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Abstract

The �rst half of this article is expository; it contains a brief survey

of the famous ADE classi�cation, and how it applies to six kinds of

objects, some old and some relatively new. The second half is a re-

search article, discussing the two dimensional McKay correspondence

from the new point of view of Hilbert schemes.

0 Introduction

There is a whole series of apparently unrelated phenomena that are governed
by the so-called ADE Dynkin diagram scheme. It is widely believed that,
despite the diverse nature of the objects concerned, there must be some hid-
den reasons for these coincidences. The ADE Dynkin diagrams provide a
classi�cation of the following types of objects (among others):

(a) simple singularities (rational double points) of complex surfaces (Du
Val, Artin, Brieskorn),

(b) �nite subgroups of SL(2; C ),

(c) simple Lie groups and simple Lie algebras (Elie Cartan, Dynkin),

(d) quivers of �nite type ([Gabriel72]),

(e) modular invariant partition functions in two dimensions (Capelli, Itzyk-
son and Zuber [CIZ87]),

(f) pairs of von Neumann algebras of type II1 ([Ocneanu88]).
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170 Hilbert schemes and simple singularities

0.1

The present article consists of two halves, an expository part and a research
part. The expository part occupies the �rst six sections. In Sections 1{4,
we recall brie
y the above ADE classi�cations. Sections 2{3 report in some
detail on the relatively new subjects of modular invariant partition functions
and type II1 von Neumann algebras (II1 factors). In Section 4 we recall the
two dimensional McKay correspondence. Section 5 summarizes some of the
missing links between the six objects and related problems. We would like to
say that while much is known about these, much remains unknown.

Next, in Section 6, we recall some basic facts about Hilbert schemes for use
in the research part, and give a quick review on three dimensional quotient
singularities in Section 7. Section 7 is not directly related to the rest of the
paper, but it provides motivation for further study in the same direction as
Sections 8{16. For instance, a natural three dimensional generalization of
the McKay correspondence, quite di�erent from that of Theorem 7.2, can be
obtained by applying similar ideas. This direction is the subject of current
research and we simply mention [Reid97], [INkjm98] and [Nakamura98] as
available references for it.

In the second half of the article we discuss the two dimensional McKay
correspondence from a somewhat new point of view, namely by applying
the technique of Hilbert schemes. Any known explanations for the classical
McKay correspondence enables each irreducible component of the exceptional
set E to correspond naturally to an irreducible representation of a �nite sub-
group G. In the present article we do a little more. In fact, to any point of
the exceptional set, we associate in a natural way a G-module, irreducible or
otherwise, whose equivalence class is constant along the irreducible compo-
nent of E. We discuss this in outline in Section 8, and in detail in Sections 8{
16. Some new progress and related problems are mentioned in Section 17.

0.2

There are a number of excellent reports on the �rst four topics (a){(d),
for example: Hazewinkel, Hesselink, Siersma and Veldkamp [HHSV77] and
[Slodowy95]. See [Slodowy90] and [Gawedzki89] for the topic (e). See also
[Ocneanu88], Goodman, de la Harpe and Jones [GHJ89], [Jones91] and Evans
and Kawahigashi [EK97], Section 11 for the last topic (f). The authors hope
the readers to read or to have a glance at these reports too.

We have in mind both specialists in algebraic geometry and nonspecialists
as readers of the expository part. Therefore we have tried to include elemen-
tary examples and algebraic calculations, though they are not completely
self-contained.
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1 Simple singularities and ADE classi�cation

1.1 Simple singularities (1)

We �rst recall the de�nition of simple singularities. A germ of a two dimen-
sional isolated hypersurface singularity is called a simple singularity if one of
the following equivalent conditions holds:

1. It is isomorphic to one of the following germs at the origin

An : xn+1 + y2 + z2 = 0 for n � 1;

Dn : xn�1 + xy2 + z2 = 0 for n � 4;

E6 : x4 + y3 + z2 = 0;

E7 : x3y + y3 + z2 = 0;

E8 : x5 + y3 + z2 = 0:

2. It is isomorphic to a germ of a weighted homogeneous hypersurface of
(C 3 ; 0) of total weight one such that the sum of weights (w1; w2; w3) of
the variables is greater than one. The possible weights are ( 1

n+1
; 1
2
; 1
2
),

( 1
n�1 ;

n�2
2n�2 ;

1
2
), (1

4
; 1
3
; 1
2
), (2

9
; 1
3
; 1
2
) and (1

5
; 1
3
; 1
2
).

3. It has a minimal resolution of singularities with exceptional set consist-
ing of smooth rational curves of sel�ntersection�2 intersecting transver-
sally.

4. It is a quotient of (C 2 ; 0) by a �nite subgroup of SL(2; C ) ([Klein]).

5. Its (semi-)universal deformation contains only �nitely many distinct
isomorphism classes ([Arnold74]).

Many other characterizations of the singularities are given in [Durfee79].
The third characterization of a simple singularity classi�es the exceptional set
explicitly. In fact, the dual graph of the exceptional set is one of the Dynkin
diagrams of simply connected complex Lie groups shown in Figure 1.
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Figure 1: The Dynkin diagrams ADE

1.2 Simple singularities (2)

Let (S; 0) be a germ of simple singularities, � : X ! S its minimal resolution,
E := ��1(0)red and Ei for 1 � i � r the irreducible component of E. It is
known that Ei ' P1 and (E2

i )X = �2. Let IrrE be the set fEi; 1 � i �
rg. We see that H2 = H2;SING(S) := H2(X;Z) =

L
1�i�r Z[Ei]. Then H2

has a negative de�nite intersection pairing ( ; )SING : H2 � H2 ! Z. Since
(EiEj)SING = 0 or 1 for i 6= j, the pairing ( ; )SING can be expressed by a
�nite graph with simple edges. We rephrase this as follows: we associate a
vertex v(E 0) to any irreducible component E 0 of E, and join two vertices v(E 0)
and v(E 00) if and only if (E 0E 00)SING = 1. Thus we have a �nite graph with
simple edges, from which in turn the bilinear form ( ; )SING can be recovered
in the obvious manner. We call this graph the dual graph of E, and denote
it by �(E) or �SING(S). Let H

2 = H2
SING(S) := H2(X;Z).

There exists a unique divisor Efund, called the fundamental cycle of X,
which is the minimal nonzero e�ective divisor such that EfundEi � 0 for all
i. Let Efund :=

Pr
i=1m

SING
i Ei and E0 := �Efund. For the simple singularities

we have E0Ei = 0 or 1 for any Ei 2 IrrE, except for the case A1, when
E0E1 = 2. Therefore we can draw a new graph e�SING by adding the vertex
v(E0) to �SING(S). By a little abuse of notation we denote IrrE [ fE0g by
Irr�E.

For instance let us consider theD5 case. Then E =
P5

i=1Ei with E
2
i = �2

and

�E0 = Efund = E1 + 2E2 + 2E3 + E4 + E5:
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Then E0E2 = E1E2 = E2E3 = E3E4 = E3E5 = 1, and all other EiEj = 0.
Hence (mSING

1 ; : : : ; mSING
5 ) = (1; 2; 2; 1; 1), as indicated in Figure 2.

D5

v��

v v��
v

@@v1

2 2 1

1

eD5

v

v

@@

��

v v��
v

@@v

1

1

2 2 1

1

Figure 2: The Dynkin diagrams D5 and eD5

There are various ways of computing E. We check this starting from the
fact that D5 is the quotient singularity of A 2 by the binary dihedral group
D 3 of order 12. The binary dihedral group G := D 3 is generated by � and � :

� =

�
" 0
0 "�1

�
; � =

�
0 1
�1 0

�
;

where " := e2�
p�1=6. We have �6 = � 4 = 1, �3 = � 2 and ����1 = ��1. The

ring of G-invariants in C [x; y] is generated by three elements F := x6 + y6,
H := xy(x6 � y6) and I := x2y2. The quotient A 2=G is isomorphic to the
hypersurface 4I4 +H2 � IF 2 = 0. Since G has a normal subgroup N := f�g
of order 6, we �rst take the quotient A 2=N and its minimal resolution XN .

Since P := x6, Q := y6 and R := xy are N -invariants, A 2=N is a hyper-
surface PQ = R6. Hence XN has an exceptional set consisting of a chain of
5 smooth rational curves C1 + � � � + C5. The action of � on A 2 induces an
action on XN , which maps Ci into C5�i, so in particular takes C3 to itself.
The action of � on XN has exactly two �xed points p+ and p� on C3, which
give rise to all the singularities of XN=f�g.

The images of p� give smooth rational curves E4 and E5 on the minimal
resolutionX of A 2=G by resolving the singularities ofXN=f�g at p�. Thus on
X we have the images Ei of Ci for i = 1; 2; 3 and two new rational curves E4

and E5. This gives the exceptional set E of X. We see easily that (Ei)
2
SING =

�2. The intersection pairing ( ; )SING is expressed with respect to the basis
Ei for 0 � i � 5 as a 6� 6 symmetric matrix with diagonal entries equal to
�2. We write it down multiplied by �1 for convenience:

(�1) � (EiEj)SING =

0BBBBBB@

2 0 �1 0 0 0
0 2 �1 0 0 0
�1 �1 2 �1 0 0
0 0 �1 2 �1 �1
0 0 0 �1 2 0
0 0 0 �1 0 2

1CCCCCCA
Let vi := v(Ei) for 0 � i � 5. Then we obtain the Dynkin diagram

D5 from vi for 1 � i � 5 and the extended Dynkin diagram eD5 from vi for
0 � i � 5, as in Figure 2.
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1.3 Simple singularities and simple Lie algebras (1)

Let G be a simply laced simple Lie algebra and H a Cartan subalgebra of G.
We �x a lexicographical order of the roots of H and let � (respectively �+,
�simple) be the set of roots (respectively, positive roots, positive simple roots)
of G with respect to T . (See [Bourbaki] for more details.) Let r be the rank
of G (= dimH) and �simple = f�i; 1 � i � rg.

Let Q be the root lattice, namely the lattice spanned by � over Z endowed
with the Cartan{Killing form ( ; )LIE and P := HomZ(Q;Z) the dual lattice
of Q (the weight lattice):

Q :=
M
�2�

Z� =
M

�2�simple

Z�:

The Cartan{Killing form ( ; )LIE with respect to the basis �simple is a
positive de�nite integral symmetric bilinear form with (�; �) = 2 for all � 2
�simple. Since (�; �)LIE = 0 or �1 for � 6= � 2 �simple, we can express the
bilinear form by a �nite graph with simple edges �LIE as we did for the dual
graph of the set of exceptional curves of simple singularities.

