose of resolving singularities of the quotient space \mathbf{C}^{3} / G as well as generalizing McKay correspondence in dimension two [McKay80]. It is defined to be the subscheme of $\operatorname{Hilb}^{|G|}\left(\mathbf{C}^{3}\right)$ parametrizing all the zero dimensional G-invariant subschemes with their structure sheaf isomorphic to the regular representation of the group G as G-modules. This scheme is now known by [BKR99] to be smooth and irreducible and it is a crepant resolution of the quotient space \mathbf{C}^{3} / G. See [Nakamura98] for smoothness and an algorithm of computation in the abelian case. See also [INakajima98].

On the other hand we know all the possibilities of finite subgroups of $\mathrm{SL}(3, \mathbf{C})$ by [Blichfeldt17], [BDM16] and [YY93]. There are exactly 4 infinite series labeled by A(belian), B, C, D, and 8 exceptional cases labeled by E though L. Among them there are only two non-abelian simple subgroups, which are of order either 60 or 168 . We denote these subgroups of $\operatorname{SL}(3, \mathbf{C})$ simply by G_{60} and G_{168}. In this article we study $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$ when G is either G_{60} or G_{168}. The structure of $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$ is more or less easily understood over the quotient space $\left(\mathbf{C}^{3} / G\right) \backslash\{0\}$. Since smoothness of $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$ is already known by [BKR99], the remaining problem is to describe the fibre of Hilb ${ }^{G}\left(\mathbf{C}^{3}\right)$ over the origin precisely. However the computations we actually need in the cases $G=G_{60}$ and G_{168} are rather enormous. Therefore we wish to state the result precisely, indicating our ideas of the computations only.

[^0]We instead explain in detail the simplest non-abelian case - a trihedral group G_{12} of order 12. In this case we describe the precise structure of $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$. This gives a negative answer to a question posed by [INakamura99, p.227]. In fact, G_{12} has a normal subgroup N of order 4 by definition. The composite Hilbert scheme $\operatorname{Hilb}^{G / N}\left(\operatorname{Hilb}^{N}\left(\mathbf{C}^{3}\right)\right)$ is a crepant resolution of \mathbf{C}^{3} / G as well as $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$. Both of the fibres over the origin of \mathbf{C}^{3} / G consist of 3 rational curves, but they have different configurations.

We note that crepant resolutions of \mathbf{C}^{3} / G_{60} and \mathbf{C}^{3} / G_{168} have been constructed by [M97] and [Roan96] by using the equations defining the quotient given by [YY93]. It remains to compare the structures of their resolutions and ours.

The authors would like to thank Professor Li Chiang for pointing out an error in the computation of $f_{3}^{3}+\bar{f}_{3}^{3}$ in Section 2.

1. Duality of the coinvariant algebra

The result of this section is more or less familiar to the specialists.
1.1. Complex reflection groups. Let V be a finite dimensional complex vector space, V^{\vee} the dual of V and M a finite subgroup of $\mathrm{GL}(V)$ generated by complex reflections of V. Here we mean by a complex reflection an automorphism of V of finite order which has exactly one eigenvalue distinct from 1.

Let $S:=S\left(V^{\vee}\right)$ be the symmetric algebra of V^{\vee} over $\mathbf{C}, S=\oplus_{k=0}^{\infty} S_{k}$ be the homogeneous decomposition of $S, S_{+}:=\oplus_{k=1}^{\infty} S_{k}$. Since M acts on V, hence on V^{\vee} contravariantly, it naturally acts on S by $g(F)(v)=F\left(g^{-1} v\right)$ for $F \in S$ and $v \in V$. Let S^{M} be the subalgebra of M-invariants of S, $S_{+}^{M}:=S^{M} \cap S_{+}, \mathfrak{n}_{M}:=S S_{+}^{M}$ and $S_{M}:=S / \mathfrak{n}_{M}$. We call S_{M} the coinvariant algebra of M.

Let S^{*} be the symmetric algebra of V, and we identify it with the algebra of polynomial functions on V^{\vee}. Following [Steinberg64] we define an algebra homomorphism D of S into the endomorphism ring End $\left(S^{*}\right)$ of S^{*} as follows. Let $v, w \in V^{\vee}$ and $F \in S^{*}$. Then we first define

$$
\left(D_{v} F\right)(w)=\lim _{t \rightarrow 0}(F(w+t v)-F(w)) / t
$$

and extend it as an algebra homomorphism of S into End $\left(S^{*}\right)$, in other words, we extend it to S by the conditions $D_{s t}:=D_{s} D_{t}, D_{s+t}=D_{s}+D_{t}$ for any $s, t \in S$.

We also define the G-invariant inner product

$$
\begin{equation*}
\alpha(s, F):=\left(D_{s} F\right)(0) \tag{1}
\end{equation*}
$$

for $s \in S, F \in S^{*}$. In fact, since $\left(D_{\sigma s} \sigma F\right)=\sigma\left(D_{s} F\right)$ for $\sigma \in M$, we have $\alpha(\sigma s, \sigma F)=\sigma\left(D_{s} F\right)(0)=\left(D_{s} F\right)(0)=\alpha(s, F)$. This inner product extends the inner product between V and V^{\vee}. By the inner product we identify V with V^{\vee}, and S^{*} with S as well as the subalgebra $\left(S^{*}\right)^{M}$ of M-invariants in S^{*} with S^{M}, for instance in Theorem 1.2 (2) where we apply [Steinberg64,

Lemma 3.1]. We use freely the identification in Theorem 1.2, in particular the notation (s, F) and $D_{s} F$ make sense for $s, F \in S$.

We recall a basic fact from [Bourbaki, Chapitre 5]
Theorem 1.2. Let V be an n-dimensional vector space and M a finite subgroup of $\mathrm{GL}(V)$ generated by complex reflections of V. Then

1. S^{M} is isomorphic to a polynomial ring of n variables, in other words, there are homogeneous polynomials $P_{1}, \cdots, P_{n} \in S$ such that

$$
S^{M}=\mathbf{C}\left[P_{1}, \cdots, P_{n}\right]
$$

2. There exists $P \in S$, unique up to constant multiples, such that
(2a) P is skew, that is, $g(P)=\operatorname{det}(g) P$ for any $g \in M$,
(2b) if $P^{\prime} \in S$ is skew, then P divides P^{\prime}.
We note that P is given in two different ways. Let P_{i} be the set of homogeneous generators of S and x_{i} a basis of V^{\vee}. First P is given as $P=\operatorname{Jac}\left(P_{1}, \cdots, P_{n}\right):=\operatorname{det}\left(\partial P_{i} / \partial x_{j}\right)$.

Let Σ be the set of all reflections in G. For any $g \in \Sigma$ there is an element $e_{g} \in V^{\vee}$ unique up to constant multiples such that $g(x)=x+f_{g}(x) e_{g}$ $\left(\forall x \in V^{\vee}\right)$ for some $f_{g} \in V$. Then $e_{g}=0$ is a linear equation defining the reflection hyperplane in V of g. Then $P=c \prod_{g \in \Sigma} e_{g} \in S$ for some nonzero constant c. This is the same as [Steinberg64, Theorem 1.4 (a)] though the notation looks slightly different.

The basic degrees (or characteristic degrees) of M are by definition the set of integers $d_{i}:=\operatorname{deg} P_{i}(1 \leq i \leq n)$, which is known to be independent of the choice of the generators P_{i}. It is easy to see $\operatorname{deg} P=\sum_{i=1}^{n}\left(d_{i}-1\right)=|\Sigma|$.

The following follows from [Steinberg64] by identifying S with S^{*}.
Theorem 1.3. Let $m=\operatorname{deg} P$. Then

1. Let $U=\left\{D_{s} P ; s \in S\right\}$. Then U is the orthogonal complement in S of \mathfrak{n}_{M} with respect to α. It is a G-stable finite dimensional subspace of S such that $U \otimes_{\mathbf{C}} S^{M} \simeq S$ and $S_{M} \simeq U \simeq \mathbf{C}[M]$ as M-modules,
2. $s \in \mathfrak{n}_{M}$ if and only if $D_{s} P=0$,
3. $S_{k} \subset \mathfrak{n}_{M}$ for $k>\operatorname{deg} P$.

Proof. We note that (1) follows from [Steinberg64, Theorem 1.2 (c)], while (2) follows from [ibid.,Theorem 1.3 (b)]. (3) follows from (2).

In particular by Theorem 1.3 (1) the maximum degree of elements in U is attained by $\operatorname{deg}\left(D_{s} P\right)=m$ with $s=1$.

We define a bilinear form $\beta: S_{M} \times S_{M} \rightarrow \mathbf{C}$ by

$$
\begin{equation*}
\beta(f, g):=\left(D_{f g} P\right)(0) . \tag{2}
\end{equation*}
$$

Theorem 1.4. Let S_{M} be the coinvariant algebra of $M, U_{k}:=U \cap S_{k}$ and $\left(S_{M}\right)_{k}:=$ the image of U_{k} in S_{M} for $k \leq m$. Then $\beta: S_{M} \times S_{M} \rightarrow \mathbf{C}$ is a nondegenerate bilinear form such that

1. $\beta(f, g h)=\beta(f g, h)$,
2. $\beta(\sigma f, \sigma g)=\operatorname{det}(\sigma)^{-1} \beta(f, g)$,
3. $\left(S_{M}\right)_{k}$ and $\left(S_{M}\right)_{m-k}$ are dual to each other with respect to β.

Proof. Nondegeneracy of β follows from Theorem 1.3 (2). (1) is clear from the definition of β. Next we prove (2). In fact, we see

$$
\begin{aligned}
\beta(\sigma f, \sigma g) & =D_{(\sigma f \sigma g)} P(0) \\
& =\sigma\left(D_{(f g)}\left(\sigma^{-1} P\right)\right)(0) \\
& =\operatorname{det}(\sigma)^{-1}\left(D_{(f g)} P\right)(0) \\
& =\operatorname{det}(\sigma)^{-1} \beta(f, g)
\end{aligned}
$$

because $\sigma\left(D_{s} F\right)=D_{\sigma s}(\sigma F)$ for any $s, F \in S$. See [Steinberg64, p. 392].
1.5. Subgroups of complex reflection groups of index two. Let V be a finite dimensional complex vector space and G a finite subgroup of $\mathrm{SL}(V)$. Suppose that there is a finite subgroup M of GL (V) generated by complex reflections of V such that $G=M \cap \mathrm{SL}(V)$ and $[M: G]=2$. For instance any finite subgroup of SL(2, C) and the subgroups G_{12}, G_{60} and G_{168} of SL(3, C) satisfy the conditions as we see later. We will see that the facts observed in [INakamura99, Section 11] are easily derived from [Steinberg64] in a more general situation, though these have been observed already in [GSV83] and [Knörrer85].

