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1 Hesse cubic curves

C(μ) : x3
0 + x3

1 + x3
2 − 3μx0x1x2 = 0

(μ ∈ P1
C)
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x3
0 + x3

1 + x3
2 − 3μx0x1x2 = 0 (μ ∈ C)

When μ = 1, ζ3, ζ23, ∞，
it divides into 3 copies of P1

(two-dimensional spheres)．
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2 Moduli of cubic curves

Th 1 (Hesse 1849)

(1) Any nonsing. cubic curve is converted into C(μ) un-

der SL(3).

(2)C(μ)has nine inflection points [1 : −β : 0],

[0 : 1 : −β],[−β : 0 : 1] (β ∈ {1, ζ3, ζ23}).
(3)C(μ) and C(μ′) are isomorphic to each other with

nine points fixed if and only if μ = μ′



Th 2 (moduli and compactification )

A1,3 : = moduli of nonsing. cubic curves

with 9 inflection points

= {nonsing. cubics} /ordered 9 points

= C \ {1, ζ3, ζ23} = Γ(3)\H
A1,3 : = {slightly general cubic curves}

/ordered nine inflection points

= {Hesse cubic curves} /isom.=identical

= {Hesse cubic curves}
= A1,3 ∪ {C(∞)} ∪ {C(1), C(ζ3), C(ζ23)}
= P1 = Γ(3)\H



Our goal is

Th 3 (N.’99) (High dim. compactification)

Let K finite symplectic, ∀ elm. div. of K ≥ 3. There

exists a fine moduli SQg,K projective over Z[ζN, 1/N ]

where N = |K|. For k : alg.closed, char.k and N :coprime

SQg,K(k) =

⎧⎪⎪⎨⎪⎪⎩
degenerate abelian varieties

with level G(K)-structure

and a closed SL -orbit

⎫⎪⎪⎬⎪⎪⎭ /isom.

=

⎧⎪⎪⎨⎪⎪⎩
G(K)-invariant degenerate

abelian varieties

with level G(K)-structure

⎫⎪⎪⎬⎪⎪⎭
G(K) : non-abelian Heisenberg group of K



Usually moduli of cubic curves is

moduli of cubics with 9 inflection points

We convert it into G-equivariant theory

with G : Heisenberg group

all cubics in P2 = all cubic polynom. in x0, x1, x2 /C∗

Take G(3)-invariants!

all Hesse cubics = G(3) -inv. cubics



G = G(3) :the Heisenberg group of level 3, (|G| = 27)

V = Cx0 + Cx1 + Cx2 : a representation of G

σ : (x0, x1, x2) 	→ (x0, ζ3x1, ζ
2
3x2)

τ : (x0, x1, x2) 	→ (x1, x2, x0)

x3
0 + x3

1 + x3
2, x0x1x2 ∈ S3V are G-invariant	
 (”Hesse cubic curves” in P2)

x3
0 + x3

1 + x3
2 − 3μx0x1x2 = 0 (μ ∈ C)	


Compactification of moduli of abelian var.



3 Theta functions

Why does G(3) get involved in moduli of cubics ?

E(τ ) : an elliptic curve over C

E(τ ) = C/Z + Zτ = C∗/w 	→ wq6 (q = e2πiτ/6)

Def 4 Theta functions (k = 0, 1, 2)

θk(τ, z) =
∑
m∈Z

q(3m+k)2w3m+k

=
∑
m∈Z

a(3m + k)w3m+k

where q = e2πiτ/6, w = e2πiz,

a(x) = qx
2
(x ∈ X), X = Z and Y = 3Z.



Formula:

θk(τ, z+1) = θk(τ, z), θk(τ, z+ τ ) = q−9w−3θk(τ, z)

Θ : z ∈ E(τ ) 	→ [θ0, θ1, θ2] ∈ P2
C : well-def.

θk(τ, z + 1
3) = ζk3θk(τ, z),

θk(τ, z + τ
3) = q−1w−1θk(τ, z)

Then z 	→ z + 1
3 induces (the contragredient repres.)

σ : [θ0, θ1, θ2] 	→ [θ0, ζ3θ1, ζ
2
3θ2]

z 	→ z + τ
3 induces

τ : [θ0, θ1, θ2] 	→ [θ1, θ2, θ0]



Let V = Cx0 + Cx1 + Cx2

σ(xk) = ζkxk, τ (xk) = xk+1

στσ−1τ−1 = (ζ3 · idV)

Def 5 Weil pairing eE(τ )(1/3, τ/3) = ζ3

Def 6 G(3) := the group generated by σ, τ

the Heisenberg group of level 3, |G(3)| = 27.