There is a maximal root in � with respect to the given order, called the
highest root of �. (This name is justi�ed by the fact that it is the highest
root of the adjoint representation of G. See Table 1.) Let the highest root
be �0 := �highest =

Pr
i=1m

LIE
i �i. Then (�0; �) = 0 or �1 for any � 2 �simple

(expect for the case A1, when (�0; �) = 2), so that we can draw a new graphe�LIE(G) (called the extended Dynkin diagram of G) by adding the vertex �0
to �LIE(G).

Type r (m0) m1; m2; m3; : : : ; mr�1;mr

An n 1 1; 1; : : : ; 1; 1

Dn n 1 1; 2; 2; : : : ; 2; 1; 1

E6 6 1 1; 2; 3; 2; 1; 2

E7 7 1 1; 2; 4; 3; 2; 1; 2

E8 8 1 2; 4; 6; 5; 4; 3; 2; 3

Table 1: Multiplicities of the highest root

Let us consider the D5 case as an example. The Lie algebra G := G(D5)
is given by o(10) := fX 2 M10(C );

tX + X = 0g. Its Cartan subalgebra H

is spanned by Hi := Ei;i+5 � Ei+5;i for 1 � i � 5 where Eij is the matrix
with (i; j)th entry equal to 1 and 0 elsewhere. We de�ne "i 2 HomC (H; C ) by
"i(H) := ti for all H =

P5
i=1 tiHi 2 H. Then we can choose simple roots �i
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with order �1 > �2 > � � � > �5 as follows:

�i := "i � "i+1; �5 := "4 + "5 for 1 � i � 4.

The highest root �0 is "1 + "2 = �1 + 2�2 + 2�3 + �4 + �5. For each �i
we de�ne an element eHi 2 H by �i(H) = �1

2
Tr( eHiH) for all H 2 H. We see

that eHi = Hi �Hi+1 for 1 � i � 4, and eH5 = H4 +H5. We de�ne (�i; �j) :=

�i( eHj) = �j( eHi). Then we have (�i; �j) = �(Ei; Ej) for 0 � i � j � 5
in the notation of 1.1{1.2. This shows that �SING(D5) = �LIE(G(D5)) ande�SING(D5) = e�LIE(G(D5)).

We note that P =
P5

i=1 Z"i and Q =
P5

i=1 Z�i.
The �rst theorem to mention is the following:

Theorem 1.4 Let S be a simple singularity and Lie(S) a simple Lie algebra
of the same type as S. Then there is an isomorphism

i : H2
SING(S) ' P (Lie(S))

such that

1. i(H2;SING(S)) = Q(Lie(S));

2. i(Irr(E(S))) = �simple(Lie(S));

3. i(Efund(S)) = ��highest(Lie(S));
4. ( ; )SING = �i�( ; )LIE;
5. �SING(S) = �LIE(Lie(S)) and e�SING(S) = e�LIE(Lie(S)).

1.5 Simple singularities and simple Lie algebras (2)

There are two kinds of similar constructions of simple singularities from simple
Lie algebras: �rst of all, the Grothendieck{Brieskorn{Springer construction
and second, the Knop construction. Good references for this topic are for
instance [Slodowy80], [Slodowy95] and [Knop87].

1.6 Finite re
ection groups and Coxeter exponents

Let V be a vector space over R endowed with a positive de�nite bilinear form
( ; ). A linear automorphism s of V is called a re
ection if there is a vector
� 2 V and a hyperplane H� orthogonal to � such that s(�) = ��, and the
restriction of s to H� is trivial: sjH�

= idH�. There is a simple formula

s(v) = v � 2(v; �)

(�; �)
�: (1)
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A �nite group generated by re
ections is called a �nite re
ection group.
For instance, let Q be the root lattice of a simple Lie algebra G over C ,
( ; )LIE its Cartan{Killing form, and set V = Q 
 C . For any simple root
�i 2 �simple, we de�ne a re
ection si := s�i of V by the formula (1). The
group W generated by all re
ections s� for � 2 �simple is �nite, and is called
the Weyl group of G. The Weyl group W acts on the polynomial ring C [V �]
generated by V � := HomZ(V;Z), the dual of V .

The product s =
Qr

i=1 si of re
ections for all the simple roots is called
a Coxeter element of W . All s de�ned in this way for di�erent choices of
lexicographical order of the roots are conjugate in W . Therefore the order
of s in W is uniquely determined, and we denote it by h and we call it the
Coxeter number of G.

Theorem 1.7 ([Chevalley55]) Let W be the Weyl group of a simple Lie
algebra G over C , and r the rank of G. Then

1. the invariant ring C [V �]W is generated by r algebraically independent
homogeneous polynomials f1; f2; : : : ; fr. We order the fi so that deg fi
is monotonically increasing.

2. For any choice of the generators fi as above, the sequence of degrees
(deg f1; : : : ; deg fr) is uniquely determined.

De�nition 1.8 We de�ne the Coxeter exponents ei by ei := deg fi � 1 for
1 � i � r.

Theorem 1.9 Let G be a simple Lie algebra, h its Coxeter number, and ei
its Coxeter exponents. Then we have

1. ei + er�i = h for all i;

2. jW j =Qr
i=1(ei + 1).

For the proof, see [Humphreys90], Orlik and Terao [OT92] and [Bourbaki].
Let us look at the D5 case. From the root system given in 1.2{1.3 we see

easily that the Weyl group W (D5) is a group of order 24 � 5! = 1920 �tting in
the exact sequences

1!W (D5)! G
 ! Z=2Z! 1

and

1! (Z=2Z)�5! G
'! S5 ! 1:
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The group G, hence the Weyl group W (D5) as a subgroup of G, acts on
C [H(D5)

�] ' C [x1 ; : : : ; x5] by

��(xi) = "ix'(�)(i);

where � 2 G, "i = �1 and  (�) = "1 � � � "5. Write fj for the jth elementary
symmetric function of 5 variables. Then C [H(D5)

�]W (D5) is generated by
gj := fj(x

2
1; : : : ; x

2
5) for j = 1; 2; 3; 4 and g5 := f5 = x1 � � �x5. It follows that

fdeg gjg = (2; 4; 6; 8; 5) so that the Coxeter exponents are 1; 3; 5; 7; 4. Since
the Coxeter number h(D5) equals 8, we have 8 = 1 + 7 = 3 + 5 = 4 + 4.
Moreover jW (D5)j = 1920 = 2 � 4 � 6 � 8 � 5.

Type r e1; e2; e3; : : : ; er�1; er h

An n 1; 2; : : : ; n� 1; n n+ 1

Dn n 1; 3; 5; : : : ; 2n� 3; n� 1 2n� 2

E6 6 1; 4; 5; 7; 8; 11 12

E7 7 1; 5; 7; 9; 11; 13; 17 18

E8 8 1; 7; 11; 13; 17; 19; 23; 29 30

Table 2: Coxeter exponents and Coxeter numbers

1.10 Quivers (= oriented graphs) of �nite type

Let � be a connected oriented graph. It consists of a �nite set of vertices and
(simple) oriented edges joining two vertices. Write v(�) and e(�) for the set
of vertices and edges of �.

For an edge `, we de�ne @(`) = �(`)� �(`), where �(`) and �(`) are the
starting and end points of `.

De�nition 1.11 ([Gabriel72]) A representation V := fV�; '`g of � is a set
of �nite dimensional vector spaces V�, one for each � 2 v(�), coupled with
a set of homomorphisms '` : V�(`) ! V�(`) for all ` 2 e(�). We de�ne the
dimension vector of a representation V to be v = dimV := fdimV�;� 2
v(�)g.

Two representations V = fV�; '`g and W = fW�;  `g are equivalent if
there are isomorphisms f� : V� ! W� such that  ` � f�(`) = f�(`) � '` for any
` 2 e(�). Two equivalent representations have the same dimension vector.

We say that � is a quiver of �nite type if there are only �nitely many
equivalence classes of representations of � for any �xed dimension vector.
This notion is independent of the choice of orientation of �.
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Theorem 1.12 ([Gabriel72]) Let � be a quiver of �nite type. Then � with
orientation forgotten is one of An, Dn and En. Conversely, if � is one of
these types, it is a quiver of �nite type.

Proof (Outline) Suppose that � is of �nite type. Let v = (n�)�2v(�) be a
vector with positive integer coe�cients n�. We choose and �x a representation
V := fV�; '`g of �. Hence n� = dimV�. Then the set of representations of
� is the set M :=

Q
`2e(�)Hom(V�(`); V�(`)). Let G :=

Q
�2v(�) End(V�). Then

G acts on M by

('`) 7! (g�(`) � '` � g�1�(`)) for g� 2 End(V�).

The set of equivalence classes of representations of � with �xed dimV = v
is the quotient of M by the action of G. Since � is connected, the centre of
G consists of scalar matrices. Therefore dimM � dimG� 1 by assumption.
It follows that

P
`2e(�) n�n� � P

�2v(�) n
2
� � 1. Since this holds for any

v 2 (Z+)
Card(v(�)), the bilinear form

P
�2v(�) x

2
��
P

`2e(�) x�(`)x�(`) is positive
de�nite. It follows from the same argument as in the classi�cation of simple
Lie algebras that the graph � is one of ADE. �

Theorem 1.13 ([Gabriel72]) Let � be a quiver of �nite type. Then the
map V 7! dimV is a bijective correspondence between the set of equivalence
classes of indecomposable representations and the set of positive roots of the
root system corresponding to �.

2 Conformal �eld theory

2.1 Background from physics

In the study of conformal �eld theories, under certain physically natural as-
sumptions, if we consider the theory on a real two dimensional torus, or
equivalently, the theory periodic in one time direction and one space direc-
tion, the system turns out to �t into an ADE classi�cation.

We start by telling in very rough terms a story that physicists take for
granted. Suppose given an in�nite dimensional vector space H and a �nite set
of operators Aj on H. The space H is supposed to be a realization of various
physical states. The operators Aj are supposed to be selfadjoint insofar as
they correspond to actual physical operators or \observables". In this sense,
the vector space H is required to have a Hermitian inner product, namely,
we require H to be unitary. Rather surprisingly, we will soon see that the
unitary assumption picks up mathematically interesting objects.
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If we have a kind of Hamiltonian operator in the algebra A, the eigen-
value of the operator would be the energy of the (eigen)-state, and in general
any state is an in�nite linear combination of eigenstates, like a Fourier series
expansion. The operators Aj are supposed to correspond to physical observ-
ables such as the energy of particles in the system, and they correspond in
mathematical terms to irreducible representations of some algebra A on H,
where the system is said to admit A-symmetry.

The system fA; Aj;Hg is called a conformal �eld theory if the algebra A
contains a Virasoro algebra acting nontrivially on H.