Let $S:=S\left(V^{\vee}\right)$ be the symmetric algebra of V^{\vee} over $\mathbf{C}, S=\oplus_{k=0}^{\infty} S_{k}$ be the homogeneous decomposition of $S, S_{+}:=\oplus_{k=1}^{\infty} S_{k}$. Let S^{G} be the subalgebra of G-invariants of $S, S_{+}^{G}:=S^{G} \cap S_{+}, \mathfrak{n}_{G}:=S S_{+}^{G}$ and $S_{G}:=S / \mathfrak{n}_{G}$.

In the rest of this section we compare S^{G} and S_{G} with S^{M} and S_{M}. First we note $S^{M} \subset S^{G}$ and $\mathfrak{n}_{M} \subset \mathfrak{n}_{G}$.

Theorem 1.6. Let U be the same as in Theorem 1.4, $U_{k}=U \cap S_{k}$ and $\left(S_{G}\right)_{k}$ the image of U_{k} in S_{G}. Then the following is true.

1. $S^{G}=S^{M}[P], \mathfrak{n}_{G}=\mathfrak{n}_{M}+\mathbf{C} P$.
2. $S_{G} \simeq \oplus_{k=1}^{m-1} U_{k} \simeq \mathbf{C}[G]+\mathbf{C}[G] / \mathbf{C}, U \cap S^{G}=\mathbf{C}+\mathbf{C} P$,
3. $\left(S_{G}\right)_{k}$ and $\left(S_{G}\right)_{m-k}$ are dual to each other if $1 \leq k \leq m-1$.

Proof. Since det is a nontrivial character of M / G by our definition of G, we see $1_{G}^{M}=1_{M}+$ det, and $\mathbf{C}[M]_{G}=\mathbf{C}[G]+\operatorname{det}_{G} \otimes \mathbf{C}[G]=\mathbf{C}[G]+\mathbf{C}[G]$. It follows from Theorem 1.2 that $U \cap S^{G}=\mathbf{C}+\mathbf{C} P$. Therefore we infer the rest of the assertions from Theorem 1.3 and Theorem 1.4.

We can make Theorem 1.6 (3) more precise as follows.
Theorem 1.7. Let the notation be the same as in Theorem 1.6. Let ρ (resp. ρ^{\prime}) be (an equivalence class of) an irreducible representation of G and $\bar{\rho}$ (resp. $\left.\bar{\rho}^{\prime}\right)$ the complex conjugate of ρ. Let $\left(S_{G}\right)_{k}[\rho]$ be the sum of all G-submodules of $\left(S_{G}\right)_{k}$ isomorphic to ρ. Then

1. $\left(S_{G}\right)_{k}[\rho]$ and $\left(S_{G}\right)_{m-k}[\bar{\rho}]$ are dual with respect to β,
2. there is a G-submodule of S_{G} isomorphic to ρ^{\prime} in $S_{1}\left(\left(S_{G}\right)_{k}[\rho]\right)$ if and only if there is a G-submodule of S_{G} isomorphic to $\bar{\rho}$ in $S_{1}\left(\left(S_{G}\right)_{m-k-1}\left[{ }^{\prime}{ }^{\prime}\right]\right)$.

Proof. Let W be an irreducible G-submodule of $\left(S_{G}\right)_{k}[\rho]$ isomorphic to ρ. Let W^{c} be a G-submodule in U_{k} complementary to W and W^{*} the orthogonal complement in U_{m-k} to W^{c} with respect to β. By Theorem 1.6 (3) W^{*} is dual to W with respect to β. It is clear that $\sigma\left(W^{*}\right) \subset W^{*}$ for any $\sigma \in G$. For $f \in W$ and $g \in W^{*}$, we have $\beta(\sigma f, g)=\beta\left(f, \sigma^{-1} g\right)$ by Theorem 1.4 (2), whence by $G \subset \operatorname{SL}(V)$

$$
\chi_{\rho}(\sigma)=\operatorname{Tr}\left((\sigma)_{W}\right)=\operatorname{Tr}\left(\left(\sigma^{-1}\right)_{W^{*}}\right)
$$

Hence $\operatorname{Tr}\left((\sigma)_{W^{*}}\right)=\overline{\chi_{\rho}(\sigma)}=\chi_{\bar{\rho}}(\sigma)$. It follows $W^{*} \simeq \bar{\rho}$. This proves (1).
Let W be a G-submodule of $\left(S_{G}\right)_{k}[\rho]$ and W^{\prime} a G-submodule of $\left(S_{1} W\right)\left[\rho^{\prime}\right]$ such that $W \simeq \rho, W^{\prime} \simeq \rho^{\prime}$. Let W^{c} (resp. $\left.\left(W^{\prime}\right)^{c}\right)$ be a G-submodule of $\left(S_{G}\right)_{k}$ (resp. $\left.\left(S_{G}\right)_{k+1}\right)$ complementary to W (resp. W^{\prime}). Let W^{*} and $\left(W^{\prime}\right)^{*}$ be the orthogonal complement in U_{m-k} and U_{m-k-1} to W^{c} and $\left(W^{\prime}\right)^{c}$ respectively. Hence by (1) $W^{*} \simeq \bar{\rho}$ and $\left(W^{\prime}\right)^{*} \simeq \bar{\rho}^{\prime}$. By assumption and by Theorem 1.6 (3) there exist $x \in S_{1}, f \in W$ and $g \in\left(W^{\prime}\right)^{*}$ such that

$$
\beta(f, x g)=\beta(x f, g) \neq 0 .
$$

This implies that $S_{1}\left(W^{\prime}\right)^{*}$ contains a G-submodule dual to W with respect to β, hence isomorphic to $\bar{\rho}$ by (1). This completes the proof.
1.8. Finite subgroups of $\mathbf{S L}(\mathbf{2}, \mathbf{C})$. Let V be a vector space of two dimension. It is well known that for any any finite subgroup of $\operatorname{SL}(V)$ there is a finite complex reflection group M of $\mathrm{GL}(V)$ such that $G=M \cap \mathrm{SL}(V)$ and $[M: G]=2$. In fact, for G a cyclic group of order n, M is a dihedral group $I(n)$ of order $2 n$. For a binary dihedral group G, M is a subgroup of $G L(V)$ generated by G and a permutation matrix $(1,2)$. For G a binary tetra-, octa-, or icosa-hedral group respectively, M is a complex reflection group with Shephard-Todd number 12, 13 and 22 respectively [ST54, p. 301]. In particular, $M=\mu_{4} \cdot G$ for G the binary octa-, or icosa-hedral group where μ_{4} is the subgroup of scalar matrices of fourth roots of unity.

2. G_{12}

The purpose of this section is to provide an example which solves negatively the question in [INakamura99, Section 17].
2.1. The action of G on V^{\vee}. This Subsection is included just to explain our convention and notation in the subsequent sections.

Let $V=\mathbf{C}^{3}$ and V^{\vee} the dual of V. We choose and fix a basis e_{i} of V once for all. The space V^{\vee} is spanned by the dual basis $x_{1}=x, x_{2}=y$ and $x_{3}=z$ with $x_{i}\left(e_{j}\right)=\delta_{i j}$. The matrix form of $g \in \mathrm{SL}(V)$ in Subsection 2.2 etc. is that of g with respect to e_{i}. Hereafter we call this matrix representation ρ and hence $\rho(g)=g$. Then as in Section $1, G$ acts on V^{\vee} by the contragredient representation ρ^{\vee} of ρ and we have $\rho^{\vee}(g)\left(v^{\vee}\right)(p)=v^{\vee}\left(\rho\left(g^{-1}\right) p\right)$ for $p \in V, v^{\vee} \in V^{\vee}$ and $g \in G$. In terms of pull back by the automorphism
$\rho\left(g^{-1}\right)$ of V, this means that $\rho^{\vee}(g)\left(v^{\vee}\right)=\rho\left(g^{-1}\right)^{*}\left(v^{\vee}\right)$, where V^{\vee} is regarded as the space of linear functions on V. In particular we have

$$
\left(\rho^{\vee}(g)(x), \rho^{\vee}(g)(y), \rho^{\vee}(g)(z)\right)=(x, y, z)^{t} g^{-1}
$$

This is equivalent to $\left(g^{*}(x), g^{*}(y), g^{*}(z)\right)=(x, y, z)^{t} g$ where $g^{*}=\rho(g)^{*}$ is the pull back of functions on V by the automorphism g of V.

The action of G on V^{\vee} via ρ^{\vee} can be extended to S and hence to S_{G}, since \mathfrak{n} is G-invariant. We denote this representation of G on S_{G} by $S_{G}\left(\rho^{\vee}\right)$. We note also that the action of G on S is the same as the one given in [YY93, p. 38], so we can apply their results for G_{60} and G_{168}.

We use the same notation as above from now on.
2.2. A trihedral group G_{12}. Let N be an order 4 abelian subgroup of $\mathrm{SL}(V)$ consisting of diagonal matrices with diagonal coefficients ± 1 and $\tau:=\left(\delta_{i, j+1}\right)$. To be more precise

$$
N=\left\{\left(\begin{array}{ccc}
\pm 1 & 0 & 0 \\
0 & \pm 1 & 0 \\
0 & 0 & \pm 1
\end{array}\right) \in \mathrm{SL}(V)\right\}, \quad \tau=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

Let $G=G_{12}$ be the subgroup of $\operatorname{SL}(V)$ of order 12 generated by N and τ. The group G is called a ternary trihedral group. It is clear that there is an exact sequence $1 \rightarrow N \rightarrow G \rightarrow \mathbf{Z} / 3 \mathbf{Z} \rightarrow 0$. We note that the group G is a subgroup of index two of a complex reflection group M. In fact, we choose as \widetilde{N} a diagonal subgroup of $\operatorname{GL}(V)$ with diagonal coefficients ± 1 and M the extension of \widetilde{N} by $\left\{1, \tau, \tau^{2}\right\}$. Thus Section 1 can be applied for G and M. The basic degrees of M are equal to 2,3 and 4 so that $\operatorname{deg} P=m=(2-1)+(3-1)+(4-1)=6$ as we have seen in Section 1 .
2.3. Characters of G. Table 1 is the character table of G, where the first (resp. the second, the third) line gives a representative of (resp. the age of, the number of elements in) each conjugacy class and $\sigma_{12}=\operatorname{diag}(-1,-1,1)$. For $G=G_{12}$, we have $\rho=\rho^{\vee}$ and the character of ρ is given by χ_{3}. For each irreducible character χ_{k} in Table 1, we choose and fix an irreducible representation ρ_{k} which affords χ_{k}.

c.c	1	σ_{12}	τ	τ^{2}
age	0	1	1	1
\sharp	1	3	4	4
$\chi_{1_{1}}$	1	1	1	1
$\chi_{1_{2}}$	1	1	ω	ω^{2}
$\chi_{1_{3}}$	1	1	ω^{2}	ω
χ_{3}	3	-1	0	0

Table 1. Character table of G_{12}
2.4. The coinvariant algebra of G_{12}. The ring of all G-invariant polynomials is generated by the following four homogeneous polynomials

$$
\begin{align*}
& f_{2}=x^{2}+y^{2}+z^{2}, \quad f_{3}=x y z, \\
& f_{4}=x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}, \tag{3}\\
& f_{6}=\left(x^{2}-y^{2}\right)\left(y^{2}-z^{2}\right)\left(z^{2}-x^{2}\right)
\end{align*}
$$

where

$$
\begin{equation*}
f_{6}^{2}+4 f_{4}^{3}-f_{2}^{2} f_{4}^{2}-18 f_{2} f_{4} f_{3}^{2}+4 f_{2}^{3} f_{3}^{2}+27 f_{3}^{4}=0 \tag{4}
\end{equation*}
$$

We note that the ring of M-invariant polynomials is generated by f_{2}, f_{3}, f_{4} and $P=f_{6}=(1 / 4) \operatorname{Jac}\left(f_{2}, f_{3}, f_{4}\right)$. The variety defined by the equation (4) is an irreducible singular variety \mathbf{C}^{3} / G with non-isolated singularities.