Formula: θk(τ, z + 1
3) = ζk3θk(τ, z)

θk(τ, z + τ
3) = q−1w−1θk(τ, z)	


The cubic curve Θ(E(τ )) is G(3)-invariant.

Since V is G(3)-irreducible, by Schur’s lemma

G(3) determines xj uniquely up to const. multiple.

xj is an algebraic theta function



as G(3)-modules

S3V = 2 · 10 ⊕ (1j)(j = 1, ..., 8) 10-dim

2 · 10 = {x3
0 + x3

1 + x3
2, x0x1x2}

1j = {x3
0 + ζ3x

3
1 + ζ23x

3
2},

1k = {x2
0x1 + ζ3x

2
1x2 + ζ23x

2
2x0} etc.

2 · (10) = {x3
0 + x3

1 + x3
2, x0x1x2} ⊂ S3V

gives the equation of Θ(E(τ ))

x3
0 + x3

1 + x3
2 − 3μ(τ )x0x1x2 = 0



4 Principle for compactifying the moduli

moduli　= 　the set of isomorphism classes

Roughly ”moduli”=X/G, G: algebraic group

X the set of geometric objects

G the group of isomorphisms

x and x′ are isom. their G-orbits are the same

O(x) = O(x′)
Xps stable objects

Xss semistable objects

Quotient Xps/G ”moduli”

Xss//G ”compactification”



A lot of compactifications of the moduli space

of abelian varieties are already known.

Satake，Baily-Borel, Mumford etc, Namikawa

What is nice? What is natural?　

Wish ”to identify isom. classes by invariants”

”moduli”: =algebraic moduli

=the space defined by the invariants

of isom. classes

Difficult to investigate this

What should be done about it?



”moduli” :=the space defined by

the invariants of isom. classes

It is easier to investigate geometrically.

We limit the geometric objects

to those whose invariants are well defined

Stability and semistability　(Mumford:GIT)

To classify the isom. classes by invariants completely

we are led to the space of closed orbits



5 The space of closed orbits

To review again

X the set of geometric objects

G the group of isomorphisms

x, x′ are isom. their G-orbits are the same

O(x) = O(x′)
Xss the set of semistable objects

Xss//G ”moduli”

Rem stability ⇒ closed orbits ⇒ semistability



Ex 7 Action on C2 of G = C∗, (x, y) ∈ C2

(x, y) 	→ (αx, α−1y) (α ∈ C∗)

How can we define the quotient space C2//G ?

Simple answer：the set of G-orbits (×)

Answer：the space defined by the invariant of G (○)

t = xy is the unique invariant. Hence

C2//G = {t ∈ C}
These two spaces disagree with each other.

C2//G = {t ∈ C} �= the set of G-orbits



C2//G = {t ∈ C} �= the set of G-orbits

Reason {xy = t} (t �= 0 : constant) is a G-orbit

But，{xy = 0} is the union of 3 G-orbits

C∗ × {0},{0} × C∗,{(0, 0)}.
We cannot distingush them by t.

�

∼= {t ∈ C}
�

�

xy = 0

�

O(c, 1)

(c > 0, d < 0)

�

O(d, 1)



{(0, 0)} is the only closed orbit of {xy = 0}.

Th 8 The space C2//G defined by G-invariants

= the set of closed G-orbits in C2, (G = C∗).

More generally

Th 9 (Mumford,Seshadri)

Let G : a reductive group， (e.g. G = C∗)
Let Xss : the set of all semistable points. Then

Xss//G :=the space defined by G-invariants

=the set of closed orbits.

Here closed means closed in Xss.



We limit the objects to those

with closed orbits	

Abelian varieties and PSQASes　

PSQASes：the degenerate abelian varieties which

have closed orbits	

Can compactify the moduli

of abelian varieties with these.



6 GIT-stability and stable critical points

Definition of GIT-stability has nothing to do with

stable critical points, But it has to do with them

V : vector space，G : reductive group

K : maximal compact of G, ‖ · ‖ : K-invariant metric

pv(g) := ‖g · v‖ for　v ∈ V

Th 10 (Kempf-Ness 1979) The following are equiv.