The distribution of various energy levels is captured by the so-called par-
tition function of the system, which in mathematical terms is the generating
function of H weighted by the values of energy. If the system has space-time
symmetry, one proves by a physical argument that the partition function is
SL(2;Z)-invariant.

The problem is to determine all possible systems admitting space-time
symmetry; hence, as a �rst step, we consider the problem of classifying all
possible modular invariant partition functions, namely SL(2;Z)-invariant par-
tition functions in certain restricted situations. In the situations we are in-
terested in, the algebra A is either the a�ne Lie algebra A

(1)
1 or the minimal

unitary series of Virasoro algebras with central charge c = 1 � 6=m(m + 1)
for m � 3. Although the minimal unitary series is more interesting, the par-
tition function for A

(1)
1 is easier to write down and more coherent to the ADE

classi�cation. Therefore we limit ourselves to A(1)
1 . It is not known whether

the modular invariant partition functions in the subsequent table (Table 3)
are partition functions of some conformal �eld theory admitting space-time
symmetry.

We now rephrase all this in more mathematically rigorous terms.

De�nition 2.2 Write

e =

�
0 1
0 0

�
; f =

�
0 0
1 0

�
; h =

�
1 0
0 �1

�
for the standard generators of sl2(C ). The Cartan{Killing form of sl2(C )

is given by (x; y)LIE = Tr(xy). The a�ne Lie algebra A
(1)
1 is an in�nite

dimensional Lie algebra A over C spanned by sl2(C )
C [t; t�1 ], together with
a central element c, subject to the relations

[x(m); y(n)] = [x; y](m+ n) +mc�m+n;0(x; y)LIE and [c; x(m)] = 0;

for all m;n 2 Z; here t is an indeterminate, and we write x(m) := x
 tm for
x 2 sl2(C ).
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Theorem 2.3 Let k be a positive integer and s an integer with 0 � s � k.
We de�ne an A

(1)
1 -module V (s; k) := A

(1)
1 � v(s; k) by

x(n)v(s; k) = 0; e(0)v(s; k) = 0 for x 2 sl2(C ) and n � 1,

h(0)v(s; k) = sv(s; k); cv(s; k) = kv(s; k):

Then V (s; k) is a unitary integrable irreducible A
(1)
1 -module having highest

weight vector v(s; k). Conversely, any unitary irreducible integrable highest

weight A
(1)
1 -module V is isomorphic to V (s; k) for some pair (s; k) as above.

By convention, we write v(s; k) as the ket js; ki. The integer k is called

the level of the A
(1)
1 -module V (s; k). By the Kac{Weyl character formula, we

have

Theorem 2.4 The character of V (s; k) is given by

�s;k(q; �) =
X
m2Z

q(k+2)m
2+(s+1)m(e

p�1�((k+2)m+ s
2
) � e�

p�1�((k+2)m+ s
2
+1))=D;

where the denominator is D = (1� e�
p�1�)'(�)'+(�)'�(�), and

'(q) =
Y
n�1

(1� qn); '�(q; �) =
Y
n�1

(1� e�
p�1�qn):

Although this may look di�erent from the usual form of the Kac{Weyl
formula, the above form of the character is adjusted to the expression used
by physicists to write down partition functions. In Kac's notation ([Kac90],
Chapter 6 and p. 173) and the notation in 2.6

�s;k = �L((k�s)�0+s�1))

= TrL((k�s)�0+s�1))(q
(k+2)L0e

p�1(k+2)�h(0)=2):

We note that L0 = �d and c = K in the notation of [Kac90], Chapters 6{7.

De�nition 2.5 The Virasoro algebra Virc with central charge c is the in�nite
dimensional Lie algebra over C generated by Ln for n 2 Z and c, subject to
the following relations

[Lm; Ln] = (m� n)Lm+n +
c

12
(m3 �m)�m+n;0;

[Ln; c] = 0 for all n;m.

There is a way of constructing Ln from the a�ne Lie algebra A
(1)
1 , called

the Segal{Sugawara construction:

Ln =
1

2(k + 2)

X
m2Z

�
:e(n�m)f(m): + :f(n�m)e(m): + 1

2
:h(n�m)h(m):

�
:
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Here : : is the normal ordering de�ned by

:x(m)y(n): =

8><>:
x(m)y(n) if m < n,
1
2
(x(m)y(n) + y(n)x(m)) if m = n,

y(n)x(m) if m > n.

Then we infer the relations

[Lm; Ln] = (m� n)Lm+n +
1

12
� 3k

k + 2
(m3 �m)�m+n;0;

[Lm; x(n)] = �nx(m + n) and [L0; x(�n)] = nx(�n)

for all m;n 2 Z and x 2 sl2(C ).

Thus given a system having A
(1)
1 symmetry of level k, the system ad-

mits a Virasoro algebra Virc symmetry with c = 3k=(k + 2). Write v :=
x(�n1)x(�n2) � � �x(�np)js; ki; note that V (s; k) is spanned by vectors v of
this form for various ni > 0. The element L0 acts on v by

L0(v) =
n 1

4(k + 2)
(s2 + 2s) + (n1 + n2 + � � �+ np)

o
v

This shows that L0 behaves as if it measures the energy of the state v.

2.6 Modular invariant partition functions

Write A for the a�ne Lie algebra A
(1)
1 , and A� for its complex conjugate.

We �x the level k, and consider only unitary irreducible integrable A or A�-
modules of level k. We consider the following particular A
A�-module:

H =
M
`;`0

m`;`0V (`; k)
 (V (`0; k))�;

where m`;`0 is the multiplicity of the copy V (`; k)
 (V (`0; k))�.
This is what physicists call Hilbert spaces in such a situation, without

further quali�cations. We only need to take the completion of H in order
to be mathematically rigorous. Mathematicians might guess why we have
to choose H as above. This is a special case of the factorization principle
widely accepted by physicists. Now L0 is supposed to play the same role as
the Hamiltonian operator of the system, and therefore the eigenvalues of L0

should express the energies. For the (physical) theory it is always important
to know the energy level distribution inside the system. Thus it is important
to know the eigenvalues of L0 and to count the dimension of the eigenspaces,
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in other words to determine the partition function Z of the system. The
partition function Z of the system (= the A

(1)
1 -module) H is de�ned by

Z(q; �; �q; ��) := TrH
�
q(k+2)L0e

p�1(k+2)�h(0)=2�q(k+2)
�L0e�

p�1(k+2)���h(0)=2
�

=
X
`;`0

m`;`0 �`;k �
�
`0;k ;

where q = e2�
p�1� with � in the upper half plane, and � is a real parameter;

when � is pure imaginary, �i� equals the ratio of sizes of time and one
dimensional space. For more details see [Cardy88] and [EY89].

In this situation, the physicists assume

1. m0;0 = 1;

2. Z(q; �; �q; ��) is SL(2;Z)-invariant.

Condition (1) means that the system has a unique state of lowest energy,
usually called the vacuum. This is one of the principles that physicists take for
granted. We therefore follow the physicists' tradition, doing as the Romans
do. Next, (2) is the condition of discrete space-time symmetry. It means
that Z is invariant under the transformations � 7! �1=� and � 7! � + 1.
See [Cardy86] and [Cardy88] for more details. These assumptions have very
surprising consequences.

Theorem 2.7 Modular invariant partition functions are classi�ed as in Ta-
ble 3. We write the partition function Z =

P
aij�i�

�
j in terms of A

(1)
1 -

characters. Then the indices i with nonzero aii are Coxeter exponents of the
Lie algebra of the same type. Moreover the value k+2 is equal to the Coxeter
number.

For example, for k = 6 there are two modular invariant partition functions:

Z(A7) = j�1j2 + j�2j2 + � � �+ j�6j2 + j�7j2;
Z(D5) =

X
�

j�2��1j2 + (�2�
�
6 + ��2�6) + j�4j2;

where A7 (respectively D5) has Coxeter exponents f1; 2; : : : ; 6; 7g (respec-
tively f1; 3; 5; 7; 4g). Note that the indices 2; 6 are not among the Coxeter
exponents of D5. For k = 10, there are three types of modular invariant
partition functions Z(A11), Z(D7) and Z(E6).

For more details, see Capelli, Itzykson and Zuber [CIZ87], Kato [Kato87],
Gepner and Witten [GW86] and Kac and Wakimoto [KW88]. Compare also
[Slodowy90]. Pasquier [Pasquier87a] and [Pasquier87b] used Dynkin diagrams
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Type k + 2 partition function Z(q; �; �q; ��)

An n + 1
Pn

�=1 j��j2

D2r 4r � 2
Pr�1

�=1 j�2��1 + �4r+1�2�j2 + 2j�2r�1j2

D2r+1 4r
P2r

�=1 j�2��1j2 +
Pr�1

�=1(�2� ��4r�2� + ��2��4r�2�) + j�2rj2

E6 12 j�1 + �7j2 + j�4 + �8j2 + j�5 + �11j2

E7 18 j�1 + �17j2 + j�5 + �13j2 + j�7 + �11j2

+j�9j2 + (�3 + �15)��9 + �9(��3 + ��15)

E8 30 j�1 + �11 + �19 + �29j2 + j�7 + �13 + �17 + �23j2

Table 3: Modular invariant partition functions

to construct some lattice models and rediscovered a series of associative al-
gebras (called the Temperly{Lieb algebras) which are expected to appear as
some algebra of operators on the Hilbert space in the continuum limit of the
models. See also Section 3.4 and [GHJ89], p. 87, p. 259. Although the relation
of the models with modular invariant partition functions remains obscure, the
partition function of Pasquier's model is expected to coincide in some sense
with those classi�ed in Table 3. See [Zuber90]. The connection of CFT with
graphs is studied by Petkova and Zuber [PZ96].

2.8 N = 2 superconformal �eld theories

There are other series of conformal �eld theories { the N = 2 superconformal
�eld theories or (induced) topological conformal �eld theories, which are more
intimately related to the theory of ADE singularities. However, these are a
priori close to the theory of singularities. See Blok and Varchenko [BV92].

The following result might be worth mentioning here.

Theorem 2.9 Suppose that there exists an irreducible unitary Virc-module,
namely an irreducible Virc-module admitting a Virc-invariant Hermitian inner
product. Then c � 1 or c = 1� 6=m(m+ 1) for some m 2 Z; m � 3.

2.10 The minimal unitary series

Virasoro algebras of the second type are called the minimal c < 1 unitary se-
ries of Virasoro algebras. They attract attention because of their exceptional
characters. There is a series of von Neumann algebras with indices equal to
similar values 4 cos2(�=h) for h = 3; 4; : : : , where h is the Coxeter number in
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a suitable interpretation. Conjecturally, the minimal unitary c < 1 series of
CFTs are deeply related to the class of subfactors which will be introduced in
Section 3. Much is already known about this topic. See [GHJ89], [Jones91],
[EK97].