Let \mathfrak{n} be the ideal generated by these four polynomials and $S_{G}=S / \mathfrak{n}$ the coinvariant algebra of G. Then S_{G} is decomposed into irreducible components as in Table 2. We denote the homogeneous component of S_{G} of degree d by \bar{S}_{d}. We denote the ρ_{k}-component of \bar{S}_{d} by $\bar{S}_{d}\left[\rho_{k}\right]$, which is in view of Table 2 irreducible except for $(d, k)=(3,3)$ if it is nonzero. We identify S_{1} and $\bar{S}_{1}=\bar{S}_{1}\left[\rho_{3}\right]$.

For the notation we define

$$
\begin{equation*}
f=x^{2}+\omega y^{2}+\omega^{2} z^{2}, \quad \bar{f}=x^{2}+\omega^{2} y^{2}+\omega z^{2} . \tag{5}
\end{equation*}
$$

We remark that

$$
\begin{aligned}
f \bar{f} & =f_{2}^{2}-3 f_{4} \\
f^{3}-\bar{f}^{3} & =\prod_{i=0}^{2}\left(f-\omega^{i} \bar{f}\right)=3\left(\omega^{2}-\omega\right) f_{6} \\
f^{3}+\bar{f}^{3} & =\prod_{i=0}^{2}\left(f+\omega^{i} \bar{f}\right)=27 f_{3}^{2}-9 f_{2} f_{4}+2 f_{2}^{3}
\end{aligned}
$$

\bar{S}_{d}	1_{2}	1_{3}	3	$\operatorname{dim} \bar{S}_{d}$	$\bar{S}_{d}[\rho]$
\bar{S}_{1}	0	0	1	3	$\{x, y, z\}$
\bar{S}_{2}	1	1	1	5	$\{f\}+\{\bar{f}\}+\{y z, z x, x y\}$
\bar{S}_{3}	0	0	2	6	$\left\{x f, \omega^{2} y f, \omega z f\right\}+\left\{x \bar{f}, \omega y \bar{f}, \omega^{2} z \bar{f}\right\}$
\bar{S}_{4}	1	1	1	5	$\left\{\bar{f}^{2}\right\}+\left\{f^{2}\right\}+\left\{y z f, \omega^{2} z x f, \omega x y f\right\}$
\bar{S}_{5}	0	0	1	3	$\left\{x \bar{f}^{2}, \omega^{2} y \bar{f}^{2}, \omega z \bar{f}^{2}\right\}$

Table 2. The coinvariant algebra of G_{12}
2.5. The exceptional locus. We have a natural morphism from $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$ onto the quotient \mathbf{C}^{3} / G. It is called the Hilbert-Chow morphism π, which is an isomorphism over $\left(\mathbf{C}^{3} \backslash\{\right.$ Fixed points of $\left.G\}\right) / G$. Now we study the structure of the fibre of π over the origin. We define

$$
\begin{align*}
I\left([a: b]_{1_{2}}\right) & :=S \cdot\left(a f+b \bar{f}^{2}\right)+\mathfrak{n} \quad(a \neq 0), \\
I\left([a: b]_{1_{3}}\right): & =S \cdot\left(a \bar{f}+b f^{2}\right)+\mathfrak{n} \quad(a \neq 0), \\
I\left([a: b]_{3}\right) & :=S[G](a x \bar{f}+b x f)+S f^{2}+S \bar{f}^{2}+\mathfrak{n}, \tag{6}\\
J & :=S \cdot(x f, y f, z f)+S \cdot \bar{f}^{2}+\mathfrak{n}=I\left([0: 1]_{3}\right), \\
J^{\prime} & :=S \cdot(x \bar{f}, y \bar{f}, z \bar{f})+S \cdot f^{2}+\mathfrak{n}=I\left([1: 0]_{3}\right) .
\end{align*}
$$

Theorem 2.6. Let $G=G_{12}$. Then the fibre of the Hilbert Chow morphism π over the origin is one of the following

$$
I\left([a: b]_{1_{2}}\right)(a \neq 0), I\left([a: b]_{1_{3}}\right)(a \neq 0), I\left([a: b]_{3}\right) .
$$

Proof. Let $S=\mathbf{C}[x, y, z]$ and \mathfrak{m} the maximal ideal of S defining the origin. Let I be any ideal in $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$ over the origin. Then $\mathfrak{n} \subset I \subset \mathfrak{m}$ because $S / I \simeq \mathbf{C}[G]$. Let $\bar{I}:=I / \mathfrak{n}$. Since $S / \mathfrak{n}+S\left(f+b \bar{f}^{2}\right) \simeq \mathbf{C}[G]$ by Table 2, we have $I=\mathfrak{n}+S\left(f+b \bar{f}^{2}\right)$ if $f+b \bar{f}^{2} \in I$. Similarly if $\bar{f}+b f^{2} \in I$, then $I=\mathfrak{n}+S\left(\bar{f}+b f^{2}\right)$. Suppose $f+b \bar{f}^{2} \notin I$ and $\bar{f}+b f^{2} \notin I$ for any $b \in \mathbf{C}$. Then $f^{2} \in I$ and $\bar{f}^{2} \in I, \bar{S}_{5}\left[\rho_{3}\right] \subset \bar{I}$. If $\bar{S}_{2}\left[\rho_{3}\right] \subset \bar{I}$, then $\bar{S}_{4}\left[\rho_{3}\right] \subset I$ and $\bar{S}_{3}\left[\rho_{3}\right] \cap I \neq\{0\}$, which is absurd. Hence $\bar{S}_{2}\left[\rho_{3}\right] \not \subset \bar{I}$. Similarly we see that if $I \not \subset \mathfrak{m}^{3}+\mathfrak{n}$, then we have a contradiction. Hence $I \subset \mathfrak{m}^{3}+\mathfrak{n}$ and $\bar{I} \cap \bar{S}_{3}\left[\rho_{3}\right] \neq\{0\}$. It follows that $I=I\left([a: b]_{3}\right)$ for some $[a: b] \in \mathbf{P}^{1}$. This completes the proof.

Corollary 2.7. The fibre $\pi^{-1}(0)$ is a chain of three smooth rational curves intersecting transversally.
Proof. We see that in $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$

$$
\lim _{a \rightarrow 0} I\left([a: b]_{1_{2}}\right)=J, \quad \lim _{a \rightarrow 0} I\left([a: b]_{1_{3}}\right)=J^{\prime}
$$

Let $C_{1_{2}}:=\left\{I\left([a: b]_{1_{2}}\right), J ; a \neq 0\right\} \simeq \mathbf{P}^{1}, C_{1_{3}}:=\left\{I\left([a: b]_{1_{3}}\right), J^{\prime} ; a \neq\right.$ $0\} \simeq \mathbf{P}^{1}$ and $C_{3}:=\left\{I\left([a: b]_{3}\right) ;[a: b] \in \mathbf{P}^{1}\right\} \simeq \mathbf{P}^{1}$. Then $C_{1_{2}} \cap C_{1_{3}}=\emptyset$, $C_{1_{2}} \cap C_{3}=\{J\}$ and $C_{1_{3}} \cap C_{3}=\left\{J^{\prime}\right\}$. The intersection of C_{k} is transversal. In fact, the tangent space of $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$ is the direct sum of $\operatorname{Hom}\left(I\left[\rho_{i}\right], S / I\left[\rho_{i}\right]\right)$ for ρ_{i} distinct, hence for instance at $J, C_{1_{2}}$ and C_{3} are transversal because so are $\operatorname{Hom}\left(I\left[\rho_{1_{2}}\right], S / I\left[\rho_{1_{2}}\right]\right)(\simeq \mathbf{C})$ and $\operatorname{Hom}\left(I\left[\rho_{3}\right], S / I\left[\rho_{3}\right]\right)(\simeq \mathbf{C})$. This completes the proof. See also the proof of Corollary 4.6.
2.8. $\mathbf{H i l b}^{G / N}\left(\mathbf{H i l b}^{N}\left(\mathbf{C}^{3}\right)\right)$. By [Nakamura98] $\operatorname{Hilb}^{N}\left(\mathbf{C}^{3}\right)$ is a crepant resolution of \mathbf{C}^{3} / N, on which G / N acts naturally. Hence $\operatorname{Hilb}^{G / N}\left(\operatorname{Hilb}^{N}\left(\mathbf{C}^{3}\right)\right)$ is a crepant resolution of $\operatorname{Hilb}^{N}\left(\mathbf{C}^{3}\right) /(G / N)$, hence it is a crepant resolution of \mathbf{C}^{3} / G. Let $\phi: \operatorname{Hilb}^{G / N}\left(\operatorname{Hilb}^{N}\left(\mathbf{C}^{3}\right)\right) \rightarrow \mathbf{C}^{3} / G$ be the natural morphism, and $\psi: \operatorname{Hilb}^{N}\left(\mathbf{C}^{3}\right) \rightarrow \mathbf{C}^{3} / N$ the Hilbert-Chow morphism.

