COINVARIANT ALGEBRAS OF FINITE SUBGROUPS OF SL(3,C)

YASUSHI GOMI, IKU NAKAMURA AND KEN-ICHI SHINODA

Abstract

For most of the finite subgroups of $\operatorname{SL}(3, \mathbf{C})$, we give explicit formulae for the Molien series of the coinvariant algebras, generalizing McKay's formulae [McKay99] for subgroups of $\operatorname{SU}(2)$. We also study the G-orbit Hilbert scheme $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$ for any finite subgroup G of $\mathrm{SO}(3)$, which is known to be a minimal (crepant) resolution of the orbit space \mathbf{C}^{3} / G. In this case the fiber over the origin of the Hilbert-Chow morphism from $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$ to \mathbf{C}^{3} / G consists of finitely many smooth rational curves, whose planar dual graph is identified with a certain subgraph of the representation graph of G. This is an $\mathrm{SO}(3)$ version of the McKay correspondence in the $\mathrm{SU}(2)$ case.

0. Introduction

Let G be a finite subgroup of $\operatorname{SL}(n, \mathbf{C}), S_{G}$ the coinvariant algebra of G, and $\left(S_{G}\right)_{i}$ the subspace of S_{G} of homogeneous degree i respectively. For each irreducible representation ρ of G, let $\left\langle\rho,\left(S_{G}\right)_{i}\right\rangle_{G}$ be the multiplicity of ρ in $\left(S_{G}\right)_{i}$ and define the Molien series $P_{S_{G}, \rho}(t)$ of S_{G} for ρ to be

$$
P_{S_{G}, \rho}(t)=\sum\left\langle\rho,\left(S_{G}\right)_{i}\right\rangle_{G} t^{i} .
$$

Since S_{G} is finite-dimensional, $P_{S_{G}, \rho}(t)$ is a polynomial of t. One can define similarly the Molien series $P_{M, \rho}(t)$ for an arbitrary graded G-module M with finite dimensional graded pieces. If M is the polynomial algebra S in two variables and if G is a subgroup of $\mathrm{SU}(2)$, then the Molien series $P_{S, \rho}(t)$ of S is a rational function of t by [Springer87] and it is well understood as is the connection with the Dynkin diagram corresponding to G (cf. [Springer87] and [McKay99]). In these cases the Molien series $P_{S_{G}, \rho}(t)$ of S_{G} is easily derived from the formula for $P_{S, \rho}(t)$.

The first purpose of this paper is to give an explicit formula for $P_{S_{G}, \rho}$ when G is one of the exceptional finite subgroups of $\mathrm{SL}(3, \mathbf{C})$ of type from (E) to (L) in the notation of [YY93]. Using the Koszul complex with G-action, we derive a certain system of equations analogous to the $\mathrm{SU}(2)$ case [McKay99] satisfied by the Molien series $P_{S, \rho}$. The equations are obtained just by taking alternating sums of componentwise generating functions of G-modules in the Koszul complex. They are given explicitly in terms of irreducible decompositions of tensor products with

[^0]the natural representation $\rho_{\text {nat }}$ and its second exterior product $\stackrel{2}{\wedge} \rho_{\text {nat }}$. This will be discussed in Section 2. The consequence of this section enables us to compute $P_{S, \rho}$ explicitly later. However the calculation of $P_{S_{G}, \rho}$ in the exceptional cases (E)(L) is much harder, which will be discussed in Sections 4 and 5 . This study of the Molien series $P_{S_{G}, \rho}$ was in fact motivated by the study of the G-orbit Hilbert scheme explained below, in particular by the study of $\pi^{-1}(0)$.

For a positive integer $N, \operatorname{Hilb}^{N}\left(\mathbf{C}^{n}\right)$ is the universal scheme which parametrizes all zero-dimensional subschemes of \mathbf{C}^{3} of length N. For a finite subgroup G of $\mathrm{GL}(n, \mathbf{C})$, we choose $N=|G|$, the order of G. Then the group G acts in the natural manner on $\operatorname{Hilb}^{|G|}\left(\mathbf{C}^{n}\right)$. The G-orbit Hilbert scheme $\operatorname{Hilb}^{G}\left(\mathbf{C}^{n}\right)$ is by definition the unique irreducible component of the G-invariant part of $\operatorname{Hilb}^{|G|}\left(\mathbf{C}^{n}\right)$ dominating \mathbf{C}^{n} / G, the G-invariant part of the corresponding Chow scheme of $|G|$ points. In other words, $\operatorname{Hilb}^{G}\left(\mathbf{C}^{n}\right)$ is the universal subscheme of the Hilbert scheme $\operatorname{Hilb}{ }^{|G|}\left(\mathbf{C}^{n}\right)$ which parametrizes all smoothable scheme-theoretic G-orbits of length $|G|$. The G-orbit Hilbert scheme $\operatorname{Hilb}^{G}\left(\mathbf{C}^{n}\right)$ is a fairly natural algebro-geometric object which incorporates all representation-theoretic information about G as a subgroup of $\mathrm{GL}(n, \mathbf{C})$. It has already been studied in detail in the $\mathrm{SU}(2)$ case [IN99] and in the case where G is a noncommutative simple subgroup A_{5} or $\operatorname{PSL}(2,7)$ of $\mathrm{SL}(3, \mathbf{C})$ [GNS00]. The scheme $\operatorname{Hilb}^{N}\left(\mathbf{C}^{n}\right)$ is known to be very singular if $n \geq 3$. However for a finite subgroup G of $\operatorname{SL}(3, \mathbf{C})$, $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$ is known to be nonsingular by [N01] in the abelian case and by [BKR01] in the general case.

The second purpose of the article is to study $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$, among other things, the fiber $\pi^{-1}(0)$ of the Hilbert-Chow morphism $\pi: \operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right) \rightarrow \mathbf{C}^{3} / G$ when G is a finite subgroup of $\mathrm{SO}(3)$. This will be discussed in Section 3.

It is well known that there is a surjective homomorphism from $\mathrm{SU}(2)$ onto $\mathrm{SO}(3)$ having ± 1 as its kernel, by which non-abelian subgroups of $\mathrm{SU}(2)$ and $\mathrm{SO}(3)$ correspond bijectively. For a subgroup G of $\mathrm{SO}(3)$ we define the representation graph $R(G)$ of G by using the irreducible decompositions of tensor products with $\rho_{n a t}$ in the same manner as in the $\mathrm{SU}(2)$ case. First we observe that $\pi^{-1}(0)$ is a union of finitely many smooth rational curves. So we define in the same way as in the $\mathrm{SU}(2)$ case the planar dual graph $\bar{R}(G)$ of $\pi^{-1}(0)$ by associating a vertex to each rational curve in $\pi^{-1}(0)$, and by associating an edge connecting a pair of the vertices to each intersection point of the corresponding curves. Then it turns out that the planar dual graph $\bar{R}(G)$ is identified with a particular subgraph of $R(G)$. In other words, every irreducible rational curve in $\pi^{-1}(0)$ is labeled by one of the nontrivial irreducible representations of G and vice versa, whose intersections are described purely in terms of irreducible decompositions of tensor products with $\rho_{n a t}$ in a manner similar to the $\mathrm{SU}(2)$ case. Thus we have a complete description of $\pi^{-1}(0)$ in the $\mathrm{SO}(3)$ case. However in almost all cases other than $(\mathrm{A}),(\mathrm{H})$ and (I) in the notation of [YY93] the precise structure of $\pi^{-1}(0)$ is yet to be determined.

This paper is organized as follows. In Section 1, we explain basic lemmas necessary for computing $P_{S_{G}, \rho}$. In Section 2, we first recall the Koszul complex over S and show that any alternating sum of componentwise generating functions of the G-modules in the Koszul complex is equal to zero, which yields a Springer-McKay type identity of $P_{S, \rho}$. In Section 3, we describe $\pi^{-1}(0)$ completely when G is a subgroup of $\mathrm{SO}(3)$.

In Sections 4 and 5 we give tables of $P_{S_{G}, \rho}$ for every finite subgroup G of $\operatorname{SL}(3, \mathbf{C})$ of type from (E) to (L) and every non-trivial representation ρ of G.

We would like to thank J. McKay and A. King for helpful discussions.

1. The coinvariant algebra for a finite subgroup G of $\operatorname{SL}(3, \mathbf{C})$

1.1. The Molien series. Let V be an n-dimensional complex vector space, V^{\vee} the dual of V and G a finite subgroup of $\mathrm{GL}(V)$. We denote by ρ the matrix representation of G afforded by the natural inclusion of G into $\operatorname{GL}(V)$ and by ρ^{\vee} its contragredient representation. As usual we call ρ the natural representation of G. We use the same notation as in [GNS00]; in particular we denote by $S=S\left(V^{\vee}\right)$, $\mathfrak{m}=S_{+}, S^{G}$ and S_{+}^{G} respectively the symmetric algebra of V^{\vee} over \mathbf{C}, the maximal ideal of S of the origin, the invariant algebra of G, and the maximal ideal of S^{G} of the origin. Let \mathfrak{n} be the ideal of S generated by S_{+}^{G} and $S_{G}:=S / \mathfrak{n}$ the coinvariant algebra of G. Since \mathfrak{n} is a graded ideal of S, S_{G} is a graded algebra, too.

By the Noether normalization lemma, we can take a minimal system of homogeneous parameters $f_{1}, f_{2}, \ldots, f_{n}$ of S^{G} so that S^{G} is a finite module over $\mathbf{C}\left[f_{1}, \ldots, f_{n}\right]$. Extending them we choose a minimal system of homogeneous generators $f_{1}, f_{2}, \ldots, f_{r}$ of S^{G} and fix them once for all. The ideal \mathfrak{n} of S is generated by $f_{1}, f_{2}, \ldots, f_{r}$.

Let $\hat{G}=\left\{\rho_{0}=1, \rho_{1}, \ldots, \rho_{s}\right\}$ be the set of representatives of equivalence classes of all irreducible representations of G and χ_{i} the character of ρ_{i} for $0 \leq i \leq s$. For an arbitrary graded $\mathbf{C} G$-module $M=\oplus_{i \geq 0} M_{i}$ with $\operatorname{dim} M_{i}<\infty$, we define the Molien series of M for ρ_{j} by

$$
P_{M, \rho_{j}}(t)=\sum_{i \geq 0}\left\langle M_{i}, \rho_{j}\right\rangle_{G} t^{i}
$$

where

$$
\left\langle M_{i}, \rho_{j}\right\rangle_{G}=\operatorname{dim} \operatorname{Hom}_{G}\left(\rho_{j}, M_{i}\right)=\frac{1}{|G|} \sum_{g \in G} \overline{\chi_{j}(g)} \operatorname{Tr}_{M_{i}}(g)
$$

The following is derived easily from the formula in [Bourbaki, Lemme 2, p. 110]

$$
\begin{equation*}
P_{S, \rho_{j}}(t)=\frac{1}{|G|} \sum_{g \in G} \frac{\overline{\chi_{j}(g)}}{\operatorname{det}\left(1-\rho^{\vee}(g) t\right)} \tag{1}
\end{equation*}
$$

Now we recall from $[$ Stanley $79,(4.9)]$.
Theorem 1.2. Let $f_{1}, f_{2}, \ldots, f_{r}$ be homogeneous generators of S^{G} chosen as above, $d_{i}=\operatorname{deg} f_{i},\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ the ideal of S generated by $f_{1}, f_{2}, \ldots, f_{n}$, and let $R=$ $S /\left(f_{1}, f_{2}, \ldots, f_{n}\right)$. Then as $\mathbf{C} G$-modules we have

$$
S \simeq R \otimes \mathbf{C}\left[f_{1}, f_{2}, \ldots, f_{n}\right] \text { and } R \simeq(\mathbf{C} G)^{e}
$$

where $e=|G|^{-1} d_{1} d_{2} \cdots d_{n}$.
Proposition 1.3. Keeping the notations as above, we have

$$
\begin{equation*}
P_{R, \rho_{j}}(t)=\frac{\prod_{i=1}^{n}\left(1-t^{d_{i}}\right)}{|G|} \sum_{g \in G} \frac{\overline{\chi_{j}(g)}}{\operatorname{det}\left(1-\rho^{\vee}(g) t\right)} \tag{i}
\end{equation*}
$$

(ii) $P_{R, \rho_{j}}(t)-P_{S_{G}, \rho_{j}}(t)$ is a polynomial with non-negative integer coefficients. (iii)

$$
\sum_{j=0}^{s}\left(\operatorname{deg} \rho_{j}\right) P_{S_{G}, \rho_{j}}(t)=\sum_{j \geq 0} \operatorname{dim}\left(S_{G}\right)_{i} t^{i}
$$

Proof. (i) It follows from Theorem 1.2 that $P_{S, \rho_{j}}(t)=P_{R, \rho_{j}}(t) / \prod_{i=1}^{n}\left(1-t^{d_{i}}\right)$. From Molien's formula (1), we infer (i).
(ii) Since we have a canonical surjection from R to $S_{G}, P_{R, \rho_{j}}(t)-P_{S_{G}, \rho_{j}}(t)$ has nonnegative integer coefficients.
(iii) Let $S_{G}=\oplus_{j=0}^{s}\left(S_{G}\right)_{\rho_{j}}$ be the decomposition into homogeneous components, namely ρ_{j}-factors $\left(S_{G}\right)_{\rho_{j}}$ of S_{G}. Since $\operatorname{dim}\left(S_{G}\right)_{\rho_{j}}=\left(\operatorname{deg} \rho_{j}\right)\left\langle S_{G}, \rho_{j}\right\rangle_{G}$, the above equation is clear from the definition of $P_{S_{G}, \rho_{j}}(t)$.

We note that if there exists a complex reflection group \tilde{G} of $\mathrm{GL}(V)$ containing G with $[\tilde{G}: G]=2$, then it is easier to calculate $P_{S_{G}, \rho_{j}}(t)$ by using the following
Theorem 1.4. ([Bourbaki] or [GNS00, 1.6]) Assume that there exists a complex reflection subgroup \tilde{G} of $\mathrm{GL}(V)$ containing G with $[\tilde{G}: G]=2$.
(i) There exist n homogeneous \tilde{G}-invariants $f_{1}, f_{2}, \ldots, f_{n}$ such that as $\mathbf{C} \tilde{G}$-modules $S^{\tilde{G}}=\mathbf{C}\left[f_{1}, f_{2}, \ldots, f_{n}\right]$ and $S_{\tilde{G}}=S /\left(f_{1}, f_{2}, \ldots, f_{n}\right) \simeq \mathbf{C} \tilde{G}$.
(ii) Let $f_{n+1}=\operatorname{Jac}\left(f_{1}, f_{2}, \ldots, f_{n}\right)$. Then we have

$$
S^{G}=\mathbf{C}\left[f_{1}, f_{2}, \ldots, f_{n}, f_{n+1}\right] \text { and } S_{\tilde{G}} \simeq S_{G} \oplus \mathbf{C} f_{n+1}
$$

Moreover

$$
\left(S_{\tilde{G}}\right)_{k} \simeq \begin{cases}\left(S_{G}\right)_{k}, & \text { if } k<d_{n+1} \\ \mathbf{C} f_{n+1}, & \text { if } k=d_{n+1} \\ 0, & \text { if } k>d_{n+1}\end{cases}
$$

where $d_{n+1}=\operatorname{deg} f_{n+1}=\sum_{i=1}^{n}\left(d_{i}-1\right)$.
Corollary 1.5. Under the same assumptions in Theorem 1.4

$$
\begin{aligned}
& P_{S_{G}, \rho_{j}}(t)=P_{S_{\tilde{G}}, \rho_{j}}(t)=\prod_{i=1}^{n}\left(1-t^{d_{i}}\right) P_{S, \rho_{j}}(t) \\
& P_{S_{G}, \rho_{0}}(t)=P_{S_{\tilde{G}}, \rho_{0}}(t)+t^{n+1}=\prod_{i=1}^{n}\left(1-t^{d_{i}}\right) P_{S, \rho_{j}}(t)+t^{d_{n+1}}
\end{aligned}
$$

Proof. Immediate from Theorem 1.4.
Remark 1.6. Let G be a finite subgroup of $\operatorname{SL}(3, \mathbf{C})$ of exceptional type (E)-(L). Then homogeneous generators of S^{G} are known explicitly in [YY93]. Moreover, since $\left(S_{G}\right)_{i} \simeq S_{i} /(\mathfrak{n})_{i}$ and $(\mathfrak{n})_{i}=V^{\vee} \cdot(\mathfrak{n})_{i-1}+\sum_{\operatorname{deg} f_{j}=i} \mathbf{C} f_{j}$, we can calculate $(\mathfrak{n})_{i}$ inductively. Thus all the informations of Proposition 1.3 are available, which turns out to be sufficient to determine $P_{S_{G}, \rho_{j}}(t)$ by the case-by-case examination. The results are summarized in Sections 4 and 5.