(1) v has a closed G-orbit

(2) pv attains a minimum on the orbit O(v)

(3) pv attains a critical point on O(v)



7 Stable curves of Deligne-Mumford

Def 11 C is called a stable curve of genus g if

(1) A conn. proj. curve with finite autom. group,

(2) Sing. of C are like xy = 0,

(3) dimH1(OC) = g.

Th 12 (Deligne-Mumford)

Let Mg : moduli of nonsing. curves of genus g,

Mg : moduli of stable curves. Then

Mg is compact,

Mg is Zariski open in Mg.



Th 13 The following are equivalent

(1)C is a stable curve.

(2) Hilbert point of Φ|mK|(C) is GIT-stable．

(3) Chow point of Φ|mK|(C) is GIT-stable．

(1)⇔(2) Gieseker 1982

(1)⇔(3) Mumford 1977



8 Stability of cubic curves

cubic curves stability

smooth elliptic closed orbits，stable

3 lines, no triple point closed orbits

a line+a conic, not tangent semistable

irreducible, a node semistable

the others not semistable

Th 14 The following are equivalent:

(1) it has a SL(3)-closed orbit.　

(2) smooth elliptic or a circle of 3 lines (3-gon).

(3) Hesse cubic curves, that is，G(3)-invariant.



G(3)-invariance leads to the moduli

Let V = {x0, x1, x2}, as G(3)-modules

S3V = 2 · 10 ⊕ (1j)(j = 1, ..., 8) 10-dim

2 · 10 = {x3
0 + x3

1 + x3
2, x0x1x2}

1j = {x3
0 + ζ3x

3
1 + ζ23x

3
2},

1k = {x2
0x1 + ζ3x

2
1x2 + ζ23x

2
2x0} etc.

2 · (10) = {x3
0 + x3

1 + x3
2, x0x1x2} ⊂ S3V

gives the equations

x3
0 + x3

1 + x3
2 − 3μ(τ )x0x1x2 = 0



semistable cubic curves
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3 lines with no triple pts

closed orbit
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� �

a line+a conic, not tangent

nonclosed orbit

�

irreducible, a node

nonclosed orbit



9 Stability-higher-dim.

Th 15 (N, 1999) k is alg. closed，K = H ⊕ H∨

(H∨:dual of H), H: a finite abelian group,

any elm. div≥ 3; |H| and char.k coprime;

V = k[H] : the gp ring of H;

Assume X (⊂ P(V )) is a limit of abelian var. with

K-torsions. The following are equiv:

(1)X has a closed SL(V )-orbit.

(2)X is invariant under G(K) : Heisenbg gp of K, .

(3)X is one of PSQASes.



What is a PSQAS ?

It is a generalization of Tate curves

Tate curve 　：　C∗/w 	→ qw

Hesse cubics：Gm(K)/w 	→ q3w or

Hesse cubics ：　Gm(K)/wn 	→ q3mnwn(m ∈ Z)

The general case : B positive definite

(G
g
m(K))/wx 	→ qB(x,y)wx(y ∈ Zg)

(Hesse) 3-gon and PSQASes

are natural limits as q → 0



Th 16 For cubic curves the following are equiv.:

(1) it has a closed SL(3)-orbit.　

(2) it is equiv. to a Hesse cubic, i.e.，G(3)-invariant.

(3) it is smooth elliptic or a circle of 3 lines (3-gon).

Th 17 (N.’99) Let X be a degenerate abelian variety

(including the case when X is an abelian variety)

The following are equiv. under natural assump.:

(1) it has a closed SL(V )-orbit.

(2)X is invariant under G(K).

(3) it is one of the above PSQASes.



10 Moduli over Z[ζN, 1/N ]

Th 18 (The theorem of Hesse) (a new version)

The projective moduli SQ1,3 � P1 over Z[ζ3, 1/3]

(1) The univ. cubic μ0(x
3
0 + x3

1 + x3
2) − 3μ1x0x1x2 = 0

(μ0, μ1) ∈ SQ1,3 = P1

(2) when k is alg. closed and char. k �= 3

SQ1,3(k) =

{
closed orbit cubic curves

with level 3-structure

}
/isom.

=

{
Hesse cubics

with level 3-structure

}



Th 19 (N.’99) (High dim. version)

Let K finite symplectic, ∀ elm. div. of K ≥ 3. There

exists a fine moduli SQg,K projective over Z[ζN, 1/N ]

where N = |K|. For k : alg.closed, char.k and N :coprime

SQg,K(k) =

⎧⎪⎪⎨⎪⎪⎩
degenerate abelian varieties

with level G(K)-structure

and a closed SL -orbit

⎫⎪⎪⎬⎪⎪⎭ /isom.