3 Von Neumann algebras

3.1 Factors and subfactors

We give a brief explanation of von Neumann algebras, II1 factors of �nite
type, and subfactors. The reader is invited to refer, for instance, to [GHJ89],
[Jones91], [EK97]. Let H be a Hilbert space over C and B(H) the space of
all bounded C -linear operators on H endowed with an operator seminorm
in some suitable sense. A von Neumann algebra M is by de�nition a closed
subalgebra of B(H) containing the identity and stable under conjugation
x 7! x�. This is equivalent to saying that M is �-stable and is equal to its
bicommutant. This is von Neumann's bicommutant theorem. See [Jones91],
p. 2. The commutant of a subset S of B(H) is by de�nition the centralizer
of S in B(H). The bicommutant of M is the commutant of the commutant
of M . If M is a �-stable subset of B(H), then the bicommutant of M is the
smallest von Neumann algebra containing M .

A factor is de�ned to be a von Neumann algebra M with centre ZM
consisting only of constant multiples of the identity. Let M be a factor. A
factor N is called a subfactor ofM if it is a closed �-stable C -subalgebra ofM .
A II1 factor is by de�nition an in�nite dimensional factor M which admits a
C -linear map tr : M ! C (called the normalized trace) such that

1. tr(id) = 1,

2. tr(xy) = tr(yx) for all x; y 2M ,

3. tr(x�x) > 0 for all 0 6= x 2M .

We note that the above normalized trace is unique. Let L2(M) be the
Hilbert space obtained by completing M with respect to the inner product
hx j yi := tr(x�y) for x; y 2 M . The normalized trace induces a trace (not
necessarily normalized) TrM 0 on the commutantM 0 ofM in B(H), called the
natural trace. If H = L2(M), then TrM 0(JxJ) = trM(x) for all x 2 M where
J is the extension to L2(M) of the conjugation J(z) = z� of M .

A �nite factor M is either a II1 factor or B(H) for a �nite dimensional
Hilbert space H. LetM be a �nite factor, and N a subfactor ofM . Then the
Jones index [M : N ] is de�ned to be dimN L

2(M) := TrN 0(idL2(M)), where N
0
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is the commutant of N . In general [M : N ] 2 [1;1] is a (possibly irrational)
positive number.

For instance, M = EndC (W ) is a factor (a simple algebra) for any �nite
dimensional C -vector space W . If N = EndC (V ) is a subfactor of M , then
we have a representation of N = EndC (V ) on W , in other words, W is an
EndC (V )-module. We recall that

1. any EndC (V )-module is completely reducible, and

2. V is a unique nontrivial irreducible EndC (V )-module up to isomor-
phism.

ThereforeW ' V 
C U for some C -vector space U . Hence dimC W is divisible
by dimC V . Since M is complete with respect to the inner product, we have
[M : N ] = dimN L

2(M) = dimN M = (dimC M)(dimC N)�1 = (dimC U)
2, a

square integer. See [GHJ89], p. 38.
The importance of the index [M : N ] is explained by the following result:

Theorem 3.2 ([GHJ89], p. 138) Suppose that M is a �nite factor, and
let H and H 0 be M-modules which are separable Hilbert spaces. Then

1. dimM H = dimM H 0 if and only if H and H 0 are isomorphic as M-
modules.

2. dimM H = 1 if and only if H = L2(M).

3. dimM H is �nite if and only if EndM(H) is a �nite factor.

Theorem 3.3 ([GHJ89], p. 186) Suppose that N � M is a pair of II1
factors whose principal graph is �nite.

1. If [M : N ] < 4 then [M : N ] = 4 cos2(�=h) for some integer h � 3.

2. If [M : N ] = 4 cos2(�=h) < 4, the principal graph of the pair N � M
is one of the Dynkin diagrams An, Dn and En with Coxeter number h.
(Only An, D2n, E6 and E8 can appear, see [Izumi91], p. 972. This was
proved independently by Kawahigashi and Izumi.)

3. If [M : N ] = 4 then the principal graph of the pair N � M is one of

the extended Dynkin diagrams eAn, eDn and eEn.
4. Conversely for any value � = 4 or 4 cos2(�=h), there exists a pair of II1

factors N �M with [M : N ] = �.

See [GHJ89], [Jones91], p. 35. See [GHJ89], p. 186 for principal graphs. See
also 3.8{3.10 where to each tower of �nite dimensional semisimple algebras we
associate a �nite graph � analogous to a principal graph for a pair of factors.
This will help us to guess the principal graphs for factors.
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3.4 The fundamental construction and Temperly{Lieb
algebras

Why do the constants 4 cos2(�=h) appear? Let us explain this brie
y.
Given a pair of �nite II1 factors N � M with � := [M : N ] < 1, there

exists a tower of �nite II1 factors Mk for k = 0; 1; 2; : : : such that

1. M0 = N , M1 =M ,

2. Mk+1 := EndMk�1
Mk is the von Neumann algebra of operators on

L2(Mk) generated by Mk and an orthogonal projection ek : L
2(Mk) !

L2(Mk�1) for any k � 1, where Mk is viewed as a subalgebra of Mk+1

under right multiplication.

By Theorem 3.2, (3), Mk+1 is a �nite II1 factor. The sequence fekgk=1;2;:::
of projections on M1 :=

S
k�0Mk satis�es the relations

e2i = ei; e�i = ei;

ei = �eiejei for ji� jj = 1;

eiej = ejei for ji� jj � 2:

We de�ne A�;k to be the C -algebra generated by 1; e1; : : : ; ek�1 subject
to the above relations, and A� :=

S1
k=1A�;k. The algebra A� is called the

Temperly{Lieb algebra. Compare also [GHJ89], p. 259.
Thus given a pair of II1 factors, the fundamental construction gives rise

to a unitary representation of the Temperly{Lieb algebra. However, the con-
dition that the representation is unitary restricts the possible values of �, as
Theorem 3.5 shows.

Theorem 3.3, (1) follows from the following result

Theorem 3.5 ([Wenzl87]) Suppose given an in�nite sequence fekgk=1;2;:::
of projections on a complex Hilbert space satisfying the following relations:

e2i = ei; e�i = ei;

ei = �eiejei for ji� jj = 1;

eiej = ejei for ji� jj � 2:

If e1 6= 0, then � � 4 or � = 4 cos2(�=`) for an integer ` � 3.

Proof We give an idea of the proof of Theorem 3.5. Suppose we are given a
homomorphism ' : A� ! B(H) for some Hilbert space H, that is, a unitary
representation of A�. For simplicity we identify '(x) with x for x 2 A�.

First we see that 0 � e�1e1 = e21 = e1 = �e1e2e1 = �(e2e1)
�(e2e1). Hence

� � 0. If � = 0 then e1 = 0, contradicting the assumption. Hence � > 0.
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Next we assume 0 < � < 1 to derive a contradiction by using A�;3. Let
�2 := 1 � e1. Then the assumptions of Theorem 3.5 imply ��2 = �2, �

2
2 = �2.

Hence

0 � (�2e2�2)
�(�2e2�2) = (�2e2�2)

2 = (1� ��1)(�2e2�2) � 0;

because �2e2�2 = (e2�2)
�(e2�2) � 0. Thus e2�2 = 0. It follows that e2 = e1e2,

and e2 = e22 = e2e1e2 = ��1e2, so that e2 = 0. Therefore e1 = �e1e2e1 = 0,
contradicting the assumption. If 4 cos2(�=`) < � < 4 cos2(�=(`+1)), then we
derive a contradiction by using A�;`+1. See [GHJ89], pp. 272{273. �

3.6 Bipartite graphs

A bipartite graph � with multiple edges is a (�nite, connected) graph with
black and white vertices and multiple edges such that any edge connects a
white and black vertex, starting from a white one (see, for example, Figure 3).
If any edge is simple, then � is an oriented graph (a quiver) in the sense of
Section 1. Let � be a connected bipartite �nite graph with multiple oriented
edges. Let w(�) (respectively b(�)) be the number of white (respectively
black) vertices of �. We de�ne the adjacency matrix � := �(�) of size b(�)�
w(�) by

�b;w =

(
m(e) if there exists e such that @e = b� w;

0 otherwise.

where m(e) is the multiplicity of the edge e.
We de�ne the norm k�k as follows,

kXk = max
�kXxkEUCL; kxkEUCL � 1

	
;

k�k = k�(�)k =




� 0 �(�)

�(�)t 0

�



 ;
where X is a matrix, x a vector and k kEUCL the Euclidean norm. We note
that when X is a square matrix, kXk is the maximum of the absolute values
of eigenvalues of X.

D5

v

f f

v v

@
@@

�
��

Figure 3: The Dynkin diagram D5 as a bipartite graph

Lemma 3.7 Assume � is a connected �nite graph with multiple edges. Then
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1. if k�k � 2 and if � has a multiple edge, k�k = 2 and � = eA1.

2. k�k < 2 if and only if � is one of the Dynkin diagrams A;D;E. In
this case k�k = 2 cos(�=h), where h is the Coxeter number of �.

3. k�k = 2 if and only if � is one of the extended Dynkin diagramseA; eD; eE.
Lemma 3.7 is easy to prove. For instance, if there is a row or column

vector of � with norm a, then k�k � a. See also [GHJ89], p. 19.

3.8 The tower of semisimple algebras

Why is Theorem 3.3, (2) true? The interested reader is invited to see [GHJ89].
Here we explain it in a much simpler situation.

Recall that a matrix algebra of �nite rank is a �nite factor by de�nition.
This is an elementary analogue of a �nite II1 factor with a �nite dimensional
Hilbert space. So let us see what happens if we consider the fundamental
construction for a pair N �M of (sums of) matrix algebras. We call N and
M (a pair of) semisimple algebras (over C ).

Let � be a connected bipartite graph with multiple edges, v(�) and e(�)
its set of vertices and edges. Let W (w) be a C -vector space for a white vertex
w. Let W (b; w) be a C -vector space for an edge e with @e = b � w and
V (b) =

L
@e=b�wW (b; w) 
W (w) for a black vertex b, where the sum runs

over all edges of � ending at b. Set

N :=
M
w:white

EndC (W (w));

M :=
M
b:black

EndC (V (b));

=
M
b:black

M
@e=b�w

EndC (W (b; w))
 EndC (W (w)):

Now let '0 : N !M be the homomorphism de�ned by

'0 =
M
b

'0;b; '0;b =
M

@e=b�w
idW (b;w) 
 idEnd(W (w));

where idW (b;w) is the identity homomorphism of W (b; w). This is a repre-
sentation of the oriented graph � in the sense of De�nition 1.11 if m(e) =
dimW (b; w) � 1 for any edge e.