Either of the groups of type (H), (I) and (L) is a subgroup of some complex reflection group of index two, while the group of type (E), (F) or (J) is a subgroup of some complex reflection group of index 6,3 or 12 respectively. In these cases
we can apply [Steinberg64] and [Stanley79] to describe $R:=S /\left(f_{1}, f_{2}, f_{3}\right)$ in some detail. However no group of type (G) or (K) is a subgroup of a complex reflection group. Nevertheless in any case from (E) to (L) the algebra R has a remarkable duality as in the cases of complex reflection groups. We will discuss it elsewhere.

2. Koszul complex and Springer-McKay identities of Molien series

We keep the previous notations. We start with the Koszul complex for the symmetric algebra $S=S\left(V^{\vee}\right)$ (cf. [Lang84, XVI §10]).

Lemma 2.1. Let $\stackrel{k}{\wedge} V^{\vee}$ be the k-th alternating product of V^{\vee}.
(i) There is a unique homomorphism

$$
d_{k}: \stackrel{k}{\wedge} V^{\vee} \otimes S \longrightarrow \stackrel{k-1}{\wedge} V^{\vee} \otimes S
$$

such that for $x_{i} \in V^{\vee}$ and $y \in S$

$$
\begin{aligned}
& d_{k}\left(\left(x_{1} \wedge x_{2} \wedge \cdots \wedge x_{k}\right) \otimes y\right) \\
& =\sum_{i=1}^{k}(-1)^{i-1}\left(x_{1} \wedge x_{2} \wedge \cdots \wedge \hat{x}_{i} \wedge \cdots \wedge x_{k}\right) \otimes\left(x_{i} \cdot y\right) .
\end{aligned}
$$

(ii) There is an exact sequence with d_{k} given by (i)

$$
0 \rightarrow \wedge^{n} V^{\vee} \otimes S \xrightarrow{d_{n}} n^{n-1} V^{\vee} \otimes S \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_{2}} V^{\vee} \otimes S \xrightarrow{d_{1}} S \xrightarrow{d_{0}} \mathbf{C} \rightarrow 0 .
$$

(iii) For each integer $m \geq 1$ we have an exact sequence

$$
0 \rightarrow \wedge^{n} V^{\vee} \otimes S_{m-n} \rightarrow{ }^{n-1} V^{\vee} \otimes S_{m-n+1} \rightarrow \cdots \rightarrow S_{m} \rightarrow 0
$$

where $S_{j}=0$ for $j<0$.
(iv) For each integer $m \geq 1$ and for each irreducible representation $\rho_{j}(0 \leq j \leq s)$, we have an exact sequence

$$
0 \rightarrow\left(\stackrel{n}{\wedge} V^{\vee} \otimes S_{m-n}\right)_{\rho_{j}} \rightarrow\left(\stackrel{n-1}{\wedge} V^{\vee} \otimes S_{m-n+1}\right)_{\rho_{j}} \rightarrow \cdots \rightarrow\left(S_{m}\right)_{\rho_{j}} \rightarrow 0
$$

Proof. For a proof of (i), (ii) and (iii), see [Lang84, (10.13) and (10.14)]. Since d_{k} is a G-homomorphism, we decompose the exact sequence of (iii) into ρ_{j}-components, which proves (iv).

We denote by $\rho^{(k)}$ (resp. $\rho^{\vee(k)}$) the $\mathbf{C} G$-module ${ }^{k} V$ (resp. ${ }^{k} \wedge^{\vee} V^{\vee}$). Note that $\rho^{(0)}=1, \rho^{(1)}=\rho, \rho^{(n)}=\operatorname{det}$, and $\rho^{\vee(k)}$ is the dual $\mathbf{C} G$-module of $\rho^{(k)}$. Define non-negative integers $a_{i, j}^{(k)}$ by

$$
\begin{equation*}
\rho^{(k)} \otimes \rho_{i}=\sum_{j=0}^{s} a_{i j}^{(k)} \rho_{j}, \quad \text { for } 0 \leq i \leq s \text { and } 0 \leq k \leq n . \tag{2}
\end{equation*}
$$

Theorem 2.2. The Molien series $P_{S, \rho_{j}}(t)$ satisfy the following equations:

$$
\sum_{k=0}^{n} \sum_{j=0}^{s}(-1)^{k} a_{i j}^{(k)} t^{k} P_{S, \rho_{j}}(t)=\delta_{i, 0} \quad \text { for } i=0,1, \ldots, s
$$

Proof. We see

$$
\begin{aligned}
\operatorname{dim}\left(\stackrel{k}{\wedge} V^{\vee} \otimes S_{m-k}\right)_{\rho_{i}} & =\operatorname{deg}\left(\rho_{i}\right) \operatorname{dim} \operatorname{Hom}_{G}\left(\rho_{i}, \rho^{\vee(k)} \otimes S_{m-k}\right) \\
& =\operatorname{deg}\left(\rho_{i}\right) \operatorname{dim} \operatorname{Hom}_{G}\left(\rho^{(k)} \otimes \rho_{i}, S_{m-k}\right) \\
& =\operatorname{deg}\left(\rho_{i}\right) \sum_{j=0}^{s} a_{i j}^{(k)} \operatorname{dim} \operatorname{Hom}_{G}\left(\rho_{j}, S_{m-k}\right)
\end{aligned}
$$

Thus we obtain

$$
\sum_{m \geq 0}\left(\operatorname{dim}\left(\stackrel{k}{\wedge} V^{\vee} \otimes S_{m-k}\right) \rho_{\rho_{i}}\right) t^{m}=\operatorname{deg}\left(\rho_{i}\right) \sum_{j=0}^{s} a_{i j}^{(k)} t^{k} P_{S, \rho_{j}}(t)
$$

Hence our theorem follows from Lemma 2.1 (ii) and (iv).
Remark 2.3. This proposition can be proved directly by using (1).
Corollary 2.4. Keep the same notation in Theorem 2.2.
(i) If G is a subgroup of $\mathrm{SL}(V)$, then

$$
\sum_{k=1}^{n-1} \sum_{j=0}^{s}(-1)^{k} a_{i j}^{(k)} t^{k} P_{S, \rho_{j}}(t)=\left(-1-(-1)^{n} t^{n}\right) P_{S, \rho_{i}}(t)+\delta_{i, 0}
$$

(ii) If G is a subgroup of $\operatorname{SL}(2, \mathbf{C})$, then

$$
\sum_{j=0}^{s} a_{i j}^{(1)} P_{S, \rho_{j}}(t)=\left(t+t^{-1}\right) P_{S, \rho_{i}}(t)-t^{-1} \delta_{i, 0}
$$

(iii) If G is a subgroup of $\mathrm{SL}(3, \mathbf{C})$ and if $\rho^{\vee}=\rho$, then

$$
\sum_{j=0}^{s} a_{i j}^{(1)} P_{S, \rho_{j}}(t)=\left(t+1+t^{-1}\right) P_{S, \rho_{i}}(t)+\left(t^{2}-t\right)^{-1} \delta_{i, 0}
$$

(The assumption in (iii) is satisfied if $G \subset \mathrm{SO}(3)$.)
Proof. If G is a finite subgroup of $\operatorname{SL}(V)$, then $\rho^{(0)}$ and $\rho^{(n)}$ are trivial. So (i) follows at once from Theorem 2.2. If $\operatorname{dim} V=2$, we obtain (ii) by dividing both sides of (i) by $-t$. Under the assumption of (iii), we have $\rho^{(1)}=\rho^{(2)}=\rho$. Dividing both sides of (i) by $\left(t^{2}-t\right)$, we obtain (iii).

Put $F_{j}(t)=P_{S, \rho_{j}}(t) \prod_{i=1}^{n}\left(1-t^{d_{i}}\right)$ for $0 \leq j \leq s$. By Theorem 1.4

$$
F_{j}(t)= \begin{cases}1+t^{d_{n+1}} & \text { if } j=0 \\ P_{S_{G}, \rho_{j}}(t) & \text { if } j \neq 0\end{cases}
$$

The next corollary is immediate from Corollary 2.4.
Corollary 2.5. Keep the notation as above. Let $0 \leq i \leq s$. Then
(i) If G is a finite subgroup of $\mathrm{SL}(2, \mathbf{C})$, then

$$
\sum_{j=0}^{s} a_{i j}^{(1)} F_{j}(t)=\left(t+t^{-1}\right) F_{i}(t)-\frac{\left(1-t^{d_{1}}\right)\left(1-t^{d_{2}}\right)}{t} \delta_{i, 0}
$$

(ii) If G is a finite subgroup of $\mathrm{SO}(3)$, then

$$
\sum_{j=0}^{s} a_{i j}^{(1)} F_{j}(t)=\left(t+1+t^{-1}\right) F_{i}(t)+\frac{\left(1-t^{d_{1}}\right)\left(1-t^{d_{2}}\right)\left(1-t^{d_{3}}\right)}{\left(t^{2}-t\right)} \delta_{i, 0}
$$

Remark 2.6. The system of equations in Corollary 2.4 (ii) were given in [Springer87] and [McKay99] by using corresponding Coxeter-Dynkin diagrams, or McKay's semiaffine graphs. Corollary 2.4 (i) claims, roughly speaking, that one can calculate all the Molien series once one knows $a_{i j}^{(k)}$, in particular only $a_{i j}^{(1)}$ when $G \subset \operatorname{SL}(2, \mathbf{C})$ or $G \subset \mathrm{SO}(3)$. In this sense the representation graph (or rather the indices $a_{i j}^{(1)}$) of a subgroup G of $\mathrm{SO}(3)$ plays the same role in calculating Molien series as the Coxeter-Dynkin diagram for a finite subgroup of $\operatorname{SL}(2, \mathbf{C})$.
2.7. Complex reflection groups. If G is a finite subgroup of $\mathrm{SL}(2, \mathbf{C})$ or $\mathrm{SO}(3)$, there exists a complex reflection group \tilde{G} containing G with $[\tilde{G}: G]=2$. We list all such pairs G and \tilde{G} in Table 1 and Table 2. We use the notation in [Cohen76]; the group G_{i} is the complex reflection group with Shephard-Todd number i. The symbol $W(A)$ stands for the Weyl group of type A. The integer d_{i} in the tables is the degree of f_{i} defined in Theorem 1.4.

G in $\mathrm{SL}(2, \mathbf{C})$	order	\tilde{G}	d_{1}, d_{2}
cyclic	l	$W\left(I_{2}^{(l)}\right)$	$2, l$
binary dihedral	$4 l$	$G(2 l, l, 2)$	$4,2 l$
binary tetrahedral	24	G_{12}	6,8
binary octahedral	48	G_{13}	8,12
binary icosahedral	120	G_{22}	12,20

Table 1. Subgroups of $\operatorname{SL}(2, \mathbf{C})$

G in $\mathrm{SO}(3)$	order	\tilde{G}	d_{1}, d_{2}, d_{3}
cyclic	l	$W\left(I_{2}^{(l)}\right)$	$1,2, l$
dihedral	$2 l$	$W\left(I_{2}^{(l)} \times A_{1}\right)$	$2,2, l$
tetrahedral $\left(\simeq A_{4}\right)$	12	$W\left(A_{3}\right)$	$2,3,4$
octahedral $\left(\simeq S_{4}\right)$	24	$W\left(B_{3}\right)$	$2,4,6$
icosahedral $\left(\simeq A_{5}\right)$	60	$W\left(H_{3}\right)$	$2,6,10$

Table 2. Subgroups of $\mathrm{SO}(3)$

3. Geometric McKay correspondence for subgroups of $\operatorname{SO}(3)$

Let $\pi: \operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right) \rightarrow \mathbf{C}^{3} / G$ be the Hilbert-Chow morphism for $G \subset \mathrm{SO}(3)$.
Theorem 3.1. Let G be a finite subgroup of $\mathrm{SO}(3)$. For $I \in \operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$ with $I \subset \mathfrak{m}$, we define $V(I)=I /(\mathfrak{m} I+\mathfrak{n})$. For $1 \leq i \leq s$, we define $C_{j}=\left\{I \in \operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right) ; V(I) \supset\right.$ $\left.\rho_{j}, I \subset \mathfrak{m}\right\}$. Then
(i) $C_{j} \simeq \mathbf{P}^{1}$ and $\pi^{-1}(0)=\cup_{j=1}^{s} C_{j}$.
(ii) If $I \in C_{j}$ and $I \notin C_{i}$ for any $j \neq i$, then $V(I) \simeq \rho_{j}$ as G-modules.
(iii) If only two rational curves C_{i} and C_{j} meet at $I \in \pi^{-1}(0)$, then C_{i} and C_{j} intersect at I transversally and $V(I) \simeq \rho_{i}+\rho_{j}$.
(iv) If G is either cyclic, A_{4} or $D_{4 m+2}$, then there are no three rational curves meeting at a point of $\pi^{-1}(0)$.
(v) If $G=D_{4 m}, S_{4}$ or A_{5}, then there is a unique $I \in \pi^{-1}(0)$ such that $\{I\}=$ $C_{i} \cap C_{j} \cap C_{k}$ for $\rho_{i}, \rho_{j}, \rho_{k} \in \hat{G}$ all distinct. In this case $V(I) \simeq \rho_{i}+\rho_{j}+\rho_{k}$ and the curves C_{i}, C_{j}, C_{k} meet transversally at I as coordinate axes of $\left(\mathbf{C}^{3}, 0\right)$.
(vi) No four rational curves C_{i} meet at a point of $\pi^{-1}(0)$.

Our proof of Theorem 3.1 is carried out by the case by case examination. When G is abelian, our theorem is proved by the same argument as in the two dimensional case. When G is isomorphic to the alternating group A_{4} or A_{5}, our theorem has been proved in [GNS00]. So we only need to prove our theorem when G is a dihedral group or $G=S_{4}$. We will give a proof of it in the subsections 3.4, 3.5 and 3.6.
3.2. Graphs of G. Here we define three graphs for a finite subgroup G of $\mathrm{SO}(3)$.