=

⎧⎪⎪⎨⎪⎪⎩
G(K)-invariant degenerate

abelian varieties

with level G(K)-structure

⎫⎪⎪⎬⎪⎪⎭
=

{
G(K)-invariant PSQASes

with level G(K)-structure

}



A very similar complete moduli was constructed by

Alexeev

Ag,1 over Z



11 Faltings-Chai degeneration data

R : a discrete valuation ring R,

m the max. ideal of R, k(0) = R/m

k(η) : the fraction field of R

Let (G,L) an abelian scheme over R,

(Gη, Lη) : abelian variety over k(η)

(tG,t L) : the (connected) Neron model of (tGη,
t Lη)

Suppose G0 is a split torus over k(0),

May then suppose that

(tG0,
t L0) is a split torus over k(0)

Then we have a Faltings Chai degeneration data



Let X = Hom(G0,Gm), Y = Hom(tG0,Gm)

Gm : a 1-dim. torus	

X � Zg, Y � Zg

Y : a sublattice of X of finite index.

BECAUSE ∃ a natural surjective morphism G →t G,

∃ a surjective morphism G0 →t G0,

∃ Hom(tG0,Gm) → Hom(G0,Gm),

Hence ∃ an injective homom. Y → X �



Rem

K = X/Y ⊕ (X/Y )∨,
G(K) : Heisenberg group (suitably defined)

H0(G,L) : a finite R-module

an ”irreducible” G(K) -module

⇒ an ess. unique basis

θk of H0(G,L)

Let Gfor : form. compl. of G

Gfor � (Gm,R)for

Theta functions θk (k ∈ X/Y ) (nat. basis of

H0(G,L)) are expanded as

θk =
∑

y∈Y a(x + y)wx+y



Rem Theta θk (k ∈ X/Y ) are expanded as

θk =
∑

y∈Y a(x + y)wx+y

These a(x) satisfy the conditions:
(1) a(0) = 1, a(x) ∈ k(η)× (∀x ∈ X),

(2) b(x, y) := a(x + y)a(x)−1a(y)−1

is bilinear (x, y ∈ X)

(3)B(x, y) := valq(a(x + y)a(x)−1a(y)−1)

is positive definite (x, y ∈ X), e.g. B = E8

Def 20 a(x) are called

a Faltings-Chai degeneration data of (G,L)



Rem In the complex case

a(x) = e2π
√−1(x,Tx),

b(x, y) = e2π
√−1·2(x,Ty)

where T : symm. and

b(x, y) = a(x + y)a(x)−1a(y)−1

Theta functions (k ∈ X/Y )

θk(τ, z) =
∑
y∈Y

a(y + k)wy+k

=
∑
m∈Z

q(3m+k)2w3m+k (Hesse cubics)



Def 21

R̃ := R[a(x)wxϑ, x ∈ X]

an action of Y on R̃ by

Sy(a(x)w
xϑ) = a(x + y)wx+yϑ

Proj(R̃) : locally of finite type over R

X : the formal completion of Proj(R̃)

X/Y : the top. quot. of X by Y

OX (1) descends to X/Y : ample



Grothendieck (EGA) guarantees

∃ a projective R-scheme (Z,OZ(1))

s.t. the formal completion Zfor

Zfor � X/Y

(Zη,OZη(1)) � (Gη, Lη)

(the stable reduction theorem)

This algebraizes the quotient Gm(K)/Y ,

which generalizes the Tate curve.



Ex 22 g = 1, X = Z, Y = 3Z.

a(x) = qx
2
, (x ∈ X)

X = Proj(R̃)

The scheme X is covered with affine

Vn = SpecR[a(x)wx/a(n)wn, x ∈ X]

Vn � SpecR[xn, yn]/(xnyn − q2)

(n ∈ Z)

xn = q2n+1w, yn = q−2n+1w−1.

(Vn)0 = {(xn, yn) ∈ k(0)2;xnyn = 0}
X0 : a chain of infinitely many P1

k(0)



Y acts on X0 as Vn
S−3→ Vn+3,

(xn, yn)
S−3	→ (xn+3, yn+3) = (xn, yn)

X0/Y : a cycle of 3 P1
k(0)

(X/Y )
alg
η : a Hesse cubic over k(η),

V−2 V−1 V0 V1 V2 V3 V4

S−3 S−3
� �

� � � � � � � X0/Y
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12 Limits of theta functions

E(τ ) is embedded in P2 by theta θk :

θk(q, w) =
∑

m∈Z q(3m+k)2w3m+k

q = e2πiτ/6, w = e2πiz.