We set �(M;N) := �(�) and call it the inclusion matrix of M in N .
Let us consider a tower of semisimple algebras arising from the funda-

mental construction for the pair N � M . We de�ne M0 = N , M1 = M and
Mk+1 := EndMk�1

(Mk) inductively.
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Let M2 = EndN M , '1 the monomorphism of M1 into M2 by right multi-
plication. Let V (b; w) = EndC (W (b; w)). Then we see that

EndN M =
M
w:white

U(w);

U(w) :=
M

@e=b�w
EndW (w) V (b)

=
M

@e=b�w
EndC (V (b; w))
 EndC (W (w));

'1 =
M
w

'1;w; '1;w =
M

@e=b�w
right mult.V (b;w) 
 idEnd(W (w)):

The construction shows that the graph � describe the inclusion of Mk�1
into Mk by interchanging the roles of white and black vertices, and reversing
the orientation of edges at each step. We see �(M2k+1;M2k) = �(M;N)t,
�(M2k;M2k�1) = �(M;N).

We set [M : N ] := limk!1
�
dimMk= dimM0

�1=k
. (This is one of the

equivalent de�nitions of the Jones index [M : N ].) We compute this in the
simplest case when � is a connected graph with two vertices and a single edge
e. Let m(e) be the multiplicity of e, and @e = b� w. Then we see that

M0 = N = EndC (W (w));

M1 =M = EndC (V (b)) ' EndC (W (b; w))
M0;

M2 = EndC (EndC (W (b; w)))
 EndC (W (w));

' EndC (W (b; w))
 EndC (V (b)) ' EndC (W (b; w))
M1:

Hence we see that dimC Mk=Mk�1 = dimC EndC (W (b; w)) = dimC (M=N). It
follows readily that [M : N ] = dimC (M=N), as was remarked in 3.1.

In this situation, the following result is proved.

Theorem 3.9 ([GHJ89], pp. 32{33) 1. The following are equivalent:

(a) there exists a row b(�)-vector s and � 2 C � with s��t = �s such
that every coordinate of s and s� is nonzero,

(b) there exist C -linear maps ek : Mk !Mk�1 such that e2k = ek and

(i) Mk is generated by Mk�1 and ek,
(ii) ek satis�es ei = �eiejei if ji � jj = 1 and eiej = ejei if

ji� jj � 2.

2. If one of the equivalent conditions in (1) holds, then

� = k�(�)�(�)tk = k�(�)k2 = [M : N ]:
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This is nontrivial, but is just linear algebra. By Theorem 3.9, we have a
situation similar to a pair of II1 factors N � M as well as a Temperly{Lieb
algebra A�.

From Lemma 3.7, we infer the following result.

Corollary 3.10 Let M0 = N � M1 = M � � � � � Mk � � � � be a tower of
semisimple algebras. We have a Temperly{Lieb algebra A� from the tower if
and only if � = [M : N ] and � � 4 or � = 4 cos2(�=h) for h = 3; 4; 5; : : : .
Moreover

1. if � = 4 cos2(�=h), then the graph � is one of A, D, E;

2. if � = 4, then the graph � is one of eA, eD, eE.
For a pair of II1 factors N � M , we can always carry out the same

construction as for a pair of semisimple algebras, and we �nd the same graphs
(principal graphs), because the pair in fact satis�es the stronger restrictions
of (in�nite dimensional) II1 factors. As a consequence, the cases Dodd and E7

are excluded.

4 Two dimensional McKay correspondence

4.1 Finite subgroups of SL(2; C )

Up to conjugacy, any �nite subgroup of SL(2; C ) is one of the subgroups
listed in Table 4; see [Klein]. The triple (d1; d2; d3) speci�es the degrees of
the generators of the G-invariant polynomial ring (compare Section 11).

Type G name order h (d1; d2; d3)

An Zn+1 cyclic n+ 1 n+ 1 (2; n+ 1; n+ 1)

Dn D n�2 binary dihedral 4(n� 2) 2n� 2 (4; 2n� 4; 2n� 2)

E6 T binary tetrahedral 24 12 (6; 8; 12)

E7 O binary octahedral 48 18 (8; 12; 18)

E8 I binary icosahedral 120 30 (12; 20; 30)

Table 4: Finite subgroups of SL(2; C )
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4.2 McKay's observation

As we mentioned in Section 1, any simple singularity is a quotient singular-
ity by a �nite subgroup G of SL(2; C ), and so has a corresponding Dynkin
diagram. McKay [McKay80] showed how one can recover the same graph
purely in terms of the representation theory of G, without passing through
the geometry of A 2=G.

To be more precise, let G be a �nite subgroup of SL(2; C ). Clearly, G has
a two dimensional representation, which maps G injectively into SL(2; C );
we call this the natural representation �nat. Let Irr�G, respectively IrrG, be
the set of all equivalence classes of irreducible representations, respectively
nontrivial ones. (Caution: note that this goes against the familiar notation
of group theory.) Thus by de�nition, Irr�G = IrrG [ f�0g, where �0 is the
one dimensional trivial representation. Any representation of G over C is
completely reducible, that is, is a direct sum of irreducible representations up
to equivalence. Therefore for any � 2 Irr�G, we have

�
 �nat =
X

�02Irr�G
a�;�0�

0

where a�;�0 are certain nonnegative integers. In our situation, we see that
a�;�0 = 0 or 1 (except for the case A1, when a�;�0 = 0 or 2).

Let us look at the exampleD5, the case of a binary dihedral groupG := D 3

of order 12. The group G is generated by � and � :

� =

�
" 0
0 "�1

�
; � =

�
0 1
�1 0

�
where " = e2�

p�1=6.

We note that Tr(�) = 1, Tr(�) = 0, hence in this case, the natural repre-
sentation is �2 in Table 5.

� Tr � 1 � �

�0 �0 1 1 1

�1 �1 1 1 �1
�2 �2 2 1 0

�3 �3 2 �1 0

�4 �4 1 �1 p�1
�5 �5 1 �1 �p�1
Table 5: Character table of D5
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De�nition 4.3 The graph e�GROUP(G) is de�ned to be the graph consisting
of vertices v(�) for � 2 Irr�G, and simple edges connecting any pair of vertices
v(�) and v(�0) with a�;�0 = 1. We denote by �GROUP(G) the full subgraph

of e�GROUP(G) consisting of the vertices v(�) for � 2 IrrG and all the edges
between them.

For example, let us look at the D5 case. Let �j := Tr(�j) be the character
of �j. Then from Table 5 we see that

�2(g)�2(g) = �0(g) + �1(g) + �3(g); for g = 1; � or � .

Hence �2�2 = �0 + �1 + �3. General representation theory says that an
irreducible representation of G is uniquely determined up to equivalence by
its character. Therefore �2
�2 = �0+�1+�3. Hence a�2;�j = 1 for j = 0; 1; 3
and a�2;�j = 0 for j = 2; 4; 5. Similarly, we see that

�0�2 = �2; �1�2 = �2;

�3�2 = �0 + �1 + �4;

�4�2 = �3 and �5�2 = �3:

In this way we obtain a graph { the extended Dynkin diagram eD5 of Figure 4.
It is also interesting to note that the degrees of the characters deg �j = �j(1)
are equal to the multiplicities of the fundamental cycle we computed in Sec-
tion 1. This is true in the other cases. Namely the graph �GROUP(G) turns

out to be one of the Dynkin diagrams ADE, while e�GROUP(G) is the corre-
sponding extended Dynkin diagram (see Figure 5). This is the observation of
[McKay80].

eD5

v

v

@@

��

v v��
v

@@v�1

�0 �2 �3 �4

�5

Figure 4: McKay correspondence for eD5

4.4 The Gonzalez-Sprinberg{Verdier construction

Let G be a �nite subgroup of SL(2; C ), X the minimal resolution of S :=
A 2=G, and E the exceptional set. Gonzalez-Sprinberg and Verdier [GSV83]
constructed a locally free sheaf V� on X for any � 2 IrrG such that there
exists a unique E� 2 IrrE satisfying

deg(c1(V�)jE�) = 1 and deg(c1(V�)jE0
) = 0 for E 0 6= E�; E

0 2 IrrE.
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Thus the map � 7! E� turns out to be a bijection from IrrG onto IrrE.
Their construction of V� is essentially as follows [Kn�orrer85], p. 178. Let

� : G ! GL(V (�)) be a nontrivial irreducible representation of G. Then the
associated free OA 2 -module V(�) := OA 2 
C V (�) admits a canonical G-action
de�ned by g � (x; v) = (gx; gv). Let V(�)G be the OS-module consisting of
G-invariant sections in V(�). The (locally free) OX -module V� is de�ned to
be

V� := OX 
OS
V(�)G=OX -torsion:

Theorem 4.5 Let G be a �nite subgroup of SL(2; C ), S = A 2=G, X the
minimal resolution of S and E the exceptional set. Then there is a bijection
j of Irr�G to Irr�E such that

1. j(�0) = E0 =: E�0 and j(�) = E� for � 2 IrrG;

2. deg(�) = mSING
E� for all � 2 Irr�G;

3. a�;�0 = (E�; E�0)SING for � 6= �0 2 Irr�G.

In particular:

Corollary 4.6 �GROUP(G) = �SING(A
2=G) and e�GROUP(G) = e�SING(A 2=G).

See [McKay80] and [GSV83]. Using invariant theory, [Kn�orrer85] gave a
di�erent proof of Theorem 4.5 based on the construction in [GSV83]. We dis-
cuss again the construction of [GSV83] from the viewpoint of Hilbert schemes
in Sections 8{16, and give there our own proof of Theorem 4.5.

5 Missing links and problems

5.1 Known links

We review brie
y what is known about links between any pair of the objects
(a){(f) { namely,

(a) simple singularities, (b) �nite subgroups of SL(2; C ),

(c) simple Lie algebras, (d) quivers, (e) CFT, (f) subfactors.

A very deep understanding of the link from (c) to (a) is provided by work of
Grothendieck, Brieskorn, Slodowy and Springer. See [Slodowy80]. However,
no intrinsic converse construction of simple Lie algebras starting from (a) is
known.

The link from (b) to (a) is on the one hand the obvious quotient singular-
ity construction, and on the other the very nontrivial McKay correspondence.
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The construction of [GSV83] gives an explanation for the McKay correspon-
dence. See also [Kn�orrer85] and Section 4. We will show a new way of
understanding the link (the McKay correspondence) in Sections 8{16. Quiv-
ers of �nite type appear in the course of this, which provides a link from (b)
to (d) alongside the link from (b) to (a). This path has already been found
in [Kronheimer89] in a slightly di�erent manner.