First we define the planar dual graph $\bar{R}(G)$ of $\pi^{-1}(0)$ as follows: the set of vertices of $\bar{R}(G)$ is $\left\{C_{j}\right\}_{1 \leq j \leq s} ; C_{i}$ and C_{j} are joined by a single edge if and only if $C_{i} \cap C_{j} \neq \phi$. We note that in Theorem 3.1 there are three rational curves C_{i}, C_{j} and C_{k} in $\pi^{-1}(0)$ meeting at a point, for which we define a planar triangle in $\bar{R}(G)$ with three vertices C_{i}, C_{j} and C_{k} instead of a two cell. See Table 3.

Next we define the (unoriented) representation graph $R(G)$ of G as follows: the set of vertices is \hat{G}; let $a_{i, j}^{(1)}$ be the integer defined in (2); ρ_{i} and ρ_{j} are joined by an edge of multiplicity $a_{i, j}^{(1)}$ if $a_{i, j}^{(1)} \neq 0$, where if $i=j$ the edge joining ρ_{i} with itself is understood as a loop of multiplicity $a_{i, i}^{(1)}$. We note $a_{i, j}^{(1)}=0$ or 1 for $i \neq j$, while $a_{i, i}^{(1)}=0,1$, or 2 . We also note that $a_{i, j}^{(1)}=a_{i, j}^{(2)}$ for any finite subgroup G of $\mathrm{SO}(3)$.

Finally we define a subgraph $R_{0}(G)$ of $R(G)$ as follows: the set of vertices is $\left\{\rho_{j}\right\}_{1 \leq j \leq s}$ and ρ_{i} and ρ_{j} are joined by a single edge if and only if $i \neq j$ and $a_{i, j}^{(1)} \neq 0$. In other words, $R_{0}(G)$ is the subgraph of $R(G)$ obtained from $R(G)$ by removing the vertex ρ_{0}, all the edges starting from ρ_{0} and all the loops in $R(G)$.

The following theorem is a corollary to the proof of Theorem 3.1 once we calculate the representation graph $R(G)$.

Theorem 3.3. $\bar{R}(G)$ is isomorphic to $R_{0}(G)$ under the map $C_{i} \mapsto \rho_{i}(1 \leq i \leq s)$. The graphs $\bar{R}(G)$ and $R(G)$ are given in Table 3.

A_{4}

S_{4}

A_{5}

Table 3. Graphs of subgroups of $\mathrm{SO}(3)$

In the rest of this section we give proofs of Theorem 3.1 in the cases where G is a dihedral group or G is isomorphic to S_{4}.
3.4. Proof of Theorem 3.1 - the dihedral group of order $2 \ell=4 m$. Let G be the dihedral group of order 2ℓ :

$$
G=\left\langle\sigma=\left(\begin{array}{ccc}
\varepsilon^{-1} & 0 & 0 \\
0 & \varepsilon & 0 \\
0 & 0 & 1
\end{array}\right), \tau=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)\right\rangle, \quad \text { where } \varepsilon=e^{2 \pi i / \ell}
$$

We define

$$
f_{1}=z^{2}, f_{2}=x y, f_{3}=x^{\ell}+y^{\ell}, f_{4}=z\left(x^{\ell}-y^{\ell}\right)
$$

Then we see $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ is a system of generators of S^{G} which satisfies

$$
f_{4}^{2}-f_{1} f_{3}^{2}+4 f_{1} f_{2}^{\ell}=0
$$

regardless of the parity of ℓ.
First in this subsection we consider the case where ℓ is even. So we write $\ell=2 m$, $|G|=4 m$. The character table of G is as follows.

c. c	1	-1	τ	$\tau \sigma$	σ^{i}
age	0	1	1	1	1
\sharp	1	1	m	m	2
1_{1}	1	1	1	1	1
1_{2}	1	1	-1	-1	1
1_{3}	1	$(-1)^{m}$	1	-1	$(-1)^{i}$
1_{4}	1	$(-1)^{m}$	-1	1	$(-1)^{i}$
2_{j}	2	$(-1)^{j} 2$	0	0	$\varepsilon^{i j}+\varepsilon^{-i j}$
					$(1 \leq i, j \leq m-1)$

TABLE 4. Characters of $G\left(D_{2 \ell}\right), \ell=2 m$:even

The coinvariant algebra S_{G} splits into irreducible components as in Table 5. Using Table 5 we define ideals in $\operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)[a: b] \in \mathbf{P}^{1}$ as in [GNS00].

$$
\begin{aligned}
& I\left([a: b]_{1_{2}}\right)=\left(a z+b\left(x^{2 m}-y^{2 m}\right), x z, y z\right)+\mathfrak{n}, \\
& I\left([a: b]_{1_{3}}\right)=\left(a\left(x^{m}+y^{m}\right)+b\left(x^{m}-y^{m}\right) z, x^{m+1}, y^{m+1},\left(x^{m}+y^{m}\right) z\right)+\mathfrak{n}, \\
& I\left([a: b]_{1_{4}}\right)=\left(a\left(x^{m}-y^{m}\right)+b\left(x^{m}+y^{m}\right) z, x^{m+1}, y^{m+1},\left(x^{m}-y^{m}\right) z\right)+\mathfrak{n}, \\
& I\left([a: b]_{2_{j}}\right)=S[G] \cdot\left(a x^{j} z+b y^{2 m-j}, x^{j+1} z, x^{2 m-j+1}\right)+\mathfrak{n} . \\
& \quad(i=1,2, \ldots, m-1)
\end{aligned}
$$

It is clear that $V\left(I\left([a: b]_{\rho}\right)\right) \simeq \rho$ as G-modules. We note that the following exhaust all the possible cases of coincidence between $I\left([a: b]_{\rho}\right)$.

$$
\begin{aligned}
& I\left([0: 1]_{1_{2}}\right)=I\left([1: 0]_{2_{1}}\right), \\
& I\left([0: 1]_{2_{j}}\right)=I\left([1: 0]_{2_{j+1}}\right), \text { for } j=1,2, \ldots, m-2, \\
& I\left([0: 1]_{2_{m-1}}\right)=I\left([0: 1]_{1_{3}}\right)=I\left([0: 1]_{1_{4}}\right)
\end{aligned}
$$

degree	$\left(S_{G}\right)_{j}$	irred. factors
1	$\langle x, y\rangle \oplus\langle z\rangle$	$2_{1}+1_{2}$
$2 \leq j \leq m-1$	$\left\langle x^{j}, y^{j}\right\rangle \oplus\left\langle x^{j-1} z,-y^{j-1} z\right\rangle$	$2_{j}+2_{j-1}$
m	$\left\langle x^{m}+y^{m}\right\rangle \oplus\left\langle x^{m}-y^{m}\right\rangle$	
$m+1$	$\oplus\left\langle x^{m-1} z,-y^{m-1} z\right\rangle$	$1_{3}+1_{4}+2_{m-1}$
$m+2 \leq j \leq 2 m-1$	$\left\langle y^{m+1}, x^{m+1}\right\rangle \oplus\left\langle\left(x^{m}-y^{m}\right) z\right\rangle$	
$2 m$	$\oplus\left\langle\left(x^{m}+y^{m}\right) z\right\rangle$	$2_{m-1}+1_{3}+1_{4}$
	$\left\langle y^{j}, x^{j}\right\rangle \oplus\left\langle y^{j-1} z,-x^{j-1} z\right\rangle$	$2_{2 m-j}+2_{2 m-j+1}$
$\left.m-y^{2 m}\right\rangle \oplus\left\langle y^{2 m-1} z,-x^{2 m-1} z\right\rangle$	$1_{2}+2_{1}$	

Table 5. The coinvariant algebra of $G\left(D_{2 \ell}\right), \ell=2 m$: even

Now we prove

$$
\pi^{-1}(0)=\cup_{\rho \in \hat{G} \backslash\left\{1_{1}\right\}} I\left([a: b]_{\rho}\right)
$$

It is immediate from the definition and the Diagram $D_{4 m}$ (see 3.7) that $I\left([a: b]_{\rho}\right)$ are contained in $\pi^{-1}(0)$. Conversely let I be an ideal contained in $\pi^{-1}(0)$, that is, $\mathfrak{n} \subset I \subset \mathfrak{m}$ and $S / I \simeq \mathbf{C}[G]$. By the Diagram $D_{4 m}$, it is easy to see that $x^{2 m-j} z, y^{2 m-j} z \in I$ for all $j=1,2, \ldots, m-1$ and that $x^{j}+a x^{j} z+b y^{2 m-j} \notin I$ for any $a, b \in \mathbf{C}$ and $j=1,2, \ldots, m-1$. If $x^{j} z+b y^{2 m-j} \in I$ for some $b \neq 0$ and some $j=1,2, \ldots, m-1$, then we have $I\left([1: b]_{2_{j}}\right) \subset I$ which implies $I\left([1: b]_{2_{j}}\right)=I$.

Now we assume the contrary, that is, that $x^{j} z+b y^{2 m-j} \notin I$ for any nonzero b and any $j=1, \cdots, m-1$. Then by the condition $S / I \simeq \mathbf{C}[G]$ we have either $x^{j} z \in I$ or $y^{2 m-j} \in I$. If there is $j \geq 2$ such that $x^{j} z \in I, x^{j-1} z \notin I$, then $y^{2 m-j+1} \in I$. It follows that $I=I\left([1: 0]_{2_{j}}\right)$. If $x z \in I$, then $I=I\left([a: b]_{1_{2}}\right)$.

It remains to consider the case where there is no j such that $x^{j} z \in I$. Hence $y^{m+1} \in I$. If $x^{m}+y^{m}+b\left(x^{m}-y^{m}\right) z \in I$ (resp. $x^{m}-y^{m}+b\left(x^{m}+y^{m}\right) z \in I$) for some $b \in \mathbf{C}$, then $I=I\left([1: b]_{1_{3}}\right)\left(\right.$ resp. $\left.I\left([1: b]_{1_{4}}\right)\right)$. Otherwise I contains $\left(x^{m}-y^{m}\right) z$ and $\left(x^{m}+y^{m}\right) z$ and then we have $I=I\left([0: 1]_{1_{3}}\right)$. Thus we complete the proof of Theorem 3.1 when G is a dihedral group of order 4 m .
3.5. Proof of Theorem 3.1 - the dihedral group of order $4 m+2$. Now we consider the second case where G is a dihedral group of order $2 \ell=4 m+2$. Table 6 is the character table of G. The coinvariant algebra S_{G} splits into irreducible components as in Table 7.

We define

$$
\begin{aligned}
& I\left([a: b]_{1_{2}}\right)=\left(a z+b\left(x^{2 m+1}-y^{2 m+1}\right), x z, y z\right)+\mathfrak{n}, \\
& I\left([a: b]_{2_{j}}\right)=S[G] \cdot\left(a x^{j} z+b y^{2 m-j+1}, x^{j+1} z, x^{2 m-j+2}\right)+\mathfrak{n}, \\
& j=1,2, \ldots, m,
\end{aligned}
$$

where

$$
\begin{aligned}
& I\left([0: 1]_{1_{2}}\right)=I\left([1: 0]_{2_{1}}\right), \\
& I\left([0: 1]_{2_{j}}\right)=I\left([1: 0]_{2_{j+1}}\right), \text { for } j=1,2, \ldots, m-1 .
\end{aligned}
$$

c. c	1	τ	σ^{i}
age	0	1	1
\sharp	1	$2 m+1$	2
1_{1}	1	1	1
1_{2}	1	-1	1
2_{j}	2	0	$\varepsilon^{i j}+\varepsilon^{-i j}$
			$(1 \leq i, j \leq m)$

TAbLE 6. Characters of $G\left(D_{2 \ell}\right), \ell=2 m+1$:odd

degree	$\left(S_{G}\right)_{j}$	irred. factors
1	$\langle x, y\rangle \oplus\langle z\rangle$	$2_{1}+1_{2}$
j	$\left\langle x^{j}, y^{j}\right\rangle \oplus\left\langle x^{j-1} z,-y^{j-1} z\right\rangle$	$2_{j}+2_{j-1}$
		$(2 \leq j \leq m-1)$
m	$\left\langle x^{m}, y^{m}\right\rangle \oplus\left\langle x^{m-1} z,-y^{m-1} z\right\rangle$	$2_{m}+2_{m-1}$
$m+1$	$\left\langle y^{m+1}, x^{m+1}\right\rangle \oplus\left\langle x^{m} z,-y^{m} z\right\rangle$	$2_{m}+2_{m}$
$m+2$	$\left\langle y^{m+2}, x^{m+2}\right\rangle \oplus\left\langle x^{m+1} z,-y^{m+1} z\right\rangle$	$2_{m-1}+2_{m}$
j	$\left\langle y^{j}, x^{j}\right\rangle \oplus\left\langle y^{j-1} z,-x^{j-1} z\right\rangle$	$2_{2 m-j+1}+2_{2 m-j+2}$
		$(m+3 \leq j \leq 2 m)$
$2 m+1$	$\left\langle x^{2 m+1}-y^{2 m+1}\right\rangle \oplus\left\langle y^{2 m} z,-x^{2 m} z\right\rangle$	$1_{2}+2_{1}$

Table 7. The coinvariant algebra of $G\left(D_{2 \ell}\right), \ell=2 m+1$: odd

We see $\pi^{-1}(0)=\cup_{\rho \in \hat{G} \backslash\left\{1_{1}\right\}} I\left([a: b]_{\rho}\right)$ in the same manner as in the case of even ℓ. As before we see that $x^{2 m-j} z, y^{2 m-j} z \in I$ for any $j=1,2, \ldots, m-1$ and that $x^{j}+a x^{j} z+b y^{2 m-j} \notin I$ for any $a, b \in \mathbf{C}$ and $j=1,2, \ldots, m-1$. If $x^{j} z+b y^{2 m-j} \in I$ for some $b \neq 0$ and some $j=1,2, \ldots, m-1$, then $I=I\left([1: b]_{2_{j}}\right)$. If there is $j \geq 2$ such that $x^{j} z \in I, x^{j-1} z \notin I$, then $I=I\left([1: 0]_{2_{j}}\right)$. If $x z \in I$, then $I=I\left([a: b]_{1_{2}}\right)$. If $x^{m} z \notin I$, then $y^{m+1}, x^{m+1} \in I$ so that $I=I\left([0: 1]_{2_{m}}\right)$.
3.6. Proof of Theorem 3.1 - the symmetry group $G=S_{4}$. Let

$$
G=\left\langle\sigma=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \tau=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\right\rangle .
$$

We define

$$
\begin{gathered}
f_{1}=x y z, f_{2}=x^{2}+y^{2}+z^{2}, f_{3}=x^{4}+y^{4}+z^{4}, \\
f_{4}=\left(x^{2}-y^{2}\right)\left(y^{2}-z^{2}\right)\left(z^{2}-x^{2}\right) .
\end{gathered}
$$

Then $\left\{f_{1}^{2}, f_{2}, f_{3}, f_{1} f_{4}\right\}$ is a system of generators of S^{G} which satisfies

$$
\begin{aligned}
4\left(f_{1} f_{4}\right)^{2} & +108 f_{1}^{6}-20 f_{1}^{4} f_{2}^{3}+36 f_{1}^{4} f_{2} f_{3} \\
& +f_{1}^{2} f_{2}^{6}-4 f_{1}^{2} f_{2}^{4} f_{3}+5 f_{1}^{2} f_{2}^{2} f_{3}^{2}-2 f_{1}^{2} f_{3}^{3}=0
\end{aligned}
$$

The following is the character table of G.

c. c	1	σ^{2}	τ	σ	$\sigma \tau \sigma^{2}$
age	0	1	1	1	1
\sharp	1	3	8	6	6
1_{1}	1	1	1	1	1
1_{2}	1	1	1	-1	-1
2	2	2	-1	0	0
3_{1}	3	-1	0	1	-1
3_{2}	3	-1	0	-1	1