By [Nakamura98] the fan which describes the torus embedding $\operatorname{Hilb}^{N}\left(\mathbf{C}^{3}\right)$ is given by a decomposition of the triangle $\left\langle e_{1}, e_{2}, e_{3}\right\rangle$ in \mathbf{R}^{3} by junior elements $\sigma_{12}, \sigma_{23}, \sigma_{31}$ of N :

$$
\begin{align*}
\Delta_{0} & =\left\langle\sigma_{12}, \sigma_{23}, \sigma_{31}\right\rangle, \\
\Delta_{1} & =\left\langle\sigma_{23}, e_{2}, e_{3}\right\rangle, \\
\Delta_{2} & =\left\langle\sigma_{31}, e_{3}, e_{1}\right\rangle, \tag{7}\\
\Delta_{3} & =\left\langle\sigma_{12}, e_{1}, e_{2}\right\rangle .
\end{align*}
$$

Let x, y, z be the standard coordinate of \mathbf{C}^{3}. The one-dimensional strata $\left\langle\sigma_{12}, \sigma_{23}\right\rangle,\left\langle\sigma_{23}, \sigma_{31}\right\rangle,\left\langle\sigma_{31}, \sigma_{12}\right\rangle$ corresponds to torus orbit rational curves C_{1}, C_{2}, C_{3}. The fibre of ψ over the origin is the union of C_{i}. The curves C_{i} meet at a unique point where they intersect as three axes in the affine space \mathbf{C}^{3}. We also note that the fixed locus of the action of N consists of three coordinate axes $\ell_{x}: x=0, \ell_{y}: y=0$ and $\ell_{z}: z=0$ where the action of N reduces to a cyclic group of order two, say A_{1}. This implies that the structure of $\operatorname{Hilb}^{\hat{N}}\left(\mathbf{C}^{3}\right)$ over the coordinate axis is a \mathbf{P}^{1}-bundle. Let $D_{i}:=\psi^{-1}\left(\ell_{i}\right)(i=x, y, z)$. The group $G / N \simeq \mathbf{Z} / 3 \mathbf{Z}$ permutes D_{x}, D_{y} and D_{z} cyclically.

We write the chart of $\operatorname{Hilb}^{N}\left(\mathbf{C}^{3}\right)$ corresponding to Δ_{0} as

$$
U_{0}:=\operatorname{Spec} \mathbf{C}[p, q, r]
$$

where $p=y z / x, q=z x / y, r=x y / z$. The action of τ turns out to be $\tau^{*}(p)=q, \tau^{*}(q)=r, \tau^{*}(r)=p$. It follows that the fixed point locus of the (induced) action of τ on $\operatorname{Hilb}^{N}\left(\mathbf{C}^{3}\right)$ is $\ell: p=q=r$, along which the action of τ is A_{2}. Therefore the structure of $\operatorname{Hilb}^{G / N}\left(\operatorname{Hilb}^{N}\left(\mathbf{C}^{3}\right)\right)$ over ℓ is a union of two \mathbf{P}^{1}-bundles E_{1}, E_{2} meeting transversally along a section over ℓ. In particular the fibre of $(p, q, r)=(0,0,0)$ is the union of two rational curves $m_{1}, m_{2} . G / N$ permutes the curves $n_{i}:=D_{i} \cap \psi^{-1}(0)(i=x, y, z)$, whence it yields a unique rational curve n on $\operatorname{Hilb}^{G / N}\left(\operatorname{Hilb}^{N}\left(\mathbf{C}^{3}\right)\right)$. It follows that the fibre of ϕ over the origin is the union of three rational curves m_{1}, m_{2} and n. Taking it into account that the geometry about m_{i} and n_{j} is G / N symmetric, the three rational curves meet at a unique point. By a calculation we see that they meet as three coordinate axes of \mathbf{C}^{3} at the intersection. We also see that the normal bundle of n in $\operatorname{Hilb}^{G / N}\left(\operatorname{Hilb}^{N}\left(\mathbf{C}^{3}\right)\right)$ is $O_{n}(-1)^{\oplus 2}$. We also see that the exceptional divisors of ϕ are E_{1}, E_{2} and D where D is the image of $D_{i} \bmod G / N$. The divisor D is a \mathbf{P}^{1}-bundle over $\ell \backslash\{0\}$ with $D_{0}=\phi^{-1}(0) \cap D=\phi^{-1}(0) . \operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$ is obtained from $\operatorname{Hilb}^{G / N}\left(\operatorname{Hilb}^{N}\left(\mathbf{C}^{3}\right)\right)$ by a flop with center n.

3. G_{60}

3.1. Characters of G_{60}. Let $G=G_{60}$. The group G is isomorphic to the alternating group of degree 5 and is the normal subgroup of index 2 of the Coxeter group H_{3}. We note $H_{3}=G \times\{ \pm 1\}$.

Let $V=\mathbf{C}^{3}$, and V^{\vee} the dual of V. The space V^{\vee} is spanned by the dual basis x, y and z as before. By [YY93, p.72] G is realized as a subgroup of $\mathrm{SL}(V)$ generated by

$$
\sigma=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \epsilon^{4} & 0 \\
0 & 0 & \epsilon
\end{array}\right), v=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right), \tau=\frac{1}{\sqrt{5}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & s & t \\
2 & t & s
\end{array}\right)
$$

where $\epsilon=\exp (2 \pi i / 5), s=\epsilon^{2}+\epsilon^{3}$ and $t=\epsilon+\epsilon^{4}$.

c.c.	1	$\sigma \tau$	v	σ	σ^{2}
age	0	1	1	1	1
\sharp	1	20	15	12	12
χ_{1}	1	1	1	1	1
$\chi_{3_{1}}$	3	0	-1	$-s$	$-t$
χ_{32}	3	0	-1	$-t$	$-s$
χ_{4}	4	1	0	-1	-1
χ_{5}	5	-1	1	0	0

Table 3. Character table of G_{60}
Table 3 is the character table of G. The first (resp. the second, the third) line of Table 3 gives a representative of (resp. the age of, the number of elements in) each conjugacy class. For each irreducible character χ_{k} in Table 3, we choose and fix an irreducible representation ρ_{k} which affords χ_{k}. We note that $\bar{\rho}_{k} \simeq \rho_{k}$ for any k and $\rho=\rho_{3_{1}} \simeq \rho^{\vee}$. We also note that $\rho_{3_{1}}(g)$ has an eigenvalue one for g belonging to any junior conjugacy class, whence by [IR96], there is no compact irreducible divisor in the fibre of the Hilbert-Chow morphism over the origin. See Corollary 3.6.
3.2. The coinvariant algebra of G_{60}. The ring of invariant polynomials of G is generated by the four polynomials $h_{i}(i=1,2,3,4)$ of degrees 2,6 , 10 and 15 respectively ([YY93, pp. 72-74])

$$
\begin{gather*}
h_{1}=x^{2}+y z, h_{2}=8 x^{4} y z-2 x^{2} y^{2} z^{2}-x\left(y^{5}+z^{5}\right)+y^{3} z^{3}, \\
h_{3}=(1 / 25)\left(-256 h_{1}^{5}+\operatorname{BH}\left(h_{2}, h_{1}\right)+480 h_{1}^{2} h_{2}\right), \tag{8}\\
h_{4}=(1 / 10) \operatorname{Jac}\left(h_{2}, h_{1}, h_{3}\right),
\end{gather*}
$$

where $\mathrm{BH}\left(h_{2}, h_{1}\right)$ is the bordered Hessian of h_{2}, and h_{1}. See [YY93, p. 71].
Let \mathfrak{n} be the ideal generated by these four polynomials and $S_{G}=S / \mathfrak{n}$ the coinvariant algebra of G. We can apply Section 1 to H_{3} and G. Let \bar{S}_{d} be the homogeneous component of S_{G} of degree d. Then \bar{S}_{d} is decomposed into irreducible components as in Table 4.

We will denote the ρ_{k} component of \bar{S}_{d} by $\bar{S}_{d}\left[\rho_{k}\right]$, which is irreducible in view of Table 4 if it is nonzero. We identify S_{1} and \bar{S}_{1} and we decompose

\bar{S}_{d}	1	3_{1}	3_{2}	4	5	$\operatorname{dim} \bar{S}_{d}$
\bar{S}_{0}	1	0	0	0	0	1
\bar{S}_{1}	0	1	0	0	0	3
\bar{S}_{2}	0	0	0	0	1	5
\bar{S}_{3}	0	0	1	1	0	7
\bar{S}_{4}	0	0	0	1	1	9
\bar{S}_{5}	0	1	1	0	1	11
\bar{S}_{6}	0	1	0	1	1	12
\bar{S}_{7}	0	0	1	1	1	12
\bar{S}_{8}	0	0	1	1	1	12
\bar{S}_{9}	0	1	0	1	1	12
\bar{S}_{10}	0	1	1	0	1	11
\bar{S}_{11}	0	0	0	1	1	9
\bar{S}_{12}	0	0	1	1	0	7
\bar{S}_{13}	0	0	0	0	1	5
\bar{S}_{14}	0	1	0	0	0	3

TABLE 4. The coinvariant algebra of G_{60}
$S_{1} \bar{S}_{d}\left[\rho_{k}\right]$ for each d and k. The result is summarized in Diagram G_{60} in Subsection 4.7. Omitting the details we just mention how we calculated Diagram G_{60}.

1. Choose a monomial basis $x^{i} y^{j} z^{k}$ of \bar{S}_{d} for each d.
2. Calculate the projections of each basis element to each component $\bar{S}_{d}\left[\rho_{k}\right]$, and thus we get a basis for every $\bar{S}_{d}\left[\rho_{k}\right]$.
3. Multiply the basis elements of $\bar{S}_{d}\left[\rho_{k}\right]$ by x, y, z and calculate again their projections to the components $S_{d+1}\left[\rho_{k^{\prime}}\right]$ for all k^{\prime}.
In view of Theorem 1.6 (3), we only need to calculate $S_{1} \bar{S}_{d}$ up to $d=7$ to complete Diagram G_{60}.