For a given pair of II1 factors one can construct a tower of II1 factors by
a certain procedure which specialists call mirror image transformations. In
order to have an ADE classi�cation we had better look at the same tower
construction for a pair of semisimple algebras (semisimple algebras over C
are sums of matrix algebras). In the tower of semisimple algebras the initial
pair N �M is described as a representation of an ADE quiver, while the rest
of the tower is generated automatically from this. Therefore the link between
(d) and (f) is �rmly established, though the subfactors are only possible with
the exception of Dodd and E7. The link between (e) and (f) does not seem to
be perfectly known. See [EK97].

In�nite dimensional Heisenberg/Cli�ord algebras and their representa-
tions on Fock space enter the theory of Hilbert schemes. See [Nakajima96b],
[Grojnowski96] and Section 6. This strongly suggests as yet unrevealed rela-
tions between the theory of Hilbert schemes with modular invariant partitions
and II1 (sub)factors.

The most desirable outcome would be a theory in which all six kinds of
objects (a){(f) arise naturally in various forms from one and the same object,
for instance, from a �nite subgroup of SL(2; C ).

5.2 Problems

The following problems are worth further investigation.

1. What are the Coxeter exponents and the Coxeter number for a �nite
subgroup of SL(2; C ), and why? (It is known that the Coxeter number
equals the largest degree of the three homogeneous generators of the
G-invariant polynomial ring. But why?)

2. What are the multiplicities of the highest weight for (e) and (f)?

3. Why do indices other than Coxeter exponents appear in Table 3 of
Theorem 2.7?

4. The link from (b) to (c)? Can we recover the Lie algebras?

5. The link from (a) to (c)? Can we recover the Lie algebras?

6. The links from (b) to (e) and (f)?
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7. Theorem 2.9 and Theorem 3.3 hint at an ADE classi�cation of c < 1
minimal unitary series. If so, what do they look like? What is the link
from (e) to (f) via this route?

6 Hilbert schemes of n points

6.1 Existence and projectivity

Let X be a projective scheme over C . The n-point Hilbert scheme HilbnX is by
de�nition the universal scheme parametrizing all zero dimensional subschemes
Z � X such that h0(Z;OZ) = dim(OZ) = n. A zero dimensional subscheme
Z 2 HilbnX has a de�ning ideal I � OX that �ts in an exact sequence

0! I ! OX ! OZ ! 0:

Thus set theoretically,

HilbnX = fZ � X; dim(OZ) = ng
' fI � OX ; I an ideal of OX ; dim(OX=I) = ng:

See [Mumford], Lectures 3{4 or Grothendieck [FGA], Expos�e 221 for an
explanation of Hilbert schemes and a general treatment of their universal
properties. A theorem of Grothendieck [FGA], Expos�e 221 guarantees the
existence of Hilbert schemes in a fairly general context; we give an elementary
proof that HilbnX exists and is a projective scheme, following suggestions of
Y. Miyaoka and M. Reid.

Let OX(1) be a very ample invertible sheaf on X de�ning an embedding
X ,! PN , and set OX(m) := OX(1)


m. We prove �rst that HilbnX for �xed
n can be viewed as a subscheme of the Grassmann variety of codimension n
vector subspaces of H0(X;OX(n)).

Lemma 6.2 Let Z � X � PN be a zero dimensional subschemes of degree
n. Then

(i) The restriction map rZ : H
0(OX(m)) ! OZ(m) ' OZ is surjective for

any m � n� 1;

(ii) IOX(m) is generated by it H0 for any m � n.

Proof Write SuppZ = fP1; : : : ; Psg, and degPi Z = ni, so that
P
ni = n.

Now for each Pi, the map

ri : H
0(PN ;O(m))! OPN=m

ni
Pi
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is surjective for any m � ni�1. Moreover, for k � ni, the kernel of ri contains
forms not vanishing at any given point Q 6= Pi. This is obvious, because, if
Pi is taken as the centre of inhomogeneous coordinates, then OPN=m

ni
Pi
is just

the vector space of polynomials of degree � ni�1. Clearly OPN=m
ni
Pi
! OZ;Pi

is also surjective.

The lemma now follows on taking the product of forms of degree � ni. �

Corollary 6.3 Let X be a projective scheme and OX(1) a very ample line
bundle on X. Then HilbnX is a closed subscheme of the Grassmann variety
of codimension n subspaces of H0(OX(n)).

Proof It is not hard to see that a subspace V � H0(OX(n)) of codimension
n generates a subsheaf OX � V = I(n) � OX(n) with dim(OX=I) = n if
and only if the map V 
 H0(OX(1)) ! H0(OX(n + 1)) also has corank n.
(This is the condition that V is closed under multiplication by linear forms.)
This condition clearly de�nes a Zariski closed subscheme of the Grassmann
variety. The alternative proof of the corollary uses the standard 
attening
strati�cations of [Mumford], Lecture 8. �

The construction of HilbnX in Corollary 6.3 makes clear that X�HilbnX
has a sheaf of ideals I de�ning a 0-dimensional subscheme Zn � X HilbnX
satisfying the following universality property, a special case of a theorem of
Grothendieck [FGA], Expos�e 221. We will use this theorem to determine the
precise structure of HilbGX de�ned in Section 8.

Theorem 6.4 (existence and universality of HilbnX) Let X be a projec-
tive scheme and n any positive integer. Then there exists a projective scheme
HilbnX (possibly with �nitely many irreducible components) and a universal
proper 
at family �univ : Z

n ! HilbnX of zero dimensional subschemes of X
such that:

1. any �bre of �univ belongs to HilbnX ;

2. Zn
t = Zn

s if and only if t = s, where Zn
t := ��1univ(t) for t 2 HilbnX ;

3. given any 
at family � : Y ! S of zero dimensional subschemes of X
with length n, there exists a unique morphism ' : S ! HilbnX such that
(Y; �) ' '�(Zn; �univ).

Let U be an open subscheme of X. Then HilbnU is an open subscheme of
HilbnX consisting of the subschemes of X with support contained in U . We
call HilbnU the n-point Hilbert scheme of U .
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6.5 Hilbert{Chow morphism

Write Sn(A 2) for the nth symmetric product of the a�ne plane A 2 . This is
by de�nition the quotient of the products of n copies of A 2 by the natural
permutation action of the symmetric group Sn on n letters. It is the set of
formal sums of n points, in other words, the set of unordered n-tuples of
points.

We call Hilbn(A 2) the Hilbert scheme of n points in A 2 . It is a quasipro-
jective scheme of dimension 2n. Any Z 2 Hilbn(A 2) is a zero dimensional
subscheme with h0(Z;OZ) = dim(OZ) = n. Suppose that Z is reduced.
Then Z is a union of n distinct points. Since being reduced is an open and
generic condition, Hilbn(A 2) contains a Zariski open subset consisting of for-
mal sums of n distinct points. This is why we call Hilbn(A 2) the Hilbert
scheme of n points on A 2 .

We have a natural morphism � from Hilbn(A 2) onto Sn(A 2) de�ned by

� : Z 7!
X

p2Supp(Z)
dim(OZ;p)p

We call � the Hilbert{Chow morphism (of A 2). Let D be the subset of
Sn(A 2) consisting of formal sums of n points with at least two coincident
points. It is clear that � is the identity over Sn(A 2)nD, hence is birational. If
n = 2 and if Z is nonreduced with Supp(Z) the origin, then Z is a subscheme
de�ned by the ideal

I = (ax + by; x2; xy; y2); where (a; b) 6= (0; 0):

Thus the set of these subschemes is P1 parametrizing the ratios a : b. It follows
that Hilb2(A 2) is the quotient by the symmetric group S2 of the blowup of
the nonsingular fourfold A 2 � A 2 along the diagonal A 2 . For all n there is a
relatively simple description, due to Barth, of Hilbn

A 2
as a scheme, in terms of

monads. See [OSS80] and [Nakajima96b], Chapter 2. We write some of these
down explicitly in Sections 12{16.

One of the most remarkable features of Hilbn(A 2) is the following result.

Theorem 6.6 ([Fogarty68]) Hilbn(A 2) is a smooth quasiprojective scheme,
and � : Hilbn(A 2)! Sn(A 2) is a resolution of singularities of the symmetric
product.

A simpler proof of Theorem 6.6 is given in [Nakajima96b]. We note that
smoothness of Hilbn(A 2) is peculiar to dim A 2 = 2. If k � 3, then a subscheme
Z � A k can be very complicated in general [G�ottsche91]. See [Iarrobino77],
[Brian�con77]. [G�ottsche91], p. 60 writes that Hilbn(A k ) is known to be sin-
gular for k � 3 and n � 4, while it is smooth for any k if n = 3. Hilbn(A k ) is
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connected for any n and k by [Fogarty68], while it is reducible, hence singular
for any k and any large n� k by [Iarrobino72].

Besides smoothness, Hilbn(A 2) has various mysterious nice properties.
Among others, the following is relevant to our subsequent study of HilbG(A 2).

Theorem 6.7 ([Beauville83]) Hilbn(A 2) admits a holomorphic symplectic
structure.

Proof See also [Fujiki83] for n = 2, and [Mukai84] for a more general case.
The sketch proof below, mostly taken from [Beauville83], shows that the
theorem also holds for Hilbn(S) if S is a smooth complex surface with a
nowhere vanishing holomorphic two form. Let ! be a nowhere vanishing
closed holomorphic 2-form on S := A 2 , say dx ^ dy in terms of the linear
coordinates on S. The product Sn of n copies of S has the holomorphic 2-
form  :=

Pn
i=1 p

�
i (!), where pi is the ith projection. We show that  induces

a symplectic form on S[n] := Hilbn(S).
We write S(n) = Sn(S) for the nth symmetric product of S, that is, by

de�nition, the quotient of the products of n copies of S by the natural per-
mutation action of the symmetric group Sn on n letters. Let " : Sn ! S(n)

be the natural morphism. Let D� be the open subset of D consisting of all
0-cycles of the form 2x1 + x2 + � � � + xn�1 with all the xi distinct. We set

S
(n)
� := S(n) n (D nD�), S

[n]
� = ��1(S(n)

� ), Sn� := "�1(S(n)
� ) and �� = "�1(D�).

Then �� is smooth and of codimension 2 in S
(n)
� . Then by [Beauville83],

p. 766, S
[n]
� is isomorphic to the quotient of the blowup of Bl��

(S
(n)
� ) of S

(n)
�

along �� by the symmetric group Sn. Hence we have a natural morphism
� : BlD(S

(n)
� ) ! S

[n]
� . We see easily that  induces a holomorphic 2-form '

on S
[n]
� , which extends to S[n] because the codimension of the inverse image

of S[n] n S[n]
� in S [n] is greater than one.