Table 8. Characters of S_{4}

The decomposition of the coinvariant algebra S_{G} into irreducible components is given in Table 9 where

$$
g=x^{2}+\omega y^{2}+\omega^{2} z^{2}, \quad \bar{g}=x^{2}+\omega^{2} y^{2}+\omega z^{2}, \quad \omega=e^{2 \pi \sqrt{-1} / 3} .
$$

d	$\left(S_{G}\right)_{d}$	irred. factors
1	$\langle x, y, z\rangle$	3_{1}
2	$\langle g, \bar{g}\rangle \oplus\langle y z, z x, x y\rangle$	$2+3_{2}$
3	$\left\langle f_{1}\right\rangle \oplus\left\langle x^{3}, y^{3}, z^{3}\right\rangle$	
	$\oplus\left\langle\left(y^{2}-z^{2}\right) x,\left(z^{2}-x^{2}\right) y,\left(x^{2}-y^{2}\right) z\right\rangle$	$1_{2}+3_{1}+3_{2}$
4	$\left\langle\bar{g}^{2}, g^{2}\right\rangle \oplus\left\langle\left(y^{2}-z^{2}\right) y z,\left(z^{2}-x^{2}\right) z x,\left(x^{2}-y^{2}\right) x y\right\rangle$	
	$\oplus\left\langle f_{1} x, f_{1} y, f_{1} z\right\rangle$	$2+3_{1}+3_{2}$
5	$\left\langle f_{1} g,-f_{1} \bar{g}\right\rangle \oplus\left\langle f_{1} y z, f_{1} z x, f_{1} x y\right\rangle$	
	$\oplus\left\langle\left(y^{2}-z^{2}\right) x^{3},\left(z^{2}-x^{2}\right) y^{3},\left(x^{2}-y^{2}\right) z^{3}\right\rangle$	$2+3_{1}+3_{2}$
6	$\left\langle f_{4}\right\rangle \oplus\left\langle f_{1}\left(y^{2}-z^{2}\right) x, f_{1}\left(z^{2}-x^{2}\right) y, f_{1}\left(x^{2}-y^{2}\right) z\right\rangle$	
	$\oplus\left\langle f_{1} x^{3}, f_{1} y^{3}, f_{1} z^{3}\right\rangle$	$1_{2}+3_{1}+3_{2}$
7	$\left\langle f_{1} \bar{g}^{2},-f_{1} g^{2}\right\rangle$	
	$\oplus\left\langle f_{1}\left(y^{2}-z^{2}\right) y z, f_{1}\left(z^{2}-x^{2}\right) z x, f_{1}\left(x^{2}-y^{2}\right) x y\right\rangle$	$2+3_{2}$
8	$\left\langle f_{1}\left(y^{2}-z^{2}\right) x^{3}, f_{1}\left(z^{2}-x^{2}\right) y^{3}, f_{1}\left(x^{2}-y^{2}\right) z^{3}\right\rangle$	3_{1}

Table 9. The coinvariant algebra of S_{4}

We define

$$
\begin{aligned}
& I\left([a: b]_{1_{2}}\right)=S \cdot\left(a f_{1}+b f_{4}, f_{1} x, f_{1} y, f_{1} z\right)+\mathfrak{n}, \\
& I\left([a: b]_{2}\right)=S[G] \cdot\left(a g^{2}+b f_{1} \bar{g},\left(y^{2}-z^{2}\right) x^{3}, f_{1} y z\right)+\mathfrak{n}, \\
& I\left([a: b]_{3_{1}}\right)=S[G] \cdot\left(a\left(y^{2}-z^{2}\right) y z+b f_{1} y z, f_{1} g,\left(y^{2}-z^{2}\right) x^{3}\right)+\mathfrak{n} . \\
& I\left([a: b]_{3_{2}}\right)=S[G] \cdot\left(a f_{1} x+b\left(y^{2}-z^{2}\right) x^{3}, f_{1} g, f_{1} y z\right)+\mathfrak{n} .
\end{aligned}
$$

Let $\bar{S}_{d}=\left(S_{G}\right)_{d}$, the degree d part of S_{G}. Let $I \in \operatorname{Hilb}^{G}\left(\mathbf{C}^{3}\right)$ such that $\mathfrak{n} \subset I \subset \mathfrak{m}$. First we note by using the quiver diagram of S_{4} as before that I does not contain the elements whose projections to $\bar{S}_{1} \oplus \bar{S}_{2}$ (the degree one and two parts of S_{G}) are nonzero. We note also that I contains $\bar{S}_{7} \oplus \bar{S}_{8}$.

Assume that I contains an element $a f_{1}+b f_{4}$ for $a \neq 0$. Then by the quiver diagram of S_{4}, we see easily that $I=I\left([a: b]_{1_{2}}\right)$.

Now we consider the case I contains no element $a f_{1}+b f_{4}$ for $a \neq 0$. Since $S_{G} / I=\mathbf{C}[G], f_{4} \in I$, that is $\bar{S}_{6}\left(1_{2}\right) \subset I$. If I contains an element $a f_{1} x+b\left(y^{2}-z^{2}\right) x^{3}$ for $a \neq 0$, then $I=I\left([a: b]_{3_{2}}\right)$. If I contains an element $a\left(y^{2}-z^{2}\right) y z+b f_{1} y z$ for $a \neq 0$, then $I=I\left([a: b]_{3_{1}}\right)$.

Now we consider the remaining cases. By the quiver diagram of S_{4}, we see $\bar{S}_{5}\left(3_{1}\right) \oplus$ $\bar{S}_{5}\left(3_{2}\right) \subset I$ and $\bar{S}_{6} \subset I$. If $a \bar{g}^{2}+b f_{1} g \in I$ for $a \neq 0$, then $I=I\left([a: b]_{2}\right)$. If I contains no element $a \bar{g}^{2}+b f_{1} g$ for $a \neq 0$, then $f_{1} g \in \bar{S}_{5}(2) \subset I$ because I contains no elements with nonzero projections to $\bar{S}_{1} \oplus \bar{S}_{2}$. Hence $\bar{S}_{5} \subset I$, and $I=I\left([0: 1]_{2}\right)=I\left([0: 1]_{3_{1}}\right)=I\left([0: 1]_{3_{2}}\right)$.

The following exhaust all the possible cases of coincidence between $I\left([a: b]_{\rho}\right)$.

$$
\begin{aligned}
& I\left([0: 1]_{1_{2}}\right)=I\left([1: 0]_{3_{1}}\right), \\
& I\left([0: 1]_{2}\right)=I\left([0: 1]_{3_{1}}\right)=I\left([0: 1]_{3_{2}}\right)
\end{aligned}
$$

This completes the proof of Theorem 3.1.
3.7. Quiver diagrams. The following diagrams are drawn in the same manner as in [GNS00]. They express the quiver structure of S_{G}, that is the decomposition of $S_{1} \cdot\left(\left(S_{G}\right)_{d}\right)_{\rho_{j}}$. The rows are indexed by degrees and the columns by irreducible representations. Each irreducible factor ρ_{j} of $\left(S_{G}\right)_{d}$ has multiplicity one except when $G=D_{4 m+2}, d=m+1, \rho_{j}=2_{m}$ and $\left(S_{G}\right)_{m+1}=\left\langle y^{m+1}, x^{m+1}\right\rangle \oplus\left\langle x^{m} z,-y^{m} z\right\rangle=$ $2 \cdot 2_{m}$. Each vertex in the diagram stands for nonzero $\left(\left(S_{G}\right)_{d}\right)_{\rho_{j}}$ and we join $\left(\left(S_{G}\right)_{d}\right)_{\rho_{j}}$ and $\left(\left(S_{G}\right)_{d+1}\right)_{\rho_{k}}$ with an edge when nonzero $\left(\left(S_{G}\right)_{d+1}\right)_{\rho_{k}}$ appears in $S_{1} \cdot\left(\left(S_{G}\right)_{d}\right)_{\rho_{j}}$. In the unique exceptional case where $G=D_{4 m+2}$, the diagram shows

$$
S_{1} \cdot\left(\left(S_{G}\right)_{m}\right)_{2_{m-1}}=\left\langle x^{m} z,-y^{m} z\right\rangle, S_{1} \cdot\left(\left(S_{G}\right)_{m}\right)_{2_{m}}=\left(S_{G}\right)_{m+1} .
$$

Diagram $D_{2 \ell}$
$\begin{array}{llll}1_{2} & 2 & 3_{1} & 3_{2}\end{array}$

Diagram S_{4}

4. The Molien series $P_{S_{G}, \rho_{j}}$ - The case (E)

Finite subgroups of $\mathrm{SL}(3, \mathbf{C})$ are classified in [Blichfeldt17]. With the notation in [YY93], there are exactly 4 infinite series labeled by (A), (B), (C), (D), and 8 exceptional cases labeled by (E) through (L). Homogeneous generators of the invariant rings for the exceptional 8 groups, together with explicit descriptions of these groups, are given in [YY93], which we shall follow. ${ }^{1}$ Since the character tables of these groups can be obtained by using, for example, GAP, we omitted them; instead we give short descriptions of irreducible characters. In what follows we denote by 1_{0} the trivial character (or representation) of G.

In this and the next section we calculate $P_{R, \rho_{j}}$ and $P_{S_{G}, \rho_{j}}$ explicitly for (E)-(L). See also [GNS00]. In this section we discuss the case (E) in some detail as a prototype for all the other cases. In what follows in order to save space we will not explain the customary notation.

Let

$$
G=\left\langle\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right), T=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), V=\frac{1}{\sqrt{-3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right)\right\rangle
$$

where $\omega=\mathrm{e}^{2 \pi i / 3}$. Then we have $|G|=108$, and $\hat{G}=\left\{1_{0}, 1_{1}, 1_{2}, 1_{3}, 3_{1}, 3_{2}, 3_{3}, 3_{4}, 3_{5}, 3_{6}, 3_{7}, 3_{8}, 4_{1}, 4_{2}\right\}$, where $1_{1}(V)=\sqrt{-1}, 1_{2}=1_{1}^{2}, 1_{3}=1_{1}^{3}, 3_{1}=\rho, 3_{2}=1_{1} \rho, 3_{3}=1_{2} \rho, 3_{4}=1_{3} \rho, 3_{5}=\rho^{\vee}$, $3_{6}=1_{1} \rho^{\vee}, 3_{7}=1_{2} \rho^{\vee}, 3_{8}=1_{3} \rho^{\vee}, 4_{1}(T)=1$ and $4_{2}(T)=-2$.

The decompositions of $\rho_{i} \otimes \rho$ are given in Appendix.
We also have $S^{G}=\mathbf{C}\left[f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right]$ with $\operatorname{deg} f_{1}=6, \operatorname{deg} f_{2}=6, \operatorname{deg} f_{3}=12$, $\operatorname{deg} f_{4}=12$, and $\operatorname{deg} f_{5}=9$.

Put $R=S /\left(f_{1}, f_{2}, f_{3}\right)$. Then we can easily compute $P_{R, \rho_{j}}(t)$ by applying Proposition 1.3. Thus we see R splits into irreducible representations as in Table 10.

Next we calculate the Molien series $P_{S_{G}}(t)$ by the repeated use of the trivial relation $(\mathfrak{n})_{i}=V^{\vee} \cdot(\mathfrak{n})_{i-1}+\left(S^{G}\right)_{i}$ for any i. In the case (E) we need to compute only for $i \leq 21$. What we do is not more than elementary linear algebra, so we omit the details of the computation. We see

$$
\begin{aligned}
& P_{R}(t)= \frac{\left(1-t^{6}\right)^{2}\left(1-t^{12}\right)}{(1-t)^{3}} \\
&= 1+3 t+6 t^{2}+10 t^{3}+15 t^{4}+21 t^{5}+26 t^{6}+30 t^{7} \\
& \quad+33 t^{8}+35 t^{9}+36 t^{10}+36 t^{11}+35 t^{12}+33 t^{13}+30 t^{14} \\
& \quad+26 t^{15}+21 t^{16}+15 t^{17}+10 t^{18}+6 t^{19}+3 t^{20}+t^{21} \\
& P_{S_{G}}(t)=1+3 t+6 t^{2}+10 t^{3}+15 t^{4}+21 t^{5}+26 t^{6}+30 t^{7} \\
& \quad+33 t^{8}+34 t^{9}+33 t^{10}+30 t^{11}+24 t^{12}+15 t^{13}+6 t^{14}
\end{aligned}
$$

Then in view of Proposition 1.3 we can compute the Molien series $P_{S_{G}, \rho_{j}}(t)$. Summarizing the computation we see S_{G} splits as in Table 11.

[^1]| deg | 1_{0} | 1_{1} | 1_{2} | 1_{3} | 3_{1} | 3_{2} | 3_{3} | 3_{4} | 3_{5} | 3_{6} | 3_{7} | 3_{8} | 4_{1} | 4_{2} | $\operatorname{dim} R_{d}$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 3 |
| 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
| 3 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 10 |
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 2 | 0 | 0 | 15 |
| 5 | 0 | 0 | 0 | 0 | 3 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 21 |
| 6 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 26 |
| 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 4 | 2 | 0 | 0 | 30 |
| 8 | 0 | 0 | 0 | 0 | 3 | 3 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 33 |
| 9 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 35 |
| 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 4 | 3 | 0 | 0 | 36 |
| 11 | 0 | 0 | 0 | 0 | 2 | 3 | 4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 36 |
| 12 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 35 |
| 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 2 | 3 | 0 | 0 | 33 |
| 14 | 0 | 0 | 0 | 0 | 2 | 2 | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 30 |
| 15 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 26 |
| 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 2 | 1 | 0 | 0 | 21 |
| 17 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 15 |
| 18 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 10 |
| 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 6 |
| 20 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| 21 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

Table 10. The decomposition of R of type (E)

deg	1_{0}	1_{1}	1_{2}	1_{3}	3_{1}	3_{2}	3_{3}	3_{4}	3_{5}	3_{6}	3_{7}	3_{8}	4_{1}	4_{2}	$\operatorname{dim}\left(S_{G}\right)_{d}$
1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	3
2	0	0	0	0	0	1	0	1	0	0	0	0	0	0	6
3	0	1	0	1	0	0	0	0	0	0	0	0	1	1	10
4	0	0	0	0	0	0	0	0	1	2	0	2	0	0	15
5	0	0	0	0	3	1	2	1	0	0	0	0	0	0	21
6	0	0	2	0	0	0	0	0	0	0	0	0	3	3	26
7	0	0	0	0	0	0	0	0	2	2	4	2	0	0	30
8	0	0	0	0	3	3	2	3	0	0	0	0	0	0	33
9	0	1	0	1	0	0	0	0	0	0	0	0	4	4	34
10	0	0	0	0	0	0	0	0	1	3	4	3	0	0	33
11	0	0	0	0	2	2	4	2	0	0	0	0	0	0	30
12	0	0	0	0	0	0	0	0	0	0	0	0	3	3	24
13	0	0	0	0	0	0	0	0	1	1	2	1	0	0	15
14	0	0	0	0	0	0	2	0	0	0	0	0	0	0	6

Table 11. The decomposition of S_{G} of type (E)

In other words,

$$
\begin{aligned}
& P_{S_{G}, 1_{0}}(t)=1, \\
& P_{S_{G}, 1_{1}}(t)=t^{3}+t^{9}, \\
& P_{S_{G}, 1_{2}}(t)=2 t^{6}, \\
& P_{S_{G}, 1_{3}}(t)=t^{3}+t^{9}, \\
& P_{S_{G}, 3_{1}}(t)=3 t^{5}+3 t^{8}+2 t^{11}, \\
& P_{S_{G}, 3_{2}}(t)=t^{2}+t^{5}+3 t^{8}+2 t^{11}, \\
& P_{S_{G}, 3_{3}}(t)=2 t^{5}+2 t^{8}+4 t^{11}+2 t^{14}, \\
& P_{S_{G}, 3_{4}}(t)=t^{2}+t^{5}+3 t^{8}+2 t^{11}, \\
& P_{S_{G}, 3_{5}}(t)=t+t^{4}+2 t^{7}+t^{10}+t^{13}, \\
& P_{S_{G}, 3_{6}}(t)=2 t^{4}+2 t^{7}+3 t^{10}+t^{13}, \\
& P_{S_{G}, 3_{7}}(t)=4 t^{7}+4 t^{10}+2 t^{13}, \\
& P_{S_{G}, 3_{8}}(t)=2 t^{4}+2 t^{7}+3 t^{10}+t^{13}, \\
& P_{S_{G}, 4_{1}}(t)=t^{3}+3 t^{6}+4 t^{9}+3 t^{12}, \\
& P_{S_{G}, 4_{2}}(t)=t^{3}+3 t^{6}+4 t^{9}+3 t^{12} .
\end{aligned}
$$

As a consequence we see

$$
P_{S_{G}, \rho_{j}}(t)=\left[\left(1-t^{9}\right)\left(1-t^{12}\right) P_{R, \rho_{j}}(t)\right]_{+}
$$

where $[f(t)]_{+}=\sum_{d=0}^{21} \max \left\{a_{d}, 0\right\} t^{d}$ for $f(t)=\sum a_{d} t^{d} \in \mathbf{Z}[t]$. Note that this formula does not imply a similar formula for $\rho_{S_{G}}$.