Lemma 3.3. Let I be a G-invariant ideal of S containing \mathfrak{n} with $S / I \simeq$ $\mathbf{C}[G]$ as G-modules. Then $I_{b} \subset I \subset I_{t}$, where I_{b} and I_{t} are the ideals of S containing \mathfrak{n} such that

$$
\begin{align*}
& I_{b} / \mathfrak{n}=\sum_{d=10}^{14} \bar{S}_{d}+\bar{S}_{9}\left[\rho_{4}\right]+\bar{S}_{9}\left[\rho_{5}\right], \\
& I_{t} / \mathfrak{n}=\sum_{d=7}^{14} \bar{S}_{d}+\bar{S}_{6}\left[\rho_{3_{1}}\right] . \tag{9}
\end{align*}
$$

Proof. Let I be an ideal satisfying the conditions in the lemma and put $\bar{I}=I / \mathfrak{n}$. Let $\rho=\rho_{3_{1}}$. We first consider the ρ component $\bar{I}[\rho]$ of \bar{I}. Since S / I is isomorphic to $\mathbf{C}[G]$ as a G-module, $\bar{I} \simeq \mathbf{C}[G] / \mathbf{C}$ and $\bar{I}[\rho] \simeq \rho^{\oplus 3}$ in view of Theorem 1.6. Take an irreducible (not necessarily homogeneous) submodule W of $\bar{I}[\rho]$ and let d_{0} be the largest number such that $W \subset \bar{S}_{\geq d_{0}}:=\sum_{d=d_{0}}^{14} \bar{S}_{d}$. Then by Diagram G_{60}, we see that $S_{14-d_{0}} W=\bar{S}_{14}$ and thus $\bar{S}_{14} \subset \bar{I}$. We may assume that $W \neq \bar{S}_{14}$, since $\bar{I}[\rho] \simeq \rho^{\oplus 3}$. Then again by Diagram G_{60} we see that $p r_{\left[3_{1}\right]} S_{10-d_{0}} W=\bar{S}_{10}[\rho] \bmod \bar{S}_{14}$, where $p r_{\left[3_{1}\right]}$ is the projection onto the $\rho_{3_{1}}$-component, and thus $\bar{S}_{10}[\rho]+\bar{S}_{14}[\rho] \subset \bar{I}$.

Next we consider the $\rho_{3_{2}}$ component of \bar{I}. Again by Diagram G_{60}, we see $\bar{S}_{12}\left[\rho_{3_{2}}\right] \subset \bar{I}$. By $\bar{I}\left[\rho_{3_{2}}\right] \simeq \rho_{3_{2}}^{\oplus 3}$, we can choose an irreducible submodule W of $\bar{I}\left[\rho_{3_{2}}\right]$ such that $W \neq \bar{S}_{12}\left[\rho_{3_{2}}\right]$. Then $\operatorname{pr}_{\left[3_{2}\right]} S_{10-d_{0}} W=\bar{S}_{10}\left[\rho_{3_{2}}\right] \bmod \bar{S}_{12}$ by a similar argument and by a similar definition of d_{0}. Hence $\bar{S}_{10}\left[\rho_{3_{2}}\right]+$ $\bar{S}_{12}\left[\rho_{3_{2}}\right] \subset \bar{I}$.

Similar arguments can be applied to ρ_{4} and ρ_{5} to conclude $I_{b} \subset I$.
Next we prove $I \subset I_{t}$. Suppose that I is not contained in I_{t}. Then there is an irreducible G-module W of \bar{I} which is not contained in $\bar{I}_{t}:=$ I_{t} / \mathfrak{n}. For instance assume $W \simeq \rho_{3_{1}}$. Since W is not contained in $\bar{I}_{t}\left[\rho_{3_{1}}\right]=$ $\oplus_{d \geq 6} \bar{S}_{d}\left[\rho_{3_{1}}\right]$, by Diagram G_{60} we see $\bar{S}_{9}\left[\rho_{3_{1}}\right] \subset \bar{I}$, whence $\rho_{3_{1}}^{\oplus 4} \subset \bar{I}$, which is a contradiction. In the other cases we can proceed in the same way to derive a contradiction. This completes the proof.
3.4. The eigenvectors $v_{d}(k)$. Let $1 \leq d \leq 14$, and $k \in\left\{3_{1}, 4,5\right\}$ (or resp. $k=3_{2}$). Suppose $\bar{S}_{d}\left[\rho_{k}\right] \neq 0$. Then we define $v_{d}[k]$ to be an eigenvector of $S_{G}\left(\rho^{\vee}\right)\left(\sigma^{-1}\right)$ with eigenvalue ϵ (or resp. ϵ^{2}) in $\bar{S}_{d}\left[\rho_{k}\right]$. The eigenvector $v_{d}[k]$ is unique up to constant multiples.

Now we define

$$
\begin{align*}
I\left([a: b]_{3_{1}}\right) & =S[G]\left(a v_{6}\left[3_{1}\right]+b v_{9}\left[3_{1}\right]\right)+\mathfrak{n}, \quad(a \neq 0) \\
I\left([a: b]_{k}\right) & =S[G]\left(a v_{7}[k]+b v_{8}[k]\right)+\mathfrak{n}, \quad\left(a \neq 0, k=3_{2}, 4\right) \\
I\left([a: b]_{5}\right) & =S[G]\left(a v_{7}[5]+b v_{8}[5]\right)+\mathfrak{n}, \quad(a b \neq 0) \tag{10}\\
I_{1} & =S[G] v_{7}[5]+S[G] v_{9}\left[3_{1}\right]+\mathfrak{n}, \\
I_{0} & =S[G] v_{8}\left[3_{2}\right]+S[G] v_{8}[4]+S[G] v_{8}[5]+\mathfrak{n}
\end{align*}
$$

where $S[G]=S \otimes_{\mathbf{C}} \mathbf{C}[G]$. It is easy to check that all $I\left([a: b]_{k}\right)(k=$ $\left.3_{1}, 3_{2}, 4,5\right)$ and $I_{i}(i=0,1)$ belong to $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$.

Theorem 3.5. Let $G=G_{60}$. Then the fiber of the Hilbert-Chow morphism π over the origin consists of the following ideals:

$$
\begin{gathered}
I\left([a: b]_{3_{1}}\right)(a \neq 0), I\left([a: b]_{3_{2}}\right)(a \neq 0), \\
I\left([a: b]_{4}\right)(a \neq 0), I\left([a: b]_{5}\right)(a b \neq 0), I_{1}, I_{0} .
\end{gathered}
$$

Proof. Let I be an ideal in $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$ over the origin and $\bar{I}=I / \mathfrak{n}$. Then since $\bar{I}_{b}:=I_{b} / \mathfrak{n} \subset \bar{I} \subset \bar{I}_{t}$, by Lemma 3.3, \bar{I} contains $W:=\mathbf{C}[G]\left(a v_{6}\left[3_{1}\right]+\right.$ $\left.b v_{9}\left[3_{1}\right]\right)$ for some $[a: b] \in \mathbf{P}_{1}$. If $a \neq 0$, then $S W+\mathfrak{n}$ is G-stable and $S /(S W+\mathfrak{n})$ is isomorphic to $\mathbf{C}[G]$. It follows that $I=S W+\mathfrak{n}=I\left([a: b]_{3_{1}}\right)$.

Next we assume $a=0$. Hence $v_{9}\left[3_{1}\right] \in I$ and $\bar{I}\left[\rho_{3_{1}}\right]=\oplus_{d \geq 9} \bar{S}_{d}\left[\rho_{3_{1}}\right] \simeq \rho_{3_{1}}^{\oplus 3}$. By Lemma $3.3\left(\bar{S}_{10}+\bar{S}_{12}\right)\left[\rho_{3_{2}}\right] \subset \bar{I}$. Hence \bar{I} contains $W:=\mathbf{C}[G]\left(a v_{7}\left[3_{2}\right]+\right.$ $\left.b v_{8}\left[3_{2}\right]\right)$ for some $[a: b] \in \mathbf{P}_{1}$. If $a \neq 0$, we see that $I=S W+\mathfrak{n}=I\left([a: b]_{3_{2}}\right)$. Now we assume $a=0$. Then $v_{8}\left[3_{2}\right] \in \bar{I}$ and $\bar{I}\left[\rho_{3_{2}}\right]=\oplus_{d \geq 8} \bar{S}_{d}\left[\rho_{3_{2}}\right] \simeq \rho_{3_{2}}^{\oplus 3}$. Hence by Diagram G_{60} we see $\bar{S}_{d}\left[\rho_{4}\right] \subset \bar{I}$ for $d \geq 9$. Hence there exists $[a: b] \in \mathbf{P}^{1}$ such that $a v_{7}[4]+b v_{8}[4] \in \bar{I}$. If $a \neq 0$, then $I=I\left([a: b]_{4}\right)$. If $a=0$, then $\bar{S}_{d}\left[\rho_{4}\right] \subset \bar{I}$ for $d \geq 8$ while $\bar{S}_{d}\left[\rho_{5}\right] \subset \bar{I}$ for $d \geq 9$. Hence there is $[a: b] \in \mathbf{P}^{1}$ such that $a v_{7}[5]+b v_{8}[5] \in \bar{I}$. If moreover $a b \neq 0$, then $I=I\left([a: b]_{5}\right)$. If $b=0$, then $\bar{S}_{d}\left[\rho_{4}\right] \subset \bar{I}$ for $d \geq 8$ and $\bar{S}_{d}\left[\rho_{4}\right] \subset \bar{I}$ for $d \geq 9$ and $k=3_{1}, 3_{2}, 5$. Hence $I=I_{1}$. If $a=0$, then $\bar{S}_{d}\left[\rho_{k}\right] \subset \bar{I}$ for $d \geq 8$ and $k=4,5$. Thus we see $I=I_{0}=\oplus_{d \geq 8} \bar{S}_{d}+\mathfrak{n}$. This completes the proof.
Corollary 3.6. The fibre $\pi^{-1}(0)$ is a connected curve consisting of four smooth rational curves. Three of the four meet at a point as three coordinate axes of \mathbf{C}^{3}, while two of the four intersect transversally at another point.
Proof. Let $C_{3_{1}}=\left\{I_{1}, I\left([a: b]_{3_{1}}\right), a \neq 0\right\}, C_{k}=\left\{I_{0}, I\left([a: b]_{k}\right), a \neq 0\right\}$ $\left(k=3_{2}, 4\right)$ and $C_{5}=\left\{I_{0}, I_{1}, I\left([a: b]_{5}\right), a b \neq 0\right\}$. Then C_{k} is a smooth rational curve. In fact, we easily see

$$
\begin{gathered}
\lim _{a \rightarrow 0} I\left([a: b]_{3_{1}}\right)=\lim _{b \rightarrow 0} I\left([a: b]_{5}\right)=I_{1}, \\
\left.\lim _{a \rightarrow 0} I\left([a: b]_{k}\right)\right)=I_{0} \quad\left(k=3_{2}, 4,5\right) .
\end{gathered}
$$

This completes the proof. See also the proof of Corollary 4.6.

4. G_{168}

4.1. Characters of G_{168}. Let $G=G_{168}$. The group G is isomorphic to the simple group $\operatorname{PSL}(2,7)$. Let $V=\mathbf{C}^{3}$ and V^{\vee} the dual of V. The space V^{\vee} is spanned by x, y and z as before. The group G is realized as a subgroup of $\mathrm{SL}(V)$ generated by the elements given below :

$$
\begin{gathered}
\sigma=\left(\begin{array}{ccc}
\beta & 0 & 0 \\
0 & \beta^{2} & 0 \\
0 & 0 & \beta^{4}
\end{array}\right), \tau=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \\
v=\frac{-1}{\sqrt{-7}}\left(\begin{array}{ccc}
\beta^{4}-\beta^{3} & \beta^{2}-\beta^{5} & \beta-\beta^{6} \\
\beta^{2}-\beta^{5} & \beta-\beta^{6} & \beta^{4}-\beta^{3} \\
\beta-\beta^{6} & \beta^{4}-\beta^{3} & \beta^{2}-\beta^{5}
\end{array}\right),
\end{gathered}
$$

where $\beta=\exp (2 \pi i / 7)$. See [YY93, p. 74]. Let $M=G \times\{ \pm 1\}$. Then $[M: G]=2$ and M is a complex reflection group with Shephard-Todd number 24 [ST54, p. 301]. Hence we can apply Section 1 to G.