θ30 + θ31 + θ32 = 3μ(q)θ0θ1θ2

X = Z and Y = 3Z

θk =
∑

y∈Y a(y + k)wy+k

Let R = C[[q]], I = qR, w = q−1u

u ∈ R \ I, u = u mod I

θk =
∑

y∈Y a(y + k)wy+k



Wish to compute the limits

limq→0[θ0, θ1, θ2]

θ0(q, w) =
∑
m∈Z

q9m
2
w3m = 1 + q9w3 + q9w−3 + · · ·

θ1(q, w) =
∑
m∈Z

q(3m+1)2w3m+1 = qw + q4w−2 + · · ·

θ2(q, w) =
∑
m∈Z

q(3m+2)2w3m+2 = qw−1 + q4w2 + · · · )

limq→0[θ0, θ1, θ2] = [1, 0, 0]

This also leads to

limτ→∞E(τ ) = [1, 0, 0] 0-dim. ????? Wrong!



Correct computation

θ0(q, q
−1u) =

∑
m∈Z

q9m
2−3mu3m

= 1 + q6u3 + q12u−3 + · · ·
θ1(q, q

−1u) =
∑
m∈Z

q(3m+1)2−3m−1u3m+1

= u + q6u−2 + q12u4 + · · ·
θ2(q, q

−1u) =
∑
m∈Z

q(3m+2)2−3m−2u3m+2

= q2·(u2 + u−1 + q18u5 + q18u−4 + · · · )

lim
q→0

[θk(q, q
−1u)]k=0,1,2 = [1, u, 0] ∈ P2



In P2

lim
q→0

[θk(q, q
−1u)]k=0,1,2 = [1, u, 0]

lim
q→0

[θk(q, q
−3u)]k=0,1,2 = [0, 1, u]

lim
q→0

[θk(q, q
−5u)]k=0,1,2 = [u, 0, 1]

��
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O(τ0)

O(τ2)

O(τ1)O(σ0)

O(σ1)O(σ2)



w = q−2λu and u ∈ R \ I.

limq→0 [θk(q, q
−2λu)] ={ [1, 0, 0] (if −1/2 < λ < 1/2),

[0, 1, 0] (if 1/2 < λ < 3/2),

[0, 0, 1] (if 3/2 < λ < 5/2).

We get a 3-gon
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O(τ0)

O(τ2)

O(τ1)O(σ0)

O(σ1)O(σ2)



Limits of thetas are described by combinatorics.

Def 23 For λ ∈ X ⊗Z R fixed

Fλ(x) = x2 − 2λx (x ∈ X = Z)

Define D(λ) (a Delaunay cell) by the conv. closure of

all a ∈ X s.t. Fλ(a) = min{Fλ(x);x ∈ X}

e.g. σi, τj are Delaunay cells.
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τ0

τ2

τ1σ0

σ1σ2Delaunay decomposition



13 PSQAS and its shape

PSQAS is a geometric limit of theta functions, a

generalization of 3-gons.

”Limits of theta functions, and PSQASes are

described by the Delaunay decomposition.”

Almost the same as PSQAS was already introduced

by Namikawa and Nakamura (1975)

Delaunay decomposition was considered in the study

of quadratic forms at the beginning of the last

century (Voronoi 1908).



Assume that X = Zg, and let B a positive symmetric

integral bilinear form on X × X.

‖x‖ =
√
B(x, x) : a distance of X ⊗ R (fixed)

Def 24 D is a Delaunay cell if for some α ∈ X ⊗ R

D is a convex closure of a lattice (X point) which is

closest to α

It depends on α ∈ X ⊗R，we discribe it as D = D(α)

If α ∈ X，D = {α}. All the Delaunay cells constitute

a polyhedral decomp. of X⊗ZR the Delaunay decom-

position ass. to B



Each PSQAS,

and its decomposition into torus orbits

(its stratification), is described

by a Delaunay decomposition

Each positive B defines a Delaunay decomposition,

Different B can correspond to the same Delaunay

decomp. and the same PSQAS.



14 Delaunay decompositions

Ex 25 This decomp. (mod Y ) is a PSQAS, a union

of P1 × P1 for B =

(
1 0

0 1

)
.