5. The Molien series $P_{S_{G}, \rho_{j}}$

In this section we report the results for the other types (F)-(L). For the sake of reader's convenience we list the decompositions of $\rho_{i} \otimes \rho$ in Appendix.

5.1. The group of type (F).

$$
G=\left\langle\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right),\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \frac{1}{\sqrt{-3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right), \frac{1}{\sqrt{-3}}\left(\begin{array}{ccc}
1 & 1 & \omega^{2} \\
1 & \omega & \omega \\
\omega & 1 & \omega
\end{array}\right)\right\rangle
$$

where $\omega=\mathrm{e}^{2 \pi i / 3}$.
$|G|=216$.
$\hat{G}=\left\{1_{0}, 1_{1}, 1_{2}, 1_{3}, 2,3_{1}, 3_{2}, 3_{3}, 3_{4}, 3_{5}, 3_{6}, 3_{7}, 3_{8}, 6_{1}, 6_{2}, 8\right\}$.
where $1_{3}=1_{1} 1_{2}, 3_{1}=\rho, 3_{2}=1_{1} \rho, 3_{3}=1_{2} \rho, 3_{4}=1_{3} \rho, 3_{5}=\rho^{\vee}, 3_{6}=1_{1} \rho^{\vee}$, $3_{7}=1_{2} \rho^{\vee}, 3_{8}=1_{3} \rho^{\vee}, 6_{1}=\rho^{2}-\rho^{\vee}, 6_{2}=\rho^{\vee 2}-\rho$.
$S^{G}=\mathbf{C}\left[f_{1}, f_{2}, f_{3}, f_{4}\right]$,
with $\operatorname{deg} f_{1}=6, \operatorname{deg} f_{2}=9, \operatorname{deg} f_{3}=12, \operatorname{deg} f_{4}=12$.
Let $R=S /\left(f_{1}, f_{2}, f_{3}\right)$. Then we have

$$
\begin{aligned}
& P_{R, 1_{0}}(t)=1+t^{12}+t^{24} \\
& P_{R, 1_{1}}(t)=P_{R, 1_{2}}=P_{R, 1_{3}}=t^{6}+t^{12}+t^{18}
\end{aligned}
$$

$$
\begin{aligned}
P_{R, 2}(t) & =t^{3}+2 t^{9}+2 t^{15}+t^{21} \\
P_{R, 3_{1}}(t) & =2 t^{5}+2 t^{8}+2 t^{11}+t^{17}+t^{20}+t^{23} \\
P_{R, 3_{2}}(t) & =P_{R, 3_{3}}=P_{R, 3_{4}}=t^{5}+t^{8}+3 t^{11}+2 t^{14}+2 t^{17} \\
P_{R, 3_{5}}(t) & =t+t^{4}+t^{7}+2 t^{13}+2 t^{16}+2 t^{19} \\
P_{R, 3_{6}}(t) & =P_{R, 3_{7}}=P_{R, 3_{8}}=2 t^{7}+2 t^{10}+3 t^{13}+t^{16}+t^{19} \\
P_{R, 6_{1}}(t) & =2 t^{4}+2 t^{7}+5 t^{10}+3 t^{13}+4 t^{16}+t^{19}+t^{22} \\
P_{R, 6_{2}}(t) & =t^{2}+t^{5}+4 t^{8}+3 t^{11}+5 t^{14}+2 t^{17}+2 t^{20} \\
P_{R, 8}(t) & =t^{3}+3 t^{6}+5 t^{9}+6 t^{12}+5 t^{15}+3 t^{18}+t^{21}
\end{aligned}
$$

We see

$$
\begin{aligned}
P_{S_{G}}(t)= & 1+3 t+6 t^{2}+10 t^{3}+15 t^{4}+21 t^{5}+27 t^{6}+33 t^{7}+39 t^{8}+44 t^{9}+48 t^{10} \\
& +51 t^{11}+51 t^{12}+48 t^{13}+42 t^{14}+34 t^{15}+24 t^{16}+15 t^{17}+8 t^{18}+3 t^{19}
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
P_{S_{G}, 1_{0}}(t) & =1 \\
P_{S_{G}, 1_{1}}(t) & =P_{S_{G}, 1_{2}}=P_{S_{G}, 1_{3}}=t^{6}+t^{12} \\
P_{S_{G}, 2}(t) & =t^{3}+2 t^{9}+t^{15} \\
P_{S_{G}, 3_{1}}(t) & =2 t^{5}+2 t^{8}+2 t^{11} \\
P_{S_{G}, 3_{2}}(t) & =P_{S_{G}, 3_{3}}=P_{S_{G}, 3_{4}}=t^{5}+t^{8}+3 t^{11}+2 t^{14}+t^{17} \\
P_{S_{G}, 3_{5}}(t) & =t+t^{4}+t^{7}+t^{13}+t^{16}+t^{19} \\
P_{S_{G}, 3_{6}}(t) & =P_{S_{G}, 37}=P_{S_{G}, 3_{8}}=2 t^{7}+2 t^{10}+3 t^{13}+t^{16} \\
P_{S_{G}, 6_{1}}(t) & =2 t^{4}+2 t^{7}+5 t^{10}+3 t^{13}+2 t^{16} \\
P_{S_{G}, 6_{2}}(t) & =t^{2}+t^{5}+4 t^{8}+3 t^{11}+4 t^{14}+t^{17} \\
P_{S_{G}, 8}(t) & =t^{3}+3 t^{6}+5 t^{9}+6 t^{12}+4 t^{15}+t^{18}
\end{aligned}
$$

5.2. The group of type (G).

$$
G=\left\langle\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right),\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), U=\left(\begin{array}{ccc}
\varepsilon^{2} & 0 & 0 \\
0 & \varepsilon^{2} & 0 \\
0 & 0 & \varepsilon^{5}
\end{array}\right), \frac{1}{\sqrt{-3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right)\right\rangle
$$

where where $\varepsilon=\mathrm{e}^{2 \pi i / 9}, \omega=\mathrm{e}^{2 \pi i / 3}$.
$|G|=648$.
$\hat{G}=\left\{1_{0}, 1_{1}, 1_{2}, 2_{1}, 2_{2}, 2_{3}, 3_{1}, 3_{2}, 3_{3}, 3_{4}, 3_{5}, 3_{6}, 3_{7}, 6_{1}, 6_{2}, 6_{3}, 6_{4}, 6_{5}, 6_{6}, 8_{1}, 8_{2}, 8_{3}, 9_{1}, 9_{2}\right\}$, where 2_{1} and 3_{7} are rational valued characters and $1_{1}(U)=\omega, 1_{2}=1_{1}^{2}, 2_{2}=1_{1} 2_{1}$, $2_{3}=1_{2} 2_{1}, 3_{1}=\rho, 3_{2}=1_{1} 3_{1}, 3_{3}=1_{2} 3_{1}, 3_{4}=\rho^{\vee}, 3_{5}=1_{1} 3_{4}, 3_{6}=1_{2} 3_{4}, 6_{1}=\rho^{2}-\rho^{\vee}$, $6_{2}=1_{1} 6_{1}, 6_{3}=1_{2} 6_{1}, 6_{4}=\rho^{\vee 2}-\rho, 6_{5}=1_{1} 6_{4}, 6_{6}=1_{2} 6_{4}, 8_{1}=\rho \rho^{\vee}-1_{0}, 8_{2}=1_{1} 8_{1}$, $8_{3}=1_{2} 8_{1}, 9_{1}=3_{7} \rho, 9_{2}=3_{7} \rho^{\vee}$. $S^{G}=\mathbf{C}\left[f_{1}, f_{2}, f_{3}, f_{4}\right]$,
with $\operatorname{deg} f_{1}=9, \operatorname{deg} f_{2}=12, \operatorname{deg} f_{3}=18, \operatorname{deg} f_{4}=18$.
$R=S /\left(f_{1}, f_{2}, f_{3}\right)$. Then we have

$$
\begin{aligned}
& P_{R, 1_{0}}(t)=1+t^{18}+t^{36}, \\
& P_{R, 1_{1}}(t)=2 t^{12}+t^{30}, \\
& P_{R, 1_{2}}(t)=t^{6}+2 t^{24}, \\
& P_{R, 2_{1}}(t)=3 t^{15}+3 t^{21}, \\
& P_{R, 2_{2}}(t)=2 t^{9}+2 t^{15}+t^{27}+t^{33}, \\
& P_{R, 2_{3}}(t)=t^{3}+t^{9}+2 t^{21}+2 t^{27}, \\
& P_{R, 3_{1}}(t)=t^{8}+2 t^{11}+3 t^{17}+t^{20}+t^{26}+t^{35}, \\
& P_{R, 3_{2}}(t)=t^{5}+2 t^{11}+t^{14}+2 t^{20}+t^{23}+2 t^{29}, \\
& P_{R, 3_{3}}(t)=t^{5}+t^{8}+t^{14}+2 t^{17}+3 t^{23}+t^{32}, \\
& P_{R, 3_{4}}(t)=t+t^{10}+t^{16}+3 t^{19}+2 t^{25}+t^{28}, \\
& P_{R, 3_{5}}(t)=2 t^{7}+t^{13}+2 t^{16}+t^{22}+2 t^{25}+t^{31}, \\
& P_{R, 3_{6}}(t)=t^{4}+3 t^{13}+2 t^{19}+t^{22}+t^{28}+t^{31}, \\
& P_{R, 3_{7} 7}(t)=t^{6}+2 t^{12}+3 t^{18}+2 t^{24}+t^{30}, \\
& P_{R, 6_{1}}(t)=t^{4}+t^{7}+t^{10}+2 t^{13}+4 t^{16}+t^{19}+5 t^{22}+t^{25}+t^{28}+t^{31}, \\
& P_{R, 6_{2}}(t)=t^{4}+3 t^{10}+2 t^{13}+2 t^{16}+3 t^{19}+3 t^{22}+t^{25}+3 t^{28}, \\
& P_{R, 6_{3}}(t)=t^{7}+3 t^{10}+t^{13}+5 t^{16}+2 t^{19}+2 t^{22}+2 t^{25}+t^{28}+t^{34}, \\
& P_{R, 6_{4}}(t)=t^{5}+t^{8}+t^{11}+5 t^{14}+t^{17}+4 t^{20}+2 t^{23}+t^{26}+t^{29}+t^{32}, \\
& P_{R, 6_{5}}(t)=t^{2}+t^{8}+2 t^{11}+2 t^{14}+2 t^{17}+5 t^{20}+t^{23}+3 t^{26}+t^{29}, \\
& P_{R, 6_{6} 6}(t)=3 t^{8}+t^{11}+3 t^{14}+3 t^{17}+2 t^{20}+2 t^{23}+3 t^{26}+t^{32}, \\
& P_{R, 8_{1} 1}(t)=3 t^{9}+3 t^{12}+3 t^{15}+6 t^{18}+3 t^{21}+3 t^{24}+3 t^{27}, \\
& P_{R, 8_{2}}(t)=t^{3}+t^{6}+t^{9}+4 t^{12}+3 t^{15}+3 t^{18}+5 t^{21}+2 t^{24}+2 t^{27}+2 t^{30}, \\
& P_{R, 8_{3}}(t)=2 t^{6}+2 t^{9}+2 t^{12}+5 t^{15}+3 t^{18}+3 t^{21}+4 t^{24}+t^{27}+t^{30}+t^{33}, \\
& P_{R, 9_{1}}(t)=t^{5}+t^{8}+4 t^{11}+3 t^{14}+6 t^{17}+3 t^{20}+5 t^{23}+2 t^{26}+2 t^{29}, \\
& P_{R, 9_{2}}(t)=2 t^{7}+2 t^{10}+5 t^{13}+3 t^{16}+6 t^{19}+3 t^{22}+4 t^{25}+t^{28}+t^{31} .
\end{aligned}
$$