Table 5 is the character table of G, where $a=\beta+\beta^{2}+\beta^{4}$. We choose β as a primitive 7 -th root of unity to define a conjugacy class to be junior or senior in Table 5. For each irreducible character χ_{k} in Table 5, we choose and fix an irreducible representation ρ_{k} which affords χ_{k}, in particular $\rho_{3_{1}}=\rho^{\vee}$ and $\rho_{3_{2}}=\rho$. We note $\bar{\rho}_{3_{1}} \simeq \rho_{3_{2}}$. There is a unique junior conjugacy class with all eigenvalues of $\rho_{3_{1}}$ distinct from one. Hence by [IR96], there is a unique

c. c.	1	v	τ	σv	σ	σ^{3}
age	0	1	1	1	1	2
\sharp	1	21	56	42	24	24
χ_{1}	1	1	1	1	1	1
$\chi_{3_{1}}$	3	-1	0	1	$-1-a$	a
χ_{32}	3	-1	0	1	a	$-1-a$
χ_{6}	6	2	0	0	-1	-1
χ_{7}	7	-1	1	-1	0	0
χ_{8}	8	0	-1	0	1	1

Table 5. Character table of G_{168}
compact irreducible divisor in the fibre of the Hilbert-Chow morphism over the origin. See Corollary 4.6.
4.2. The coinvariant algebra of G. By [YY93] the ring of G-invariant polynomials is generated by the four polynomials $h_{i}(i=1,2,3,4)$ of degrees $4,6,14$ and 21 respectively:

$$
\begin{gather*}
h_{1}=x y^{3}+y z^{3}+z x^{3}, \quad h_{2}=5 x^{2} y^{2} z^{2}-x^{5} y-y^{5} z-z^{5} x \\
h_{3}=(1 / 9) \operatorname{BH}\left(h_{1}, h_{2}\right), h_{4}=(1 / 4) \operatorname{Jac}\left(h_{1}, h_{2}, h_{3}\right) \tag{11}
\end{gather*}
$$

Let S_{G} be the coinvariant algebra of G, and \bar{S}_{d} the homogeneous component of S_{G} of degree d. \bar{S}_{d} is decomposed into irreducible components $\bar{S}_{d}\left[\rho_{k}\right]$ as in Table 6 . In view of Table $6, \bar{S}_{d}\left[\rho_{k}\right]$ is irreducible except when it is zero, or $(d, k)=(7,8),(14,8)$. We give the irreducible decomposition of $S_{1} \bar{S}_{d}\left[\rho_{k}\right]$ for each (d, k) in Diagram G_{168} in Subsection 4.7.

For $(d, k)=(7,8)$ or $(14,8)$, the decomposition of $S_{1} \bar{S}_{d}\left[\rho_{k}\right]$ is given more precisely as follows. $W_{7, \ell}:=\operatorname{pr}_{[8]} S_{1} \bar{S}_{6}\left[\rho_{\ell}\right]$ is irreducible and isomorphic to ρ_{8} for $\ell=6,7,8$ and they are however all distinct. Moreover

$$
\begin{gathered}
S_{1} W_{7,6}=\bar{S}_{8}\left[\rho_{6}\right]+\bar{S}_{8}\left[\rho_{7}\right]+\bar{S}_{8}\left[\rho_{8}\right] \\
S_{1} W_{7, \ell}=\bar{S}_{8}, \quad \text { for } \quad \ell=7,8
\end{gathered}
$$

Similarly $W_{14, \ell}:=\operatorname{pr}_{[8]} S_{1} \bar{S}_{13}\left[\rho_{\ell}\right]$ is irreducible and isomorphic to ρ_{8} for $\ell=$ $3_{2}, 6,7,8$ and they are all distinct. Moreover

$$
\begin{gathered}
S_{1} W_{14,3_{2}}=\bar{S}_{15}\left[\rho_{7}\right]+\bar{S}_{15}\left[\rho_{8}\right] \\
S_{1} W_{14, \ell}=\bar{S}_{15}, \quad \text { for } \quad \ell=6,7,8
\end{gathered}
$$

In a manner similar to the case of G_{60}, we can prove the following by chasing Diagram G_{168}.

Lemma 4.3. Let I be a G-invariant ideal of S containing \mathfrak{n} with $S / I \simeq$ $\mathbf{C}[G]$ as G-modules. Then $I_{b} \subset I \subset I_{t}$, where I_{b} and I_{t} are ideals of S

\bar{S}_{d}	1	3_{1}	3_{2}	6	7	8	$\operatorname{dim} \bar{S}_{d}$
\bar{S}_{0}	1	0	0	0	0	0	1
\bar{S}_{1}	0	1	0	0	0	0	3
\bar{S}_{2}	0	0	0	1	0	0	6
\bar{S}_{3}	0	0	1	0	1	0	10
\bar{S}_{4}	0	0	0	1	0	1	14
\bar{S}_{5}	0	0	1	0	1	1	18
\bar{S}_{6}	0	0	0	1	1	1	21
\bar{S}_{7}	0	0	0	0	1	2	23
\bar{S}_{8}	0	1	0	1	1	1	24
\bar{S}_{9}	0	1	0	1	1	1	24
\bar{S}_{10}	0	0	1	1	1	1	24
\bar{S}_{11}	0	1	0	1	1	1	24
\bar{S}_{12}	0	0	1	1	1	1	24
\bar{S}_{13}	0	0	1	1	1	1	24
\bar{S}_{14}	0	0	0	0	1	2	23
\bar{S}_{15}	0	0	0	1	1	1	21
\bar{S}_{16}	0	1	0	0	1	1	18
\bar{S}_{17}	0	0	0	1	0	1	14
\bar{S}_{18}	0	1	0	0	1	0	10
\bar{S}_{19}	0	0	0	1	0	0	6
\bar{S}_{20}	0	0	1	0	0	0	3

TABLE 6. The coinvariant algebra of G_{168}
containing \mathfrak{n} such that

$$
\begin{gather*}
I_{b} / \mathfrak{n}=\bar{S}_{\geq 14}+\sum_{k=6,7,8} \bar{S}_{13}\left[\rho_{k}\right]+\sum_{k=7,8} \bar{S}_{12}\left[\rho_{k}\right] \tag{12}\\
I_{t} / \mathfrak{n}=\bar{S}_{\geq 10}+\bar{S}_{9}\left[\rho_{6}\right]+\bar{S}_{9}\left[\rho_{3_{1}}\right]+\bar{S}_{8}\left[\rho_{3_{1}}\right]
\end{gather*}
$$

4.4. The eigenvectors $v_{d}(k)$. Let $1 \leq d \leq 20$ and $k=3_{1}, 3_{2}, 6,7,8$. Suppose $(d, k) \neq(7,8),(14,8)$ and $\bar{S}_{d}\left[\rho_{k}\right] \neq 0$. Then we define $v_{d}[k]$ to be an eigenvector of $S_{G}\left(\rho^{\vee}\right)\left(\sigma^{-1}\right)$ with eigenvalue β (resp. β^{3}) in $\bar{S}_{d}\left[\rho_{k}\right]$ for $k \neq 3_{2}$ (resp. $k=3_{2}$). The eigenvector $v_{d}[k]$ is unique up to constant multiples. Also we define $v_{d}^{\prime}[6]$ (resp. $\left.v_{d}^{\prime \prime}[7]\right)$ to be an eigenvector of $S_{G}\left(\rho^{\vee}\right)\left(\sigma^{-1}\right)$ with eigenvalue β^{2} (resp. β^{0}) in $\bar{S}_{d}\left[\rho_{6}\right]$ (resp. $\left.\bar{S}_{d}\left[\rho_{7}\right]\right)$.

Here is a list of some of these polynomials used later. Notice that these polynomials are in \bar{S}, i.e. taken modulo \mathfrak{n}.

$$
\begin{align*}
v_{8}\left[3_{1}\right] & =3 x^{8}-29 x z^{7}-112 y^{5} z^{3}-149 x y^{7} \\
v_{9}\left[3_{1}\right] & =48 y^{7} z^{2}-6 x y^{2} z^{6}+z^{9}-198 x^{2} y^{4} z^{3} \\
v_{11}\left[3_{1}\right] & =-198 x^{2} y z^{8}-990 x y^{6} z^{4}+y^{11}-748 y^{4} z^{7} \\
v_{10}\left[3_{2}\right] & =-264 y^{8} z^{2}+x^{10}-116 x y^{3} z^{6}+161 y z^{9} \\
v_{12}\left[3_{2}\right] & =3 y^{12}-11693 x y^{7} z^{4}-344 x z^{11}-9988 y^{5} z^{7}, \\
v_{13}\left[3_{2}\right] & =2 z^{13}+3315 x y^{9} z^{3}+559 x y^{2} z^{10}+3198 y^{7} z^{6}, \tag{13}\\
v_{9}^{\prime}[6] & =x^{9}+40 x^{2} z^{7}+360 x y^{5} z^{3}+298 y^{3} z^{6} \\
v_{10}^{\prime}[6] & =4 y^{5} z^{5}+5 x y^{7} z^{2} \\
v_{11}^{\prime}[6] & =538 x y^{9} z-68 x y^{2} z^{8}+338 y^{7} z^{4}+3 z^{11} \\
v_{12}^{\prime}[6] & =49 x y^{4} z^{7}+10 y^{9} z^{3}-6 y^{2} z^{10} \\
v_{10}^{\prime \prime}[7] & =19 x y^{8} z+4 x y z^{8}+14 y^{6} z^{4} \\
v_{11}^{\prime \prime}[7] & =34 x y^{3} z^{7}+7 y^{8} z^{3}-5 y z^{10}
\end{align*}
$$