� � � � � �

� � � � � �

� � � � � �



For B =

(
2 −1

−1 2

)
, the decomp. below (mod Y ) is a

PSQAS. It is a union of P2, each triangle denotes a P2,

6 P2 intersects at a point, while each line segment is a

P1.
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15 Cohomology groups

Th 26 (Sugawara and N. 2006) Let (Q0, L0) be a

PSQAS. Then Hq(Q0, L
n
0 ) = 0 for any q, n > 0.

Cor 27 H0(Q0, L0) is irred. G(K)-module of wt. one.

Th 28 (Q0, L0) is GIT-stable in the sense that the

SL(V ⊗k)-orbit of any of the Hilbert points of (Q0, L0)

is closed in the semistable locus.

To construct the moduli SQg,K a weaker form of this

theorem was sufficient.



Cor 29 (a valuative criterion for separatedness of the

moduli) Let R be a complete DVR. For two proper flat

families of PSQASes with G(K)-actions (Q,L,G(K))

and (Q′, L′, G(K)) overR, assume ∃G(K)-isomorphism

φη : (Q,L,G(K)) → (Q′, L′, G(K))

over k(η):the fraction field of R.

Then φη extends to a G(K)-isomorphism over R.

Rem We note that the isomorphism class V of ir-

reducible G(K)-modules of weight one is unique.



The proof of Corollary 29 goes roughly as follows.

Note that L and L′ are very ample.

Hence the isom. φη is an element of GL(V ⊗ k(η))

which commutes with G(K)-action.

Since V is irreducible over k(η),

by the lemma of Schur, φη is a scalar matrix,

which reduces to the identity of P(V ⊗ k(η)),

hence extends to the identity of P(V ⊗ R).



16 Degeneration associated with E8

Assume B is unimodular and even positive definite.

Then (Q0, L0) is nonreduced anywhere, but GIT-stable.

Th 30 Let B = E8. Assume X = Y for simplicity.

Then Q0 = (V ′
1 + · · ·+V ′

135)+ (V ′′
1 + · · ·+V ′′

1920), each

V ′
j (each V ′′

k ) isom. resp. along which generically

Q0 : x2 = 0 along V ′
j , Q0 : y3 = 0 along V ′′

k ,

(L0)
8
V ′
j
= 27 = 128, (L0)

8
V ′′
k

= 1. �

Hence (Qη, Lη) is principally polar. with

L8
0 = 135 · 2 · 128 + 1920 · 3 = 40320 = 8! = L8

η.



17 The Wythoff-Coxeter construction

The Delaunay decomposition of E8 is described by dec-

orated diagrams:

Δ1
0 =� � �

�

� � � � �	

Δ2
0 = � � �

�
� � � � �	

Δ1
1 =� � �

�
� � � � �	

Δ2
1 =�× � �

�

� � � � �	

Δ2 =�× � �
�

� � � � �	

Δ3 =�× �×
�×
� � � � � �	

Δ4 =�× �× �×
�×

� � � � �	

Δ5 =�× �× �×
�×

�× � � � �	

Δ6 =�× �× �×
�×

�× �× � � �	

Δ7 =�× �× �×
�×

�× �× �× � �	



18 Voronoi cells V (0)

Def 31 for a Delaunay cell D :

V (D) := {λ ∈ X ⊗Z R;D = D(λ)}
We call it a Voronoi cell.

{V (D);D : a Delaunay cell}
is a (Voronoi) decomposition of X⊗ZR

V (0) = {λ ∈ X ⊗Z R; ‖λ‖ � ‖λ − q‖, (∀q ∈ X)}
= {λ; the nearest lattice pt. to λ is the origin}

Once we know V (0), then we see Delaunay decomp．



For B =

(
2 −1

−1 2

)
the red decomp. is Voronoi,

the black decomp. is Delaunay.
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The following is a 2-dim Voronoi cell V (0)

(a Red Hexagon) for B =

(
2 −1

−1 2

)

� �
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For B =

⎛⎜⎜⎝
2 −1 0

−1 2 −1

0 −1 2

⎞⎟⎟⎠
V (0) is a Dodecahedron (Garnet)



B =

⎛⎜⎜⎝
2 −1 0

−1 3 −1

0 −1 2

⎞⎟⎟⎠
Apophyllite KCa4(Si4O10)2F · 8H2O



B =

⎛⎜⎜⎝
3 −1 −1

−1 3 −1

−1 −1 3

⎞⎟⎟⎠
A Truncated Octahedron (Zinc Blende ZnS)

Thank you for your attention