We see

$$
\begin{aligned}
& P_{S_{G}}(t)= 1+3 t+6 t^{2}+10 t^{3}+15 t^{4}+21 t^{5}+28 t^{6}+36 t^{7}+45 t^{8}+54 t^{9} \\
&+63 t^{10}+72 t^{11}+80 t^{12}+87 t^{13}+93 t^{14}+98 t^{15}+102 t^{16} \\
&+105 t^{17}+105 t^{18}+102 t^{19}+96 t^{20}+88 t^{21}+78 t^{22} \\
&+66 t^{23}+52 t^{24}+36 t^{25}+21 t^{26}+10 t^{27}+3 t^{28}, \quad \text { and } \\
& P_{S_{G}, 1_{0}}(t)=1, \\
& P_{S_{G}, 1_{1}}(t)=2 t^{12},
\end{aligned}
$$

$$
\begin{aligned}
& P_{S_{G}, 1_{2}}(t)=t^{6}+t^{24}, \\
& P_{S_{G}, 2_{1}}(t)=3 t^{15}+3 t^{21}, \\
& P_{S_{G}, 2_{2}}(t)=2 t^{9}+2 t^{15}, \\
& P_{S_{G}, 2_{3}}(t)=t^{3}+t^{9}+t^{21}+t^{27}, \\
& P_{S_{G}, 3_{1}}(t)=t^{8}+2 t^{11}+3 t^{17}+t^{20}, \\
& P_{S_{G}, 3_{2}}(t)=t^{5}+2 t^{11}+t^{14}+2 t^{20}, \\
& P_{S_{G}, 3_{3}}(t)=t^{5}+t^{8}+t^{14}+2 t^{17}+2 t^{23}, \\
& P_{S_{G}, 3_{4}}(t)=t+t^{10}+t^{16}+2 t^{19}+2 t^{25}, \\
& P_{S_{G}, 3_{5}}(t)=2 t^{7}+t^{13}+2 t^{16}+t^{22}, \\
& P_{S_{G}, 3_{6}}(t)=t^{4}+3 t^{13}+2 t^{19}+t^{28}, \\
& P_{S_{G}, 3_{7}}(t)=t^{6}+2 t^{12}+3 t^{18}+t^{24}, \\
& P_{S_{G}, 6_{1}}(t)=t^{4}+t^{7}+t^{10}+2 t^{13}+4 t^{16}+t^{19}+4 t^{22}, \\
& P_{S_{G}, 6_{2}}(t)=t^{4}+3 t^{10}+2 t^{13}+2 t^{16}+3 t^{19}+2 t^{22}+t^{25}, \\
& P_{S_{G}, 6_{3}}(t)=t^{7}+3 t^{10}+t^{13}+5 t^{16}+2 t^{19}+2 t^{22}+t^{25}, \\
& P_{S_{G}, 6_{4}}(t)=t^{5}+t^{8}+t^{11}+5 t^{14}+t^{17}+4 t^{20}+t^{23}, \\
& P_{S_{G}, 6_{5}}(t)=t^{2}+t^{8}+2 t^{11}+2 t^{14}+2 t^{17}+4 t^{20}+t^{23}+2 t^{26}, \\
& P_{S_{G}, 6_{6}}(t)=3 t^{8}+t^{11}+3 t^{14}+3 t^{17}+2 t^{20}+2 t^{23}, \\
& P_{S_{G}, 8_{1}}(t)=3 t^{9}+3 t^{12}+3 t^{15}+6 t^{18}+3 t^{21}+3 t^{24}, \\
& P_{S_{G}, 8_{2}}(t)=t^{3}+t^{6}+t^{9}+4 t^{12}+3 t^{15}+3 t^{18}+4 t^{21}+t^{24}+t^{27}, \\
& P_{S_{G}, 8_{3}}(t)=2 t^{6}+2 t^{9}+2 t^{12}+5 t^{15}+3 t^{18}+3 t^{21}+2 t^{24}, \\
& P_{S_{G}, 9_{1}}(t)=t^{5}+t^{8}+4 t^{11}+3 t^{14}+6 t^{17}+3 t^{20}+4 t^{23}+t^{26}, \\
& P_{S_{G}, 9_{2}}(t)=2 t^{7}+2 t^{10}+5 t^{13}+3 t^{16}+6 t^{19}+3 t^{22}+2 t^{25} .
\end{aligned}
$$

5.3. The group of type (H).

$$
G=\left\langle\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \varepsilon^{-1} & 0 \\
0 & 0 & \varepsilon
\end{array}\right),\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right), \frac{1}{\sqrt{5}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & s & t \\
2 & t & s
\end{array}\right)\right\rangle
$$

where $\varepsilon=\mathrm{e}^{2 \pi i / 5}, \omega=\mathrm{e}^{2 \pi i / 3}, s=\varepsilon^{2}+\varepsilon^{3}$ and $t=\varepsilon+\varepsilon^{5}$.
$|G|=60$.
$\hat{G}=\left\{1_{0}, 3_{1}=\rho=\rho^{\vee}, 3_{2}, 4,5\right\}$,
Let \tilde{G} be a group generated by G and $-I$ where I is the identity matrix of degree 3 . Then \tilde{G} is a Coxeter group of type H_{3} and there exist three homogeneous invariants f_{1}, f_{2}, f_{3} with $\operatorname{deg} f_{1}=2, \operatorname{deg} f_{2}=6, \operatorname{deg} f_{3}=10$ such that $S^{\tilde{G}}=\mathbf{C}\left[f_{1}, f_{2}, f_{3}\right]$ and $S^{G}=\mathbf{C}\left[f_{1}, f_{2}, f_{3}, f_{4}\right]$ where $f_{4}=\operatorname{Jac}\left(f_{1}, f_{2}, f_{3}\right)$. Hence we have

$$
\begin{aligned}
& P_{S_{G}, 1_{0}}=1 \\
& P_{S_{G}, 3_{1}}=t^{3}+t^{5}+t^{7}+t^{8}+t^{10}+t^{12}
\end{aligned}
$$

$$
\begin{aligned}
P_{S_{G}, 3_{2}} & =t+t^{5}+t^{6}+t^{9}+t^{10}+t^{14} \\
P_{S_{G}, 4} & =t^{3}+t^{4}+t^{6}+t^{7}+t^{8}+t^{9}+t^{11}+t^{12} \\
P_{S_{G}, 5} & =t^{2}+t^{4}+t^{5}+t^{6}+t^{7}+t^{8}+t^{9}+t^{10}+t^{11}+t^{13}
\end{aligned}
$$

5.4. The group of type (I).

$$
G=\left\langle\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
\varepsilon & 0 & 0 \\
0 & \varepsilon^{2} & 0 \\
0 & 0 & \varepsilon^{4}
\end{array}\right), \frac{-1}{\sqrt{-7}}\left(\begin{array}{ccc}
\varepsilon^{4}-\varepsilon^{3} & \varepsilon^{2}-\varepsilon^{5} & \varepsilon-\varepsilon^{6} \\
\varepsilon^{2}-\varepsilon^{5} & \varepsilon-\varepsilon^{6} & \varepsilon^{4}-\varepsilon^{3} \\
\varepsilon-\varepsilon^{6} & \varepsilon^{4}-\varepsilon^{3} & \varepsilon^{2}-\varepsilon^{5}
\end{array}\right)\right\rangle
$$

where $\varepsilon=\mathrm{e}^{2 \pi i / 7}$.
$|G|=168$.
$\hat{G}=\left\{1_{0}, 3_{1}=\rho, 3_{2}=\rho^{\vee}, 6,7,8\right\}$,
Let \tilde{G} be a group generated by G and $-I$ where I is the identity matrix of degree 3 . Then \tilde{G} is a complex reflection group of type $J_{3}(4)$ (c.f. [Cohen76]) and there exist three homogeneous invariants f_{1}, f_{2}, f_{3} with $\operatorname{deg} f_{1}=4, \operatorname{deg} f_{2}=6, \operatorname{deg} f_{3}=14$ such that $S^{\tilde{G}}=\mathbf{C}\left[f_{1}, f_{2}, f_{3}\right]$ and $S^{G}=\mathbf{C}\left[f_{1}, f_{2}, f_{3}, f_{4}\right]$ where $f_{4}=\operatorname{Jac}\left(f_{1}, f_{2}, f_{3}\right)$.
Hence we have

$$
\begin{aligned}
& P_{S_{G}, 1_{0}}=1 \\
& P_{S_{G}, 3_{1}}=t^{3}+t^{5}+t^{10}+t^{12}+t^{13}+t^{20} \\
& P_{S_{G}, 3_{2}}=t+t^{8}+t^{9}+t^{11}+t^{16}+t^{18} \\
& P_{S_{G}, 6}=t^{2}+t^{4}+t^{6}+t^{8}+t^{9}+t^{10}+t^{11}+t^{12}+t^{13}+t^{15}+t^{17}+t^{19} \\
& P_{S_{G}, 7}=t^{3}+t^{5}+t^{6}+t^{7}+t^{8}+t^{9}+t^{10}+t^{11}+t^{12}+t^{13}+t^{14}+t^{15}+t^{16}+t^{18}, \\
& P_{S_{G}, 8}=t^{4}+t^{5}+t^{6}+2 t^{7}+t^{8}+t^{9}+t^{10}+t^{11}+t^{12}+t^{13}+2 t^{14}+t^{15}+t^{16}+t^{17} .
\end{aligned}
$$

5.5. The group of type (J).

$$
G=\left\langle\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \varepsilon^{-1} & 0 \\
0 & 0 & \varepsilon
\end{array}\right),\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right), \frac{1}{\sqrt{5}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & s & t \\
2 & t & s
\end{array}\right), W=\left(\begin{array}{ccc}
\omega & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega
\end{array}\right)\right\rangle
$$

where $\varepsilon=\mathrm{e}^{2 \pi i / 5}, \omega=\mathrm{e}^{2 \pi i / 3}, s=\varepsilon^{2}+\varepsilon^{3}$, and $t=\varepsilon+\varepsilon^{4}$.
$|G|=180$.
$\hat{G}=\left\{1_{0}, 1_{1}, 1_{2}, 3_{1}, 3_{2}, 3_{3}, 3_{4}, 3_{5}, 3_{6}, 4_{1}, 4_{2}, 4_{3}, 5_{1}, 5_{2}, 5_{3}\right\}$,
where 4_{1} and 5_{1} are rational valued characters and $1_{1}(W)=\omega, 1_{2}=1_{1}^{2}, 3_{1}=\rho$, $3_{2}=\rho^{\vee}=1_{1} 3_{1}, 3_{3}=1_{2} 3_{1}, 3_{4}(x)=3_{1}\left(x^{7}\right), \forall x \in G, 3_{5}=1_{1} 3_{4}, 3_{6}=1_{2} 3_{4}, 4_{2}=1_{1} 4_{1}$, $4_{3}=1_{2} 4_{1}, 5_{2}=1_{1} 5_{1}$ and $5_{3}=1_{2} 5_{1}$.
$S^{G}=\mathbf{C}\left[f_{1}, f_{2}, f_{3}, f_{4}\right]$,
with $\operatorname{deg} f_{1}=6, \operatorname{deg} f_{2}=6, \operatorname{deg} f_{3}=15, \operatorname{deg} f_{4}=12$.
Put $R=S /\left(f_{1}, f_{2}, f_{3}\right)$. Then we have

$$
\begin{aligned}
& P_{R, 1_{0}}(t)=1+t^{12}+t^{24}, \\
& P_{R, 1_{1}}(t)=t^{2}+t^{14}+t^{20}, \\
& P_{R, 1_{2}}(t)=t^{4}+t^{10}+t^{22}, \\
& P_{R, 3_{1}}(t)=2 t^{5}+t^{8}+2 t^{11}+2 t^{14}+t^{17}+t^{23},
\end{aligned}
$$

$$
\begin{aligned}
& P_{R, 3_{2}}(t)=t+t^{7}+2 t^{10}+2 t^{13}+t^{16}+2 t^{19} \\
& P_{R, 3_{3}}(t)=t^{3}+t^{6}+2 t^{9}+t^{12}+2 t^{15}+t^{18}+t^{21} \\
& P_{R, 3_{4}}(t)=2 t^{5}+t^{8}+t^{11}+2 t^{14}+3 t^{17} \\
& P_{R, 3_{5}}(t)=3 t^{7}+2 t^{10}+t^{13}+t^{16}+2 t^{19} \\
& P_{R, 3_{6}}(t)=t^{3}+2 t^{9}+3 t^{12}+2 t^{15}+t^{21} \\
& P_{R, 4_{1}}(t)=t^{3}+2 t^{6}+2 t^{9}+2 t^{12}+2 t^{15}+2 t^{18}+t^{21} \\
& P_{R, 4_{2}}(t)=t^{5}+3 t^{8}+3 t^{11}+2 t^{14}+2 t^{17}+t^{20} \\
& P_{R, 4_{3}}(t)=t^{4}+2 t^{7}+2 t^{10}+3 t^{13}+3 t^{16}+t^{19} \\
& P_{R, 5_{1}}(t)=3 t^{6}+3 t^{9}+3 t^{12}+3 t^{15}+3 t^{18} \\
& P_{R, 5_{2}}(t)=t^{2}+t^{5}+3 t^{8}+3 t^{11}+3 t^{14}+2 t^{17}+2 t^{20} \\
& P_{R, 5_{3}}(t)=2 t^{4}+2 t^{7}+3 t^{10}+3 t^{13}+3 t^{16}+t^{19}+t^{22}
\end{aligned}
$$

We see

$$
\begin{aligned}
P_{S_{G}}(t)= & 1+3 t+6 t^{2}+10 t^{3}+15 t^{4}+21 t^{5}+26 t^{6}+30 t^{7}+33 t^{8} \\
& +35 t^{9}+36 t^{10}+36 t^{11}+35 t^{12}+33 t^{13}+30 t^{14}+25 t^{15} \\
& +19 t^{16}+12 t^{17}+5 t^{18}+3 t^{19}+t^{20}
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& P_{S_{G}, 1_{0}}(t)=1, \\
& P_{S_{G}, 1_{1}}(t)=t^{2}+t^{20}, \\
& P_{S_{G}, 1_{2}}(t)=t^{4}+t^{10}, \\
& P_{S_{G}, 3_{1}}(t)=2 t^{5}+t^{8}+2 t^{11}+2 t^{14}, \\
& P_{S_{G}, 3_{2}}(t)=t+t^{7}+2 t^{10}+t^{13}+t^{16}+t^{19}, \\
& P_{S_{G}, 3_{3}}(t)=t^{3}+t^{6}+2 t^{9}+t^{12}+t^{15}, \\
& P_{S_{G}, 3_{4}}(t)=2 t^{5}+t^{8}+t^{11}+2 t^{14}+t^{17}, \\
& P_{S_{G}, 3_{5}}(t)=3 t^{7}+2 t^{10}+t^{13}+t^{16}, \\
& P_{S_{G}, 3_{6}}(t)=t^{3}+2 t^{9}+3 t^{12}+t^{15}, \\
& P_{S_{G}, 4_{1}}(t)=t^{3}+2 t^{6}+2 t^{9}+2 t^{12}+t^{15}, \\
& P_{S_{G}, 4_{2}}(t)=t^{5}+3 t^{8}+3 t^{11}+2 t^{14}+t^{17}, \\
& P_{S_{G}, 4_{3}}(t)=t^{4}+2 t^{7}+2 t^{10}+3 t^{13}+2 t^{16}, \\
& P_{S_{G}, 5_{1}}(t)=3 t^{6}+3 t^{9}+3 t^{12}+3 t^{15}+t^{18}, \\
& P_{S_{G}, 5_{2}}(t)=t^{2}+t^{5}+3 t^{8}+3 t^{11}+2 t^{14}+t^{17}, \\
& P_{S_{G}, 5_{3}}(t)=2 t^{4}+2 t^{7}+3 t^{10}+3 t^{13}+t^{16}
\end{aligned}
$$