Let E� be the inverse image of �� in Bl��
(S

(n)
� ). Then the canonical

bundle of Bl��
(S

(n)
� ) is E�, because that of Sn is trivial. On the other hand,

it is the sum of the divisor ��('n) and the rami�cation divisor R of �. Since

R = E� on Bl��
(S

(n)
� ), we see that (')n is everywhere nonvanishing on S

[n]
� ,

hence also on S [n] [Beauville83]. Thus ' is a nowhere degenerate 2-form, that
is, a holomorphic symplectic form on S[n]. �

De�nition 6.8 The in�nite dimensional Heisenberg algebra s is by de�nition
the Lie algebra generated by pi, qi for i � 1 and c, subject to the relations

[pi; qj] = c�ij; [pi; pj] = [qi; qj] = [pi; c] = [qi; c] = 0:

It is known that for any a 2 C � , the Lie algebra s has the canonical
commutation relations representation �a on Fock space R := C [x1 ; x2; : : : ],
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that is, the ring of polynomials in in�nitely many indeterminates xi; the
representation is de�ned by

�a(pi) = a
@

@xi
; �a(qi) = xi; �a(c) = a � idR:

We denote this s-module by Ra. We also de�ne a derivation d0 of s by

[d0; qi] = iqi; [d0; pi] = �ipi; [d0; c] = 0:

The following fact is important (see [Kac90], pp. 162{163):

Theorem 6.9 An irreducible s-module with generator v0 is isomorphic to Ra

if pi(v0) = 0 for all i and c(v0) = av0 for some a 6= 0. The character of Ra is
given by

TrRa(q
d0) =

1Y
i=1

(1� qi)�1:

The vector v0 in the above theorem is called a vacuum vector of V . We
quote one of the surprising results of [Nakajima96b].

Theorem 6.10 Let s be the in�nite dimensional Heisenberg algebra. Then
the direct sum of all the cohomology groups

L
n�0H

�(Hilbn(A 2); C ) is an
irreducible s-module with a = 1 whose vacuum vector v0 is a generator of
H0(Hilb0(A 2); C ).

By Theorem 6.9, the above theorem gives in a sense the complete structure
of the s-module. However we should mention that its irreducibility follows
from comparison with the following Theorem 6.11.

[Nakajima96b] derives a similar conclusion when A 2 is replaced by a
smooth quasiprojective complex surface X. Then

L
n�0H

�(Hilbn(X); C ) is
an in�nite dimensional Heisenberg/Cli�ord algebra module. Its irreducibility
again follows from Theorem 6.11.

Cell decompositions of Hilbn(P2) and Hilbn(A 2), and hence complete for-
mulas for the Betti numbers of Hilbn(P2) and Hilbn(A 2), are known by Ellings-
rud and Str�mme [ES87]. The formulas for the Betti numbers of Hilbn(P2)
and Hilbn(A 2) are written by [G�ottsche91] more generally in the following
beautiful manner.

To state the theorem, we de�ne the Poincar�e polynomial p(X; z) of a
smooth complex variety X by p(X; z) :=

P1
i=0 dimH i(X;Q )zi . Moreover we

de�ne p(X; z; t) :=
P1

n=0 p(Hilb
n(X); z)tn for a smooth complex surface X.
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Theorem 6.11 ([G�ottsche91]) Let X be a smooth projective complex sur-
face. Then

p(X; z; t) =
1Y
m=1

(1 + z2m�1tm)b1(X)(1 + z2m+1tm)b3(X)

(1� z2m�2tm)b0(X)(1� z2mtm)b2(X)(1� z2m+2tm)b4(X)
;

where bi(S) is the ith Betti number of S.

7 Three dimensional quotient singularities

7.1 Classi�cation of �nite subgroups of SL(3; C )

Threefold Gorenstein quotient singularities have attracted the attention of
both mathematicians and physicists in connection with Calabi{Yau three-
folds, mirror symmetry and superstring theory. For a �nite subgroup G of
GL(n; C ), the quotient A n=G is Gorenstein if and only if G � SL(n; C ); see
[Khinich76] and [Watanabe74].

Now we review the classi�cation of �nite subgroups of SL(3; C ) from
the very classical works of [Blichfeldt17], and Miller, Blichfeldt and Dick-
son [MBD16]. In these works they nearly completed the classi�cation of �nite
subgroups of SL(3; C ) up to conjugacy. Unfortunately, however, there were
two missing classes, which were supplemented later by Stephen S.-T. Yau and
Y. Yu [YY93], p. 2.

There is an obvious series of �nite subgroups coming from subgroups of
GL(2; C ). In fact, associating (det g)�1 � g to each g 2 GL(2; C ), we have
a �nite subgroup of SL(3; C ) for any subgroup of GL(2; C ). Including this
series, there are exactly four in�nite series of �nite subgroups of SL(3; C ):

1. diagonal Abelian groups;

2. groups coming from �nite subgroups in GL(2; C );

3. groups generated by (1) and T ;

4. groups generated by (3) and Q.

Here

T =

0@0 1 0
0 0 1
1 0 0

1A ; Q =
1p�3

0@1 1 1
1 ! !2

1 !2 !

1A ; where ! := e2�
p�1=3.

There are exactly eight sporadic classes, each of which contains a unique
�nite subgroup up to conjugacy, of order 108, 216, 648, 60, 168, 180, 504 and
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1080 respectively. Only two �nite simple groups appear: A5 (' PSL(2; F5))
of order 60, and PSL(2; F7) of order 168.

The subgroup PSL(2; F7) of SL(3; C ) is the automorphism group of the
Klein quartic curve x30x1 + x31x2 + x32x0 = 0. On the other hand, A5 is
realized as a subgroup of SL(3; C ) as follows. Let G be the binary icosahedral
subgroup of SL(2; C ) of order 120 (compare Section 16). This acts on the
space of polynomials of homogeneous degree two on A 2 , with �1 2 G acting
trivially. Therefore this is an irreducible representation of G=f�1g (' A5)
of rank three. This realizes A5 as a �nite subgroup of SL(3; C ). Or, more
simply, A5 � SO(3) is the group of automorphisms of the icosahedron.

In the case of order 108, the quotient A 3=G is a complete intersection
de�ned by two equations, while it is a hypersurface in the remaining seven
cases. The de�ning equations are completely known; in contrast with the
two dimensional case, they are not all weighted homogeneous. The weighted
homogeneous ones are the cases of order 108, 648, 60, 180 and 1080 [YY93].

All �nite subgroups of GL(2; C ) are known by Behnke and Riemenschnei-
der [BR95]. We note that in the easiest series (1) the quotients are torus em-
beddings. Therefore their smooth resolutions are constructed through torus
embeddings. See [Roan89].

Outstanding in this area is the following theorem, which generalizes the
two dimensional McKay correspondence to some extent.

Theorem 7.2 For any �nite subgroup G of SL(3; C ), there exists a smooth
resolution X of the quotient A 3=G such that the canonical bundle of X is triv-
ial (X is then called a crepant resolution of A 3=G). For any such resolution
X, H�(X;Z) is a free Z-module of rank equal to the number of the conjugacy
classes of G.

[Ito95a], [Ito95b], [Markushevich92], [Roan94] and [Roan96] contribute to
the proof of this theorem. It seems desirable to simplify the proofs for the
complicated sporadic classes. Ito and Reid [IR96] generalized the theorem
and sharpened it especially in dimension three by �nding a bijective cor-
respondence between irreducible exceptional divisors of the resolution and
conjugacy classes of G (called junior) with certain type of eigenvalues: they
de�ned the notion of age of a conjugacy class; the junior conjugacy classes
are those of age equal to one. The junior ones play a more important role in
the study of crepant resolutions.
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8 Hilbert schemes and simple singularities

Introduction

The second half of the article starts here. In it, we study the link from (b) to
(a).

8.1 Abstract

For any �nite subgroup G of SL(2; C ) of order n, we consider the G-orbit
Hilbert scheme, namely, a certain subscheme HilbG(A 2) of Hilbn(A 2) that
parametrizes G-invariant subschemes. We �rst give a direct proof, indepen-
dent of the classi�cation of �nite subgroups of SL(2; C ), that HilbG(A 2) is a
minimal resolution of a simple singularity A 2=G. Any point of the exceptional
set E is a G-invariant 0-dimensional subscheme Z of A 2 with support the ori-
gin. Let I be the ideal sheaf de�ning Z. Then I is an in�nite dimensional
G-module. Dividing it by a natural G-submodule of I gives a �nite G-module
V (I), which turns out to be either an irreducible G-module or the sum of two
inequivalent irreducible G-modules. This gives the McKay correspondence as
described in Section 4.

8.2 Summary of main results

We explain in a little more detail. Let Sn(A 2) be the nth symmetric product of
A 2 (that is, the Chow variety Chown(A 2)), and Hilbn(A 2) the Hilbert scheme
of n points of A 2 . By Theorems 6.6 and 6.7, Hilbn(A 2) is a crepant resolution
of Sn(A 2) with a holomorphic symplectic structure.

Let G be an arbitrary �nite subgroup of SL(2; C ); it acts on A 2 , and
therefore has a canonical action on both Hilbn(A 2) and Sn(A 2). Now we
consider the particular case where n equals the order of G. Then it is easy
to see that the G-�xed point set Sn(A 2)G in Sn(A 2) is isomorphic to the
quotient A 2=G. The G-�xed point set Hilbn(A 2)G in Hilbn(A 2) is always
nonsingular, but could a priori be disconnected. There is however a unique
irreducible component of Hilbn(A 2)G dominating Sn(A 2)G, which we denote
by HilbG(A 2). Since HilbG(A 2) inherits a holomorphic symplectic structure
from Hilbn(A 2), HilbG(A 2) is a crepant (that is, minimal) resolution of A 2=G
(see Theorem 9.3).

Our aim in this part is to study in detail the structure of HilbG(A 2) using
representations of G de�ned in terms of spaces of homogeneous polynomials
or symmetric tensors.

Let m (respectively mS) be the maximal ideal of the origin of A 2 (respec-
tively S := A 2=G) and set n = mSOA 2 . A point p of HilbG(A 2) is aG-invariant
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0-dimensional subscheme Z of A 2 , and to it we associate the G-invariant ideal
subsheaf I de�ning Z, and the exact sequence

0! I ! OA 2 ! OZ ! 0:

We assume that p is in the exceptional set E of HilbG(A 2); since G acts freely
outside the origin, Z is then supported at the origin, and I � m. As is easily
shown, I contains n (Corollary 9.6). Let V (I) := I=(mI + n). The �nite
G-module V (I) is isomorphic to a minimal G-submodule of I=n generating
the OA 2 -module I=n.