Now we define G-invariant ideals of S by

$$
\begin{align*}
I\left([a: b: c]_{3_{1}}\right) & :=S[G]\left(a v_{8}\left[3_{1}\right]+b v_{9}\left[3_{1}\right]+c v_{11}\left[3_{1}\right]\right)+\mathfrak{n} \\
I\left([a: b]_{6}\right) & :=S[G]\left(a v_{10}^{\prime}[6]+b v_{11}^{\prime}[6]\right)+S[G] v_{11}\left[3_{1}\right]+\mathfrak{n} \\
I\left([a: b]_{7}\right) & :=S[G]\left(a v_{10}^{\prime \prime}[7]+b v_{11}^{\prime \prime}[7]\right)+S[G] v_{11}\left[3_{1}\right]+\mathfrak{n} \tag{14}\\
I\left([a: b]_{8}\right) & :=S[G]\left(a v_{10}[8]+b v_{11}[8]\right)+\mathfrak{n} \\
I_{0} & :=\sum_{k=3_{1}, 6,7,8} S[G] v_{11}[k]+\mathfrak{n}
\end{align*}
$$

where $S[G]=S \otimes_{\mathbf{C}} \mathbf{C}[G],[a: b: c]_{3_{1}} \neq[0: 0: 1]$ and $[a: b]_{k} \neq[0: 1]$. It is not difficult to check by using Diagram G_{168} that these ideals belong to $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$. Then we have

Theorem 4.5. Let $G=G_{168}$. Then the fiber of the Hilbert-Chow morphism π over the origin consists of the following ideals:

$$
\begin{gathered}
I\left([a: b: c]_{3_{1}}\right) \quad(a, b) \neq(0,0), \\
I_{0}, I\left([a: b]_{k}\right) \quad a \neq 0, k=6,7,8
\end{gathered}
$$

Proof. Let I be an ideal in $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$ over the origin and $\bar{I}=I / \mathfrak{n}$. In view of Lemma $4.3 \bar{I}$ contains $v:=a v_{8}\left[3_{1}\right]+b v_{9}\left[3_{1}\right]+c v_{11}\left[3_{1}\right]$ for some $[a: b: c] \in \mathbf{P}_{2}$. Let $W=\mathbf{C}[G] v$ and $W^{*}=\sum_{\ell=1}^{4} S_{\ell} W$. We have $\left[S W: \rho_{3_{2}}\right] \leq 3$, because $\bar{I} \simeq \mathbf{C}[G] / \mathbf{C}$. Since $\bar{S}_{20}\left[\rho_{3_{1}}\right] \subset S W$, the multiplicity $\left[W^{*}: \rho_{3_{2}}\right]$ is at most two. To calculate the multiplicity, we consider the eigenspace of $S_{G}\left(\rho^{\vee}\right)\left(\sigma^{-1}\right)$ in $p r_{\left[3_{2}\right]} W^{*}$ with eigenvalue β^{3}. It is easy to see that this space is spanned by the images by $p r_{\left[3_{2}\right]}$ of the four vectors $y v, x^{2} v, x y^{2} z v$ and $z^{4} v$. By
calculation it turns out that

$$
\begin{aligned}
p r_{\left[3_{2}\right]}(y v) & =-28 b v_{10}\left[3_{2}\right]+(28 / 3) c v_{12}\left[3_{2}\right], \\
p r_{\left[3_{2}\right]}\left(x^{2} v\right) & =42 a v_{10}\left[3_{2}\right]+7 c v_{13}\left[3_{2}\right], \\
p r_{\left[3_{2}\right]}\left(x y^{2} z v\right) & =-2 a v_{12}\left[3_{2}\right]-b v_{13}\left[3_{2}\right], \\
p r_{\left[3_{2}\right]}\left(z^{4} v\right) & =-3 p r_{\left[3_{2}\right]}\left(x y^{2} z v\right) .
\end{aligned}
$$

We easily see

$$
p r_{\left[3_{2}\right]}\left(3 a y v+2 b x^{2} v+14 c x y^{2} z v\right)=0
$$

whence the β^{3}-eigenspace of $S_{G}\left(\rho^{\vee}\right)\left(\sigma^{-1}\right)$ in $p r_{\left[3_{2}\right]} W^{*}$ is exactly 2-dimensional. Since W^{*} is a G-module, $\operatorname{pr}_{\left[3_{2}\right]}$ is an isomorphism on $W^{*}\left[\rho_{3_{2}}\right]$. Hence $\left[S W: \rho_{3_{2}}\right]=3$ for any $[a: b: c] \in \mathbf{P}_{2}$. Similarly it can be verified that $p r_{[6]} S_{\leq 3} W$ is generated by

$$
\begin{aligned}
(1 / 84) p r_{[6]}(x v) & =3 a v_{9}^{\prime}[6]+49 b v_{10}^{\prime}[6]+49 c v_{12}^{\prime}[6] \\
(-1 / 4) p r_{[6]}\left(y^{2} z v\right) & =a v_{11}^{\prime}[6]+49 b v_{12}^{\prime}[6]
\end{aligned}
$$

as an $S[G]$-module. Hence $\left[S W: \rho_{6}\right]=6$ if $(a, b) \neq(0,0)$. Also we see $\left[S W: \rho_{k}\right]=k$ for $k=7$ and 8 if $(a, b) \neq(0,0)$. Thus if $(a, b) \neq(0,0)$, then $S W \simeq \mathbf{C}[G] / \mathbf{C}$ and $I=S W+\mathfrak{n}=I\left([a: b: c]_{3_{1}}\right)$.

Now we assume $(a, b)=(0,0)$. Then $\bar{I}\left[\rho_{3_{1}}\right]=\oplus_{k \geq 11} \bar{S}_{k}\left[\rho_{3_{1}}\right]$. It follows $\bar{I}\left[\rho_{3_{2}}\right]=\oplus_{k \geq 12} \bar{S}_{k}\left[\rho_{3_{2}}\right]$, and $\bar{S}_{k}\left[\rho_{6}\right] \subset \bar{I}\left[\rho_{6}\right]$ for $k \geq 12$. Since $\bar{I} \simeq \mathbf{C}[G] / \mathbf{C}$, there exists $a v_{10}^{\prime}[6]+b v_{11}^{\prime}[6] \in \bar{I}$ for some $[a: b] \in \mathbf{P}^{1}$ by Lemma 4.3. If $a \neq 0$, then we see $I=I\left([a: b]_{6}\right)$. If $a=0$, then $\bar{I}\left[\rho_{6}\right]=\oplus_{k \geq 11} \bar{S}_{k}\left[\rho_{6}\right]$ and $\bar{S}_{k}\left[\rho_{7}\right] \subset \bar{I}\left[\rho_{7}\right]$ for $k \geq 12$.

It follows from Lemma 4.3 that there exists $a v_{10}^{\prime \prime}[7]+b v_{11}^{\prime \prime}[7] \in \bar{I}$ for some $[a: b] \in \mathbf{P}^{1}$. If $a \neq 0$, then we see $I=I\left([a: b]_{7}\right)$. If $a=0$, then $\bar{I}\left[\rho_{7}\right]=\oplus_{k \geq 11} \bar{S}_{k}\left[\rho_{7}\right]$ and $\bar{S}_{k}\left[\rho_{8}\right] \subset \bar{I}\left[\rho_{8}\right]$ for $k \geq 12$. Therefore there exists $a v_{10}[8]+b v_{11}[8] \in \bar{I}$ for some $[a: b] \in \mathbf{P}^{1}$ by Lemma 4.3. If $a \neq 0$, then we see $I=I\left([a: b]_{8}\right)$. If $a=0$, we see $I=I_{0}$. This completes the proof.

Corollary 4.6. The fibre $\pi^{-1}(0)$ is the union of a smooth rational curve and a doubly blown-up projective plane with infinitely near centers, both intersecting transversally at a unique point.

Proof. Let $C_{8}:=\left\{I_{0}, I\left([a: b]_{8}\right)(a \neq 0)\right\}$. Then $C_{8} \simeq \mathbf{P}^{1}$ because $I_{0}=$ $\lim _{a \rightarrow 0} I\left([a: b]_{8}\right)$. To be more precise we construct a G-invariant zerodimensional subscheme Z of $C_{8} \times \mathbf{C}^{3}$ flat over C_{8} such that the fibre of Z over $I \in C_{8}$ is $\operatorname{Spec} S / I$. For the purpose we define a G-invariant ideal \mathcal{I} of $O_{C_{8}} \otimes_{\mathbf{C}} S$ by

$$
\mathcal{I}=O_{C_{8}}(-1) I\left([a: b]_{8}\right)+O_{C_{8}}\left(\sum_{k=3_{1}, 6,7} S[G] v_{11}[k]+\mathfrak{n}\right)
$$

We note that $\mathcal{I}_{[a: b] \times \mathbf{C}^{3}}=I\left([a: b]_{8}\right)$ if $a \neq 0$, while $\mathcal{I}_{[0: 1] \times \mathbf{C}^{3}}=I_{0}$. Since $\operatorname{dim} S / \mathcal{I}_{[a: b]}$ is constant $(=168)$ on C_{8}, the subscheme Z of $C_{8} \times \mathbf{C}^{3}$ defined by \mathcal{I} is flat over C_{8}.

Next let T be a doubly blown-up projective plane with infinitely near centers and we construct a G-invariant zero-dimensional subscheme Z of $T \times \mathbf{C}^{3}$ flat over T such that
(i) any fibre of Z over T is one of the subschemes Spec S / I defined by the ideals I among $I\left([a: b: c]_{3_{1}}\right), I\left([a: b]_{k}\right)(k=6,7)$ and I_{0},
(ii) the natural morphism ϕ of T into $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$ is a closed immersion, in other words,
(ii') ϕ is an injection and for any $t \in T$ the Kodaira-Spencer map of ϕ is a monomorphism of the tangent space $T_{t}(T)$ of T at t into the subspace $\operatorname{Hom}_{S}(I / \mathfrak{n}, S / I)$ of $\operatorname{Hom}_{S}(I, S / I)$ where I is the unique ideal of S such that the fibre of Z over t is Spec S / I.
In fact, (ii ${ }^{\prime}$) is easy to check by the construction of Z below.
For the purpose let $U=\mathbf{P}^{2} \backslash\left\{p_{0}\right\}$ and we first define a G-invariant ideal \mathcal{I}_{U} on $U \times \mathbf{C}^{3}$ by

$$
\mathcal{I}_{U}:=O_{U}(-1) I\left([a: b: c]_{3_{1}}\right)+O_{U} \mathfrak{n}
$$

where $O_{U}(-1)=O_{\mathbf{P}^{2}}(-1)_{\mid U}$ and $[a: b: c] \in \mathbf{P}^{2}$. Then we extend it to T so that $\left(O_{T} \otimes_{\mathbf{C}} S\right) / \mathcal{I}$ may be O_{T}-flat.