5.6. The group of type (K).

$$
G=\left\langle\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
\varepsilon & 0 & 0 \\
0 & \varepsilon^{2} & 0 \\
0 & 0 & \varepsilon^{4}
\end{array}\right), \frac{1}{\sqrt{-7}}\left(\begin{array}{ccc}
\varepsilon^{4}-\varepsilon^{3} & \varepsilon^{2}-\varepsilon^{5} & \varepsilon-\varepsilon^{6} \\
\varepsilon^{2}-\varepsilon^{5} & \varepsilon-\varepsilon^{6} & \varepsilon^{4}-\varepsilon^{3} \\
\varepsilon-\varepsilon^{6} & \varepsilon^{4}-\varepsilon^{3} & \varepsilon^{2}-\varepsilon^{5}
\end{array}\right), W=\left(\begin{array}{ccc}
\omega & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega
\end{array}\right)\right\rangle,
$$

where $\varepsilon=\mathrm{e}^{2 \pi i / 7}$ and $\omega=\mathrm{e}^{2 \pi i / 3}$.
$|G|=504$
$\hat{G}=\left\{1_{0}, 1_{1}, 1_{2}, 3_{1}, 3_{2}, 3_{3}, 3_{4}, 3_{5}, 3_{6}, 6_{1}, 6_{2}, 6_{3}, 7_{1}, 7_{2}, 7_{3}, 8_{1}, 8_{2}, 8_{3}\right\}$,
where $6_{1}, 7_{1}$ and 8_{1} are rational valued characters and $1_{1}(W)=\omega, 1_{2}=1_{1}^{2}, 3_{1}=\rho$, $3_{2}=1_{1} 3_{1}, 3_{3}=1_{2} 3_{1}, 3_{4}=\rho^{\vee}, 3_{5}=1_{1} 3_{4}, 3_{6}=1_{2} 3_{4}, 6_{2}=1_{1} 6_{1}, 6_{3}=1_{2} 6_{1}, 7_{2}=1_{1} 7_{1}$, $7_{3}=1_{2} 7_{1}, 8_{2}=1_{1} 8_{1}$ and $8_{3}=1_{2} 8_{1}$.
$S^{G}=\mathbf{C}\left[f_{1}, f_{2}, f_{3}, f_{4}\right]$,
with $\operatorname{deg} f_{1}=6, \operatorname{deg} f_{2}=12, \operatorname{deg} f_{3}=21, \operatorname{deg} f_{4}=18$.
Put $R=S /\left(f_{1}, f_{2}, f_{3}\right)$. Then we have

$$
\begin{aligned}
& P_{R, 1_{0}}(t)=1+t^{18}+t^{36}, \\
& P_{R, 1_{1}}(t)=t^{8}+t^{14}+t^{32}, \\
& P_{R, 1_{2}}(t)=t^{4}+t^{22}+t^{28}, \\
& P_{R, 3_{1}}(t)=t^{5}+t^{11}+t^{14}+2 t^{17}+2 t^{20}+t^{23}+t^{35}, \\
& P_{R, 3_{2}}(t)=t^{7}+t^{10}+2 t^{13}+t^{16}+t^{19}+t^{25}+t^{28}+t^{31}, \\
& P_{R, 3_{3}}(t)=t^{3}+t^{9}+t^{12}+t^{18}+2 t^{21}+t^{24}+2 t^{27}, \\
& P_{R, 3_{4}}(t)=t+t^{13}+2 t^{16}+2 t^{19}+t^{22}+t^{25}+t^{31}, \\
& P_{R, 3_{5}}(t)=2 t^{9}+t^{12}+2 t^{15}+t^{18}+t^{24}+t^{27}+t^{33}, \\
& P_{R, 3_{6}}(t)=t^{5}+t^{8}+t^{11}+t^{17}+t^{20}+2 t^{23}+t^{26}+t^{29}, \\
& P_{R, 6_{1}}(t)=2 t^{6}+t^{9}+3 t^{12}+2 t^{15}+2 t^{18}+2 t^{21}+3 t^{24}+t^{27}+2 t^{30}, \\
& P_{R, 6_{2}}(t)=t^{2}+2 t^{8}+t^{11}+2 t^{14}+3 t^{17}+3 t^{20}+2 t^{23}+3 t^{26}+t^{32}, \\
& P_{R, 6_{3}}(t)=t^{4}+3 t^{10}+2 t^{13}+3 t^{16}+3 t^{19}+2 t^{22}+t^{25}+2 t^{28}+t^{34}, \\
& P_{R, 7_{1}}(t)=t^{3}+t^{6}+2 t^{9}+2 t^{12}+3 t^{15}+3 t^{18}+3 t^{21}+2 t^{24}+2 t^{27}+t^{30}+t^{33}, \\
& P_{R, 7_{2}}(t)=t^{5}+t^{8}+3 t^{11}+3 t^{14}+3 t^{17}+3 t^{20}+3 t^{23}+2 t^{26}+2 t^{29}, \\
& P_{R, 7_{3}}(t)=2 t^{7}+2 t^{10}+3 t^{13}+3 t^{16}+3 t^{19}+3 t^{22}+3 t^{25}+t^{28}+t^{31}, \\
& P_{R, 8_{1}}(t)=t^{6}+2 t^{9}+3 t^{12}+4 t^{15}+4 t^{18}+4 t^{21}+3 t^{24}+2 t^{27}+t^{30}, \\
& P_{R, 8_{2}}(t)=t^{5}+2 t^{8}+3 t^{11}+4 t^{14}+3 t^{17}+3 t^{20}+3 t^{23}+2 t^{26}+2 t^{29}+t^{32}, \\
& P_{R, 8_{3}}(t)=t^{4}+2 t^{7}+2 t^{10}+3 t^{13}+3 t^{16}+3 t^{19}+4 t^{22}+3 t^{25}+2 t^{28}+t^{31} .
\end{aligned}
$$

We see

$$
\begin{aligned}
P_{S_{G}}(t)= & 1+3 t+6 t^{2}+10 t^{3}+15 t^{4}+21 t^{5}+27 t^{6}+33 t^{7}+39 t^{8}+45 t^{9} \\
& +51 t^{10}+57 t^{11}+62 t^{12}+66 t^{13}+69 t^{14}+71 t^{15}+72 t^{16}+72 t^{17} \\
& +71 t^{18}+69 t^{19}+66 t^{20}+61 t^{21}+54 t^{22}+45 t^{23}+35 t^{24}+24 t^{25} \\
& +13 t^{26}+3 t^{27}+t^{28} .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& P_{S_{G}, 1_{0}}(t)=1 \\
& P_{S_{G}, 1_{1}}(t)=t^{8}+t^{14} \\
& P_{S_{G}, 1_{2}}(t)=t^{4}+t^{28} \\
& P_{S_{G}, 3_{1}}(t)=t^{5}+t^{11}+t^{14}+2 t^{17}+2 t^{20} \\
& P_{S_{G}, 3_{2}}(t)=t^{7}+t^{10}+2 t^{13}+t^{16}+t^{19} \\
& P_{S_{G}, 3_{3}}(t)=t^{3}+t^{9}+t^{12}+t^{18}+t^{21}+t^{24}+t^{27} \\
& P_{S_{G}, 3_{4}}(t)=t+t^{13}+2 t^{16}+t^{19}+t^{22}+t^{25} \\
& P_{S_{G}, 3_{5}}(t)=2 t^{9}+t^{12}+2 t^{15}+t^{18}+t^{24} \\
& P_{S_{G}, 3_{6}}(t)=t^{5}+t^{8}+t^{11}+t^{17}+t^{20}+t^{23} \\
& P_{S_{G}, 6_{1}}(t)=2 t^{6}+t^{9}+3 t^{12}+2 t^{15}+2 t^{18}+2 t^{21}+t^{24} \\
& P_{S_{G}, 6_{2}}(t)=t^{2}+2 t^{8}+t^{11}+2 t^{14}+3 t^{17}+2 t^{20}+2 t^{23}+t^{26} \\
& P_{S_{G}, 6_{3}}(t)=t^{4}+3 t^{10}+2 t^{13}+3 t^{16}+3 t^{19}+t^{22}+t^{25} \\
& P_{S_{G}, 7_{1}}(t)=t^{3}+t^{6}+2 t^{9}+2 t^{12}+3 t^{15}+3 t^{18}+2 t^{21}+t^{24} \\
& P_{S_{G}, 7_{2}}(t)=t^{5}+t^{8}+3 t^{11}+3 t^{14}+3 t^{17}+3 t^{20}+2 t^{23}+t^{26} \\
& P_{S_{G}, 7_{3}}(t)=2 t^{7}+2 t^{10}+3 t^{13}+3 t^{16}+3 t^{19}+3 t^{22}+t^{25} \\
& P_{S_{G}, 8_{1}}(t)=t^{6}+2 t^{9}+3 t^{12}+4 t^{15}+4 t^{18}+4 t^{21}+2 t^{24} \\
& P_{S_{G}, 8_{2}}(t)=t^{5}+2 t^{8}+3 t^{11}+4 t^{14}+3 t^{17}+3 t^{20}+2 t^{23} \\
& P_{S_{G}, 8_{3}}(t)=t^{4}+2 t^{7}+2 t^{10}+3 t^{13}+3 t^{16}+3 t^{19}+3 t^{22}+t^{25}
\end{aligned}
$$

5.7. The group of type (L).

$$
G=\left\langle\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \varepsilon^{-1} & 0 \\
0 & 0 & \varepsilon
\end{array}\right),\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right), \frac{1}{\sqrt{5}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & s & t \\
2 & t & s
\end{array}\right), \frac{1}{\sqrt{5}}\left(\begin{array}{ccc}
1 & \lambda_{1} & \lambda_{1} \\
2 \lambda_{2} & s & t \\
2 \lambda_{2} & t & s
\end{array}\right)\right\rangle
$$

where $\varepsilon=\mathrm{e}^{2 \pi i / 5}, s=\varepsilon^{2}+\varepsilon^{3}, t=\varepsilon+\varepsilon^{4}, \lambda_{1}=-\frac{1-\sqrt{-15}}{4}$ and $\lambda_{2}=-\frac{1+\sqrt{-15}}{4}$. $|G|=1080$.
$\hat{G}=\left\{1_{0}, 3_{1}, 3_{2}, 3_{3}, 3_{4}, 5_{1}, 5_{2}, 6_{1}, 6_{2}, 8_{1}, 8_{2}, 9_{1}, 9_{2}, 9_{3}, 10,15_{1}, 15_{2}\right\}$,
where $3_{1}=\rho, 3_{2}=\rho^{\vee}, 3_{3}(x)=3_{1}\left(x^{7}\right)$ for all $x \in G, 3_{4}(x)=3_{2}\left(x^{7}\right)$ for all $x \in G$, $6_{1}=\rho^{2}-\rho^{\vee}, 6_{2}=\rho^{\vee 2}-\rho, 8_{1}=3_{1} 3_{2}-1_{0}, 8_{2}=3_{3} 3_{4}-1_{0}, 9_{1}=3_{1} 3_{4}, 9_{2}=3_{1} 3_{3}$, $9_{3}=3_{2} 3_{4}, 15_{1}=3_{1} 5_{1}$ and $15_{2}=3{ }_{2} 5_{1}$.
Let \tilde{G} be a group generated by G and $-I$ where I is the identity matrix of degree 3 . Then \tilde{G} is a complex reflection group of type $J_{3}(5)$ (c.f. [Cohen76]) and there exist three homogeneous invariants f_{1}, f_{2}, f_{3} with $\operatorname{deg} f_{1}=6, \operatorname{deg} f_{2}=12, \operatorname{deg} f_{3}=30$ such that $S^{G}=\mathbf{C}\left[f_{1}, f_{2}, f_{3}\right]$ and $S^{G}=\mathbf{C}\left[f_{1}, f_{2}, f_{3}, f_{4}\right]$ where $f_{4}=\operatorname{Jac}\left(f_{1}, f_{2}, f_{3}\right)$.
Hence we have

$$
\begin{aligned}
& P_{S_{G}, 1_{0}}=1 \\
& P_{S_{G}, 3_{1}}=t^{5}+t^{11}+t^{20}+t^{26}+t^{29}+t^{44}
\end{aligned}
$$

$$
\begin{aligned}
& P_{S_{G}, 3_{2}}=t+t^{16}+t^{19}+t^{25}+t^{34}+t^{40} \\
& P_{S_{G}, 3_{3}}=t^{5}+t^{17}+t^{20}+t^{23}+t^{32}+t^{38} \\
& P_{S_{G}, 3_{4}}=t^{7}+t^{13}+t^{22}+t^{25}+t^{28}+t^{40} \\
& P_{S_{G}, 5_{1}}=t^{6}+t^{12}+t^{15}+t^{18}+t^{21}+t^{24}+t^{27}+t^{30}+t^{33}+t^{39} \\
& P_{S_{G}, 5_{2}}=t^{6}+t^{12}+t^{15}+t^{18}+t^{21}+t^{24}+t^{27}+t^{30}+t^{33}+t^{39} \\
& P_{S_{G}, 6_{1}}=t^{4}+2 t^{10}+t^{16}+t^{19}+t^{22}+2 t^{25}+t^{28}+t^{31}+t^{37}+t^{43} \\
& P_{S_{G}, 6_{2}}=t^{2}+t^{8}+t^{14}+t^{17}+2 t^{20}+t^{23}+t^{26}+t^{29}+2 t^{35}+t^{41} \\
& P_{S_{G}, 8_{1}}=t^{6}+t^{9}+t^{12}+2 t^{15}+t^{18}+2 t^{21}+2 t^{24}+t^{27}+2 t^{30}+t^{33}+t^{36}+t^{39} \\
& P_{S_{G}, 8_{2}}=t^{9}+2 t^{12}+2 t^{15}+2 t^{18}+t^{21}+t^{24}+2 t^{27}+2 t^{30}+2 t^{33}+t^{36} \\
& P_{S_{G}, 9_{1}}=t^{6}+t^{9}+2 t^{12}+t^{15}+2 t^{18}+2 t^{21}+2 t^{24}+2 t^{27}+t^{30}+2 t^{33}+t^{36}+t^{39} \\
& P_{S_{G}, 9_{2}}=t^{4}+t^{10}+2 t^{13}+2 t^{16}+2 t^{19}+2 t^{22}+t^{25}+2 t^{28}+2 t^{31}+t^{34}+2 t^{37} \\
& P_{S_{G}, 9_{3}}=2 t^{8}+t^{11}+2 t^{14}+2 t^{17}+t^{20}+2 t^{23}+2 t^{26}+2 t^{29}+2 t^{32}+t^{35}+t^{41} \\
& P_{S_{G}, 10}=t^{3}+2 t^{9}+t^{12}+2 t^{15}+2 t^{18}+2 t^{21}+2 t^{24}+2 t^{27}+2 t^{30}+t^{33}+2 t^{36}+t^{42} \\
& P_{S_{G}, 5_{1}}=t^{5}+t^{8}+3 t^{11}+3 t^{14}+3 t^{17}+3 t^{20}+3 t^{23}+3 t^{26}+3 t^{29}+3 t^{32}+2 t^{35}+2 t^{38} \\
& P_{S_{G}, 15_{2}}=2 t^{7}+2 t^{10}+3 t^{13}+3 t^{16}+3 t^{19}+3 t^{22}+3 t^{25}+3 t^{28}+3 t^{31}+3 t^{34}+t^{37}+t^{40}
\end{aligned}
$$

5.8. Summary. Here we list the invariants for the subgroups of type (E)-(L) where $d_{\max }=d_{1}+d_{2}+d_{3}-3$:

type	d_{1}, d_{2}, d_{3}	d_{4}, d_{5}	$d_{\max }$	$\|G\|$	e
E	$6,6,12$	12,9	21	108	4
F	$6,9,12$	12	24	216	3
G	$9,12,18$	18	36	648	3
H	$2,6,10$	15	15	60	2
I	$4,6,14$	21	21	168	2
J	$6,6,15$	12	24	180	3
K	$6,12,21$	18	36	504	3
L	$6,12,30$	45	45	1080	2

TABLE 12. Groups (E)-(L)

Summarizing the calculation in the previous subsections we infer
Theorem 5.9. Let G be a subgroup of $\mathrm{SL}(3, \mathbf{C})$ of type from (E) to (L). Let f_{i} be generators of the invariant ring S^{G} and $d_{i}=\operatorname{deg} f_{i}(1 \leq i \leq n), d_{\max }=d_{1}+d_{2}+$ $d_{3}-3$ as in Table 12, and S_{G} the coinvariant algebra. Then for any irreducible
representation ρ_{j} of G the Molien series $P_{S_{G}, \rho_{j}}$ is given by the formula

$$
P_{S_{G}, \rho_{j}}(t)=\left[\prod_{i=4}^{n}\left(1-t^{d_{i}}\right) P_{R, \rho_{j}}(t)\right]_{+}+ \begin{cases}t^{18}\left(\delta_{j, 8}+\delta_{j, 5_{1}}\right) & \text { if } G=(\mathrm{F}) \text { or }(\mathrm{J}), \\ 0 & \text { otherwise }\end{cases}
$$

where $[f(t)]_{+}:=\sum_{d=0}^{d_{\text {max }}} \max \left\{a_{d}, 0\right\} t^{d}$ for $f(t)=\sum a_{d} t^{d} \in \mathbf{Z}[t]$.
Remark 5.10. Theorem 5.9 implies the following. Suppose $j \neq 8$ if G is type (F) or $j \neq 5_{1}$ if G is of type (J). For any fixed irreducible representation ρ_{j} multiplication by $f_{\alpha}(\alpha=4,5)$ is a homomorphism $\phi_{d, \rho_{j}}^{\alpha}$ from $\left(R_{d}\right)_{\rho_{j}}$ to $\left(R_{d+d_{\alpha}}\right)_{\rho_{j}}$. Then $\phi_{d, \rho_{j}}^{\alpha}$ is surjective if $\operatorname{dim}\left(R_{d}\right)_{\rho_{j}} \geq \operatorname{dim}\left(R_{d+d_{\alpha}}\right)_{\rho_{j}}$, while it is injective if $\operatorname{dim}\left(R_{d}\right)_{\rho_{j}} \leq \operatorname{dim}\left(R_{d+d_{\alpha}}\right)_{\rho_{j}}$. In other words, $\operatorname{rank} \phi_{d, \rho_{j}}^{\alpha}$ is equal to $\min \left\{\operatorname{dim}\left(R_{d}\right)_{\rho_{j}}, \operatorname{dim}\left(R_{d+d_{\alpha}}\right)_{\rho_{j}}\right\}$. Moreover $f_{4} R \cap f_{5} R=f_{4} f_{5} R \simeq f_{4} f_{5} \mathbf{C}$. In the exceptional case, for instance, of type (J) and $j=5_{1}$, the nonzero coefficient of t^{19} in $P_{S_{G}, 3_{2}}$ explains nonvanishing of the coefficient of t^{18} in $P_{S_{G}, 5_{1}}$. We note that the above theorem does not imply $P_{S_{G}}(t)=\left[\prod_{i=4}^{n}\left(1-t^{d_{i}}\right) P_{R}(t)\right]_{+}$even in the case other than (F) and (J).

6. Appendix

In this appendix we list the decompositions of irreducible representations tensored with the natural representation ρ.

6.1. Type (E).

$$
\begin{array}{ll}
1_{0} \otimes \rho=3_{1}, & 1_{1} \otimes \rho=3_{2}, \\
1_{2} \otimes \rho=3_{3}, & 1_{3} \otimes \rho=3_{4}, \\
3_{1} \otimes \rho=3_{5}+3_{6}+3_{8}, & 3_{2} \otimes \rho=3_{5}+3_{6}+3_{7}, \\
3_{3} \otimes \rho=3_{6}+3_{7}+3_{8}, & 3_{4} \otimes \rho=3_{5}+3_{7}+3_{8}, \\
3_{5} \otimes \rho=1_{0}+4_{1}+4_{2}, & 3_{6} \otimes \rho=1_{1}+4_{1}+4_{2}, \\
3_{7} \otimes \rho=1_{2}+4_{1}+4_{2}, & 3_{8} \otimes \rho=1_{3}+4_{1}+4_{2}, \\
4_{1} \otimes \rho=3_{1}+3_{2}+3_{3}+3_{4}, & 4_{2} \otimes \rho=3_{1}+3_{2}+3_{3}+3_{4} .
\end{array}
$$

6.2. Type (F).

$$
\begin{array}{ll}
1_{0} \otimes \rho=3_{1}, & 1_{1} \otimes \rho=3_{2}, \\
1_{2} \otimes \rho=3_{3}, & 1_{3} \otimes \rho=3_{4}, \\
2 \otimes \rho=6_{2}, & 3_{1} \otimes \rho=3_{5}+6_{1} \\
3_{2} \otimes \rho=3_{6}+6_{1}, & 3_{3} \otimes \rho=3_{7}+6_{1}, \\
3_{4} \otimes \rho=3_{8}+6_{1}, & 3_{5} \otimes \rho=1_{0}+8, \\
3_{6} \otimes \rho=1_{1}+8, & 3_{7} \otimes \rho=1_{2}+8, \\
3_{8} \otimes \rho=1_{3}+8, & 6_{1} \otimes \rho=2+2 \cdot 8, \\
6_{2} \otimes \rho=3_{5}+3_{6}+3_{7}+3_{8}+6_{1}, & 8 \otimes \rho=3_{1}+3_{2}+3_{3}+3_{4}+2 \cdot 6_{2} .
\end{array}
$$

6.3. Type (G).

$1_{0} \otimes \rho=3_{1}$,	$1_{1} \otimes \rho=3_{2}$,
$1_{2} \otimes \rho=3_{3}$,	$2_{1} \otimes \rho=6_{5}$,
$2_{2} \otimes \rho=6_{6}$,	$2_{3} \otimes \rho=6_{4}$,
$3_{1} \otimes \rho=3_{4}+6_{1}$,	$3_{2} \otimes \rho=3_{5}+6_{2}$,
$3_{3} \otimes \rho=3_{6}+6_{3}$,	$3_{4} \otimes \rho=1_{0}+8_{1}$,
$3_{5} \otimes \rho=1_{1}+8_{2}$,	$3_{6} \otimes \rho=1_{2}+8_{3}$,
$3_{7} \otimes \rho=9_{1}$,	$6_{1} \otimes \rho=2_{2}+8_{1}+8_{3}$,
$6_{2} \otimes \rho=2_{3}+8_{1}+8_{2}$,	$6_{3} \otimes \rho=2_{1}+8_{2}+8_{3}$,
$6_{4} \otimes \rho=3_{4}+6_{2}+9_{2}$,	$6_{5} \otimes \rho=3_{5}+6_{3}+9_{2}$,
$6_{6} \otimes \rho=3_{6}+6_{1}+9_{2}$,	$8_{1} \otimes \rho=3_{1}+6_{4}+6_{6}+9_{1}$,
$8_{2} \otimes \rho=3_{2}+6_{4}+6_{5}+9_{1}$,	$8_{3} \otimes \rho=3_{3}+6_{5}+6_{6}+9_{1}$,
$9_{1} \otimes \rho=6_{1}+6_{2}+6_{3}+9_{2}$,	$9_{2} \otimes \rho=3_{7}+8_{1}+8_{2}+8_{3}$.

6.4. Type (H).

$$
\begin{array}{ll}
1_{0} \otimes \rho=3_{1}, & 3_{1} \otimes \rho=1_{0}+3_{1}+5 \\
3_{2} \otimes \rho=4+5, & 4 \otimes \rho=3_{2}+4+5 \\
5 \otimes \rho=3_{1}+3_{2}+4+5 . &
\end{array}
$$

6.5. Type (I).

$$
\begin{array}{ll}
1_{0} \otimes \rho=3_{1}, & 3_{1} \otimes \rho=3_{2}+6 \\
3_{2} \otimes \rho=1_{0}+8, & 6 \otimes \rho=3_{2}+7+8, \\
7 \otimes \rho=6+7+8, & 8 \otimes \rho=3_{1}+6+7+8 .
\end{array}
$$

6.6. Type (J).

$$
\begin{array}{ll}
1_{0} \otimes \rho=3_{1}, & 1_{1} \otimes \rho=3_{2}, \\
1_{2} \otimes \rho=3_{3}, & 3_{1} \otimes \rho=1_{2}+3_{2}+5_{3}, \\
3_{2} \otimes \rho=1_{0}+3_{3}+5_{1}, & 3_{3} \otimes \rho=1_{1}+3_{1}+5_{2}, \\
3_{4} \otimes \rho=4_{3}+5_{3}, & 3_{5} \otimes \rho=4_{1}+5_{1}, \\
3_{6} \otimes \rho=4_{2}+5_{2}, & 4_{1} \otimes \rho=3_{4}+4_{2}+5_{2}, \\
4_{2} \otimes \rho=3_{5}+4_{3}+5_{3}, & 4_{3} \otimes \rho=3_{6}+4_{1}+5_{1}, \\
5_{1} \otimes \rho=3_{1}+3_{4}+4_{2}+5_{2}, & 5_{2} \otimes \rho=3_{2}+3_{5}+4_{3}+5_{3}, \\
5_{3} \otimes \rho=3_{3}+3_{6}+4_{1}+5_{1} . &
\end{array}
$$

6.7. Type (K).

$1_{0} \otimes \rho=3_{1}$,	$1_{1} \otimes \rho=3_{2}$,
$1_{2} \otimes \rho=3_{3}$,	$3_{1} \otimes \rho=3_{4}+6_{3}$,
$3_{2} \otimes \rho=3_{5}+6_{1}$,	$3_{3} \otimes \rho=3_{6}+6_{2}$,
$3_{4} \otimes \rho=1_{0}+8_{1}$,	$3_{5} \otimes \rho=1_{1}+8_{2}$,
$3_{6} \otimes \rho=1_{2}+8_{3}$,	$6_{1} \otimes \rho=3_{6}+7_{2}+8_{2}$,
$6_{2} \otimes \rho=3_{4}+7_{3}+8_{3}$,	$6_{3} \otimes \rho=3_{5}+7_{1}+8_{1}$,
$7_{1} \otimes \rho=6_{2}+7_{2}+8_{2}$,	$7_{2} \otimes \rho=6_{3}+7_{3}+8_{3}$,
$7_{3} \otimes \rho=6_{1}+7_{1}+8_{1}$,	$8_{1} \otimes \rho=3_{1}+6_{2}+7_{2}+8_{2}$,
$8_{2} \otimes \rho=3_{2}+6_{3}+7_{3}+8_{3}$,	$8_{3} \otimes \rho=3_{3}+6_{1}+7_{1}+8_{1}$.

6.8. Type (L).

$1_{0} \otimes \rho=3_{1}$,	$3_{1} \otimes \rho=3_{2}+6_{1}$,
$3_{2} \otimes \rho=1_{0}+8_{1}$,	$3_{3} \otimes \rho=9_{2}$,
$3_{4} \otimes \rho=9_{1}$,	$5_{1} \otimes \rho=15_{1}$,
$5_{2} \otimes \rho=15_{1}$,	$6_{1} \otimes \rho=8_{1}+10$,
$62 \otimes \rho=3_{2}+15_{2}$,	$8_{1} \otimes \rho=3_{1}+6_{2}+15_{1}$,
$8_{2} \otimes \rho=9_{3}+15_{1}$,	$9_{1} \otimes \rho=3_{3}+9_{3}+15_{1}$,
$9_{2} \otimes \rho=8_{2}+9_{1}+10$,	$9_{3} \otimes \rho=3_{4}+9_{2}+15_{2}$,
$10 \otimes \rho=6_{2}+9_{3}+15_{1}$,	$15_{1} \otimes \rho=6_{1}+9_{2}+2 \cdot 15_{2}$,
$15_{2} \otimes \rho=5_{1}+5_{2}+8_{1}+8_{2}+9_{1}+10$.	

6.9. Adderndum. In [GNS00, p.52, p.53] there are a few errors in notation and formulation, though harmless for the consequences in the subsequent sections of [GNS00]. As the arguments in this article are entirely independent from [GNS00] we would like to correct the errors in [GNS00] in the paper [GNS3] much closer to [GNS00].

We acknowledge Professor Li Chiang for pointing out the following errors in [GNS00] (different from the above) to us. The fourth line of [GNS00, p.57] must be replaced by

$$
f^{3}+\bar{f}^{3}=\prod_{i=0}^{2}\left(f+\omega^{i} \bar{f}\right)=27 f_{3}^{2}-9 f_{2} f_{4}+2 f_{2}^{3}
$$

The fifth column of $S_{d}[\rho]$ of [GNS00, p.57, Table 2.2] must be replaced by

$$
\left\{\bar{f}^{2}\right\}+\left\{f^{2}\right\}+\left\{y z f, \omega^{2} z x f, \omega x y f\right\}
$$

References

[BDM16] H.F. Blichfeldt, L. E. Dickson, G. A. Miller, Theory and Application of Finite Groups, Dover, New York, 1916.
[Blichfeldt05] H.F. Blichfeldt, The finite discontinuous primitive groups of collineations in three variables, Math. Ann. 63 (1905) 552-572.
[Blichfeldt17] H.F. Blichfeldt, Finite collineation groups, The Univ. Chicago Press, Chicago, 1917.
[BKR01] T. Bridgeland, A. King, M. Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001) 535-554.
[Bourbaki] N. Bourbaki, Groupes et Algèbres de Lie, Chapitres 4,5 et 6, Masson, 1981.
[Cohen76] A. M. Cohen, Finite complex reflection groups, Ann. Scient. Ec. Norm. Sup. 9 (1976) 379-436.
[GNS00] Y. Gomi, I. Nakamura and K. Shinoda, Hilbert Schemes of G-orbits in dimension three, Kodaira's issue. Asian J. Math. 4 no. 1 (2000) 51-70.
[GNS3] Y. Gomi, I. Nakamura and K. Shinoda, Duality of the quotient ring by a regular sequence of G-invariants, in preparation.
[IN96] Y. Ito and I. Nakamura, McKay correspondence and Hilbert Schemes, Proc. Japan Acad. 72 (1996) 135-138.
[IN99] Y. Ito, I. Nakamura, Hilbert schemes and simple singularities, New trends in algebraic geometry (Warwick 1996), 151-233, London Math. Soc. Lecture Note Series 264, Cambridge Univ. Press, Cambridge, 1999.
[Lang84] S. Lang, Algebra, Second edition, Addison-Wesley Publishing Co., 1984.
[McKay99] J. McKay, Semi-affine Coxeter-Dynkin graphs and $G \subset \mathrm{SU}_{2}(\mathbf{C})$, Cand. J. Math. 51 (1999) 1226-1229.
[N01] I. Nakamura, Hilbert scheme of abelian group orbits, J. Alg. Geom. 10 (2001) 757-779.
[Springer87] T. A. Springer, Poincaré series of binary polyhedral groups and McKay's correspondence, Math. Ann. 278 (1987) 99-116.
[Stanley79] R. P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.) 1 no. 3, (1979), 475-511.
[Steinberg64] R. Steinberg, Differential equations invariant under finite reflection groups, Trans. Amer. Math. Soc. 112 (1964) 392-400.
[YY93] Stephen S.-T. Yau and Y. Yu, Gorenstein quotient singularities in dimension three, Memoirs Amer. Math. Soc., 105, Amer. Math. Soc. 1993, no. 505.

Department of Mathematics, Sophia University, Tokyo, 102-8554, Japan
E-mail address: gomi@mm.sophia.ac.jp
Department of Mathematics, Hokkaido University, Sapporo, 060-0810, Japan
E-mail address: nakamura@math.sci.hokudai.ac.jp
Department of Mathematics, Sophia University, Tokyo, 102-8554, Japan
E-mail address: shinoda@mm.sophia.ac.jp

[^0]: Date: June 6, 2002.
 1991 Mathematics Subject Classification. Algebraic Geometry, Primary 14J30, Secondary 14J17.
 Key words and phrases. Hilbert scheme, Invariant theory, Coinvariant algebra, McKay quiver, McKay correspondence.

 The authors were supported in part by the Grants-in-aid (No. 12740025, No. 12304001, No. 12640040) for Scientific Research, JSPS. This work is also partially supported by the JapanBritain joint research project of JSPS, 2000 April-2002 March.

[^1]: ${ }^{1}$ Since our results use the results in [YY93], we mention here some of their misprints: page 34 , line $1, \frac{1}{\sqrt{-7}}$ should be $\frac{-1}{\sqrt{-7}}$,
 page 80 , line 2 , $(15+5 \sqrt{15 i}) x^{3} y^{3}$ should be $(15+5 \sqrt{15 i}) y^{3} z^{3}$.