This is done as follows. Let $p_{0}:=[0: 0: 1] \in \mathbf{P}^{2}$ and let ℓ_{0} be the (-1) curve on $Q_{p_{0}}\left(\mathbf{P}^{2}\right)$. Let p_{1} be a point of ℓ_{0} and $T=Q_{p_{1}} Q_{p_{0}}\left(\mathbf{P}^{2}\right)$. Since T is a torus embedding, we may assume that we can choose an open covering $\left\{U, U_{1}, U_{2}, U_{3}\right\}$ of T such that $U=\mathbf{P}^{2} \backslash\left\{p_{0}\right\}, U_{k}=\operatorname{Spec} \mathbf{C}\left[s_{k}, t_{k}\right]$ where

$$
\begin{aligned}
p=a / c, q & =b / c \\
s_{1}=p, t_{1}=q / p, s_{2}=p / q, t_{2} & =q^{2} / p, s_{3}=p / q^{2}, t_{3}=q
\end{aligned}
$$

Let $v=s_{1} v_{8}\left[3_{1}\right]+s_{1} t_{1} v_{9}\left[3_{1}\right]+v_{11}\left[3_{1}\right]$. We define on U_{1}

$$
\mathcal{I}=O_{T} \otimes S[G] v+O_{T} \mathfrak{n}+O_{T} \otimes S[G]\left(3 v_{10}^{\prime \prime}[7]+7 t_{1} v_{11}^{\prime \prime}[7]\right)
$$

We see $\mathcal{I}=\mathcal{I}_{U}$ on $\left(U \cap U_{1}\right) \times \mathbf{C}^{3}$ because if $s_{1} \neq 0$, then

$$
\left(-1 / 56 s_{1}\right) p r_{[7]}(y z v)=3 v_{10}^{\prime \prime}[7]+7 t_{1} v_{11}^{\prime \prime}[7]
$$

We note that $\mathcal{I}_{\tau \times \mathbf{C}^{3}}=I\left(\left[3: 7 t_{1}\right]_{7}\right)$ where $\tau:=\left(s_{1}, t_{1}\right)=\left(0, t_{1}\right) \in U_{1}$. It is evident that $\mathcal{I}=O_{T} \otimes S[G] I\left(\left[s_{1}, s_{1} t_{1}, 1\right]_{3_{1}}\right)$ if $\left(s_{1}, t_{1}\right) \in U_{1}$ and $s_{1} \neq 0$.

Let $v=s_{2}^{2} t_{2} v_{8}\left[3_{1}\right]+s_{2} t_{2} v_{9}\left[3_{1}\right]+v_{11}\left[3_{1}\right]$. Next we define on U_{2}

$$
\begin{aligned}
\mathcal{I}=O_{T} \otimes & S[G] v+O_{T} \mathfrak{n}+O_{T} \otimes S[G]\left(3 s_{2} t_{2} v_{9}^{\prime}[6]+49 t_{2} v_{10}^{\prime}[6]-v_{11}^{\prime}[6]\right) \\
& +O_{T} \otimes S[G]\left(3 s_{2} v_{10}^{\prime \prime}[7]+7 v_{11}^{\prime \prime}[7]\right)+O_{T} \otimes S[G] v_{11}[8]
\end{aligned}
$$

We see $\mathcal{I}=\mathcal{I}_{U}$ on $\left(U \cap U_{2}\right) \times \mathbf{C}^{3}$ because if $s_{2} t_{2} \neq 0$, then

$$
\begin{aligned}
-\left(1 / 56 s_{2} t_{2}\right) p r_{[7]}(y z v) & =3 s_{2} v_{10}^{\prime \prime}[7]+7 v_{11}^{\prime \prime}[7] \\
(1 / 84) p r_{[6]}(x v) & =3 s_{2}^{2} t_{2} v_{9}^{\prime}[6]+49 s_{2} t_{2} v_{10}^{\prime}[6]+49 v_{12}^{\prime}[6] \\
-\left(1 / 4 s_{2} t_{2}\right) p r_{[6]}\left(y^{2} z v\right) & =s_{2} v_{11}^{\prime}[6]+49 v_{12}^{\prime}[6]
\end{aligned}
$$

whence

$$
\begin{aligned}
& \left(1 / 84 s_{2}\right) p r_{[6]}(x v)+\left(1 / 4 s_{2}^{2} t_{2}\right) p r_{[6]}\left(y^{2} z v\right) \\
& \quad=3 s_{2} t_{2} v_{9}^{\prime}[6]+49 t_{2} v_{10}^{\prime}[6]-v_{11}^{\prime}[6]
\end{aligned}
$$

We note that $\mathcal{I}_{\tau \times \mathbf{C}^{3}}=I_{0}$ if $\tau:=\left(s_{2}, t_{2}\right)=(0,0)$ while $\mathcal{I}_{\tau \times \mathbf{C}^{3}}=I\left(\left[3 s_{2}\right.\right.$: $7]_{7}$) (resp. $I\left(\left[49 t_{2}:(-1)\right]_{6}\right)$ if $\tau=\left(s_{2}, 0\right), s_{2} \neq 0$ resp. if $\tau=\left(0, t_{2}\right), t_{2} \neq 0$.

Finally let $v=s_{3} t_{3}^{2} v_{8}\left[3_{1}\right]+t_{3} v_{9}\left[3_{1}\right]+v_{11}\left[3_{1}\right]$. We define on U_{3}

$$
\begin{aligned}
\mathcal{I}= & O_{T} \otimes S[G] v+O_{T} \mathfrak{n} \\
& \quad+O_{T} \otimes S[G]\left(3 s_{3} t_{3} v_{9}^{\prime}[6]+49 v_{10}^{\prime}[6]-s_{3} v_{11}^{\prime}[6]\right)
\end{aligned}
$$

It is easy to see that $\mathcal{I}=\mathcal{I}_{U}$ on $\left(U \cap U_{3}\right) \times \mathbf{C}^{3}$. We note that $\mathcal{I}_{\tau \times \mathbf{C}^{3}}=$ $I\left(\left[49:\left(-s_{3}\right)\right]_{6}\right)$ for $\tau=\left(s_{3}, 0\right) \in U_{3}$.

Let Z be a subscheme of $T \times \mathbf{C}^{3}$ defined by \mathcal{I}. Then Z is T-flat because $\left(O_{T} \otimes S\right) / \mathcal{I}$ is locally O_{T}-free of rank 168 . This completes the proof.
4.7. Diagrams. Diagram G_{60} and Diagram G_{168} express the decomposition of $S_{1} \bar{S}_{i}[j]$. The rows are indexed by degrees and the columns by irreducible representations. Each vertex corresponds to $\bar{S}_{i}[j]$ and we join $\bar{S}_{i}[j]$ and $\bar{S}_{i+1}[k]$ when $\bar{S}_{i+1}[k]$ appears in $S_{1} \bar{S}_{i}[j]$. Two double circles in Diagram G_{168} mean that the multiplicities of ρ_{8} in \bar{S}_{7} and \bar{S}_{14} are equal to two. We note that Diagram G_{60} is symmetric with center at degrees 7 and 8 because $\bar{\rho}_{k} \simeq \rho_{k}$ for any irreducible representation ρ_{k}. However Diagram G_{168} loses apparent symmetry with center at degrees 10 and 11 because $\bar{\rho}_{3_{1}} \simeq \rho_{3_{2}}$.

Diagram G_{60}

Diagram G_{168}

References

[BDM16] H.F. Blichfeldt, L. E. Dickson, G. A. Miller, Theory and Application of Finite Groups, Dover, New York, 1916.
[Blichfeldt05] H.F. Blichfeldt, The finite discontinuous primitive groups of collineations in three variables, Math. Ann. 63 (1905) 552-572.
[Blichfeldt17] H.F. Blichfeldt, Finite collineation groups, The Univ. Chicago Press, Chicago, 1917.
[BKR99] T. Bridgeland, A. King, M. Reid, Mukai implies McKay, preprint, 1999 (math. AG/9908027).
[Bourbaki] N. Bourbaki, Groupes et Algèbres de Lie, Chapitres 4,5 et 6, Masson, 1981.
[Cohen76] A. M. Cohen, Finite reflection groups, Ann. Scient. Ec. Norm. Sup. 9 (1976) 379-436.
[GSV83] G .Gonzalez-Sprinberg, J. Verdier, Construction Géométrique de la correspondence de McKay, Ann. scient. Éc. Norm. Sup. 16 (1983) 409-449.
[INakamura96] Y. Ito and I. Nakamura, McKay correspondence and Hilbert Schemes, Proc. Japan Acad. 72 (1996) 135-138.
[INakamura99] Y. Ito, I. Nakamura, Hilbert schemes and simple singularities, New trends in algebraic geometry (Proc. of the July 1996 Warwick European alg. geom. conf.), Cambridge university press (1999) 151-233.
[INakajima98] Y. Ito, I. Nakajima, McKay correspondence and Hilbert schemes in dimension three, to appear in Topology.
[IR96] Y. Ito, M. Reid, The McKay correspondence for finite groups of $S L(3, C)$, Higher Dimensional Complex Varieties Proc. Internat. Conference, Trento (1996) 221-240.
[Knörrer85] H. Knörrer, Group representations and the resolution of rational double points, in Finite groups - Coming of Age, Contem. Math. 45, 1985, pp. 175-222.
[M97] D. Markushevich, Resolution of \mathbf{C}^{3} / H_{168}, Math. Ann. 308 (1997) 279-289.
[McKay80] J. McKay, Graphs, singularities, and finite group, in Santa Cruz, conference on finite groups (Santa Cruz, 1979), Proc. Symp. Pure Math., AMS 37, 1980, pp.183-186.
[Nakamura98] I. Nakamura, Hilbert schemes of abelian group orbits, Max-Planck-Institut für Mathematik Bonn Preprint Series 1998 No. 101.
[Roan96] S-S. Roan, Minimal Resolutions of Gorenstein Orbifolds in Dimension Three, Topology 35 (1996) 489-508.
[ST54] G. C. Shephard, J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954) 274-304.
[Steinberg64] R. Steinberg, Differential equations invariant under finite reflection groups, Trans. Amer. Math. Soc. 112 (1964) 392-400.
[YY93] Stephen S.-T. Yau and Y. Yu, Gorenstein quotient singularities in dimension three, Memoirs Amer. Math. Soc., 105, Amer. Math. Soc. 1993.

Department of Mathematics, Sophia University, Tokyo, 102-8554, Japan
E-mail address: gomi@mm.sophia.ac.jp
Department of Mathematics, Hokkaido University, Sapporo, 060-0810, Japan
E-mail address: nakamura@math.sci.hokudai.ac.jp
Department of Mathematics, Sophia University, Tokyo, 102-8554, Japan
E-mail address: shinoda@mm.sophia.ac.jp

[^0]: Date: 30 November 1999.
 Key words and phrases. Hilbert scheme, G-orbits, Invariant theory, Coinvariant algebra.

 Research of the second and third author was supported in part by the Grants-in-aid (No. 08404001, No. 09640063) for Scientific Research, JSPS.