If p is a smooth point of E, we prove that V (I) is a nontrivial irreducible
G-module; while if p 2 E is a singular point, V (I) is the direct sum of two
inequivalent nontrivial irreducible G-modules. For any equivalence class of a
nontrivial irreducible G-module � we de�ne the subset E(�) of E consisting
of all I 2 HilbG(A 2) such that V (I) contains � as a G-submodule. We will
see that E(�) is naturally identi�ed with the set of all nontrivial proper G-
submodules of ��2, which is isomorphic to a smooth rational curve by Schur's
lemma (Theorem 10.7). The map � 7! E(�) gives a bijective correspondence
(Theorem 10.4) between the set IrrG of all the equivalence classes of irre-
ducible G-modules and the set IrrE of all the irreducible components of E,
which turns out to be the classical McKay correspondence [McKay80].

We also give an explanation of why it is that tensoring by the natural
representation appears as the key ingredient in the McKay correspondence.
An outline of the story is given in Section 13.5. The most remarkable point,
in addition to the McKay correspondence itself, is that there are two kinds
of dualities (Theorems 10.6 and 12.4) in the G-module decomposition of the
algebra m=n. (After completing the present work, we were informed by Shin-
oda that the dualities also follow from [Steinberg64].) It is the second duality
(for instance, Theorem 10.6) that explains why tensoring by the natural rep-
resentation appears in the McKay correspondence.

Our results hold also in characteristic p provided that the ground �eld k
is algebraically closed and the order of G is coprime to p.

The research part of the article is organized as follows. In Section 9 we
prove that HilbG(A 2) is a crepant (or minimal) resolution of A 2=G. We also
give some elementary lemmas on representations of �nite groups. In Sec-
tion 10 we formulate our main theorem and relevant theorems. We give a
complete description of the ideals corresponding to the points of the excep-
tional set E. In Section 11 we prove the dualities independently of the classi-
�cation of �nite subgroups of SL(2; C ). In Sections 12{16 we study HilbG(A 2)
and prove the main theorem separately in the cases An, Dn, E6, E7 and E8

respectively.

In Section 17, we raise some unsolved questions.
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9 The crepant (minimal) resolution

Lemma 9.1 Let G be a �nite subgroup of GL(2; C ), and Hilbn(A 2)G the
subset of Hilbn(A 2) consisting of all points �xed by G. Then Hilbn(A 2)G is
nonsingular.

Proof By Theorem 6.6, Hilbn(A 2) is nonsingular. Let p be a point of
Hilbn(A 2)G. The action of G on Hilbn(A 2) at p is linearized; in other words
we see that there exist local parameters xi of Hilb

n(A 2) at p and some con-
stants aij(g) 2 C such that g�xi =

P
aij(g)xj for any g 2 G. The �xed locus

Hilbn(A 2)G at p is by de�nition the reduced subscheme of Hilbn(A 2)G de�ned
by xi �

P
aij(g)xj = 0 for all g 2 G. Hence it is nonsingular. �

Lemma 9.2 Let G be a �nite subgroup of SL(2; C ) of order n, and Sn(A 2)G

the subset of Sn(A 2) consisting of all points of Sn(A 2) �xed by G. Then
Sn(A 2)G ' A 2=G.

Proof Let 0 6= q 2 A 2 be a point. Then since q is not �xed by any element
of G other than the identity, the set G � q := fg(q); g 2 Gg determines
a point in Sn(A 2)G. Conversely, any point of Sn(A 2)G is an unordered G-
invariant set � in A 2 . If � contains a point q 6= 0, it must contain the set
G � q. Since j�j = n = jGj, we have � = G � q. Note G � q = G � q0 for
a pair of points q; q0 6= 0 if and only if q0 2 G � q. Therefore we have the
isomorphism Sn(A 2 n f0g)G ' (A 2 n f0g)=G, which extends naturally to a
bijective morphism of Sn(A 2)G onto A 2=G. It follows that Sn(A 2)G ' A 2=G
because A 2=G is normal. �

Theorem 9.3 Let G � SL(2; C ) be a �nite subgroup of order n. Then there
is a unique irreducible component HilbG(A 2) of Hilbn(A 2)G dominating A 2=G,
which is a crepant (or equivalently a minimal) resolution of A 2=G.

Proof The Hilbert{Chow morphism of Hilbn(A 2) onto Sn(A 2) is de�ned
by �(Z) = Supp(Z) (counted with the appropriate multiplicities) for a zero
dimensional subscheme Z of A 2 . Since Hilbn(P2) is a projective scheme by
Theorem 6.4, the Hilbert{Chow morphism of Hilbn(P2) is proper. Hence
the Hilbert{Chow morphism of Hilbn(A 2) is proper, because it is obtained
by restricting the image variety Sn(P2) to Sn(A 2). This induces a natural
morphism of HilbG(A 2) onto Sn(A 2)G ' A 2=G. Any point of Sn(A 2)Gnf0g is a
G-orbit of a point 0 6= p 2 A 2 , which is a reduced zero dimensional subscheme
invariant under G. It follows that HilbG(A 2) is birationally equivalent to
Sn(A 2)G, so that it is a resolution of Sn(A 2)G ' A 2=G.
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By [Fujiki83], Proposition 2.6, HilbG(A 2) inherits a canonical holomorphic
symplectic structure from Hilb(A 2). Since dimHilbG(A 2) = dim A 2=G = 2,
this implies that the dualizing sheaf of HilbG(A 2) is trivial. This completes
the proof. �

Lemma 9.4 Let G be a �nite subgroup of GL(n; C ). Let S be a connected
reduced scheme, and I an ideal of OA n�S such that OAn�S=I is 
at over S.
Let Is := I 
 OA n�fsg. Suppose that we are given a regular action of G on
A n � S possibly depending nontrivially on S. If dimSupp(OAn�fsg=Is) = 0
for any s 2 S, then the equivalence class of the G-module OAn�fsg=Is is
independent of s.

Proof By the assumption h1(OAn�fsg=Is) = 0. Therefore h0(OAn�fsg=Is) is
constant on S because �(OAn�fsg=Is) is constant by [Hartshorne77], Chap. III.
Hence again by [ibid.] OAn�S=I is a locally free sheaf of OS-modules of �nite
rank. Let E := OAn�S=I and �(g; x) := det(x � id � T (g)) be the charac-
teristic polynomial of the action T (g) of g 2 G on E. Clearly �(g; x) is
independent of a local trivialization of the sheaf E. It follows that �(g; x) 2
Hom(detE; detE)[x] ' �(OS)[x], the polynomial ring of x over �(OS). More-
over coe�cients of the polynomial �(g; x) in x are elementary symmetric
polynomials of eigenvalues of T (g). Since all the eigenvalues of T (g) are nth
roots of unity where n = jGj, coe�cients of �(g; x) take values in a �nite
subset of C over S. Since S is connected and reduced, they are constant. It
follows that �(g; x) 2 C [x]. In particular the character TrT (g), the coe�-
cient of x in �(g; x) is independent of s 2 S. Since any �nite G-module is
uniquely determined up to equivalence by its character, the equivalence class
of the G-module OAn�fsg=Is is independent of s 2 S. �

Corollary 9.5 Let G be a �nite subgroup of SL(2; C ), and I an ideal of
OA 2 with I 2 HilbG(A 2). Then as G-modules OA 2 =I ' C [G], the regular
representation of G.

Corollary 9.6 Let I be an ideal of OA 2 with I 2 HilbG(A 2). Any G-invariant
function vanishing at the origin is contained in I.

Proof OA 2=I ' C [G] by Corollary 9.5. This implies that OA 2 =I has a
unique trivial G-submodule spanned by constant functions of A 2 . It follows
that any G-invariant function vanishing at the origin is contained in I. �

Remark 9.7 By [Nakajima96b], Theorem 4.4, for I 2 Hilbn(A 2), the follow-
ing conditions are equivalent,
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1. I 2 HilbG(A 2);

2. OA 2 =I ' C [G];

3. HomO
A2
(I;OA 2 =I)

G 6= 0.

10 The Main Theorem

10.1 Strati�cation of HilbG(A 2) by IrrG

Let G be a �nite subgroup of SL(2; C ). As in 4.2, we write IrrG for the set of
all the equivalence classes of nontrivial irreducible G-modules, and Irr�G for
the union of IrrG and the trivial one dimensionalG-module. Let V (�) 2 IrrG
be a G-module, and � : G! GL(V (�)) the corresponding homomorphism.

Let X = XG := HilbG(A 2) and S = SG := A 2=G. Write m (respectively
mS) for the maximal ideal of A 2 (respectively S) at the origin 0, and set
n := mSOA 2 . Let � : X ! S be the natural morphism and E the exceptional
set of �. Let IrrE be the set of irreducible components of E. Any I 2 X
contained in E (to be exact, the subscheme de�ned by I belongs to X) is a
G-invariant ideal of OA 2 which contains n by Corollary 9.6. For any �, �0,
and �00 2 IrrG, we de�ne

V (I) := I=(mI + n);

E(�) :=
�
I 2 HilbG(A 2);V (I) � V (�)

	
;

P (�; �0) :=
�
I 2 HilbG(A 2);V (I) � V (�)� V (�0)

	
;

Q(�; �0; �00) :=
�
I 2 HilbG(A 2);V (I) � V (�)� V (�0)� V (�00)

	
:

Remark 10.2 Note that we allow � = �0 in the de�nition of P (�; �0). Of
course if � 6= �0, then P (�; �0) = E(�) \ E(�0).

De�nition 10.3 Two irreducible G-modules � and �0 are said to be adjacent
if �
 �

nat
contains �0, which happens if and only if �0 
 �

nat
contains �.

In fact, since G � SL(2; C ), we have �
nat
(x�1) = �

nat
(x) for all x 2 G

where �
nat

:= Tr(�
nat
). Hence for any characters � and �0 of G

(��
nat
; �0) = (1=jGj)

X
x2G

�(x)�
nat
(x)�0(x�1) = (�; �0�

nat
):

Thus the multiplicity of �0 in �
 �
nat

equals that of � in �0 
 �
nat
.

The Dynkin diagram �(IrrG) or the extended Dynkin diagram �(Irr�G)
of G is the graph whose vertices are IrrG or Irr�G respectively, with � and
�0 joined by a simple edge if and only if � and �0 are adjacent.
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@@ v v : : : v��
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v
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v��

v v : : : v��
v

@@v�01
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�0n
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v

v

v v
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eE8 v v v

v

v v v v v

�02 �04

�003

�6 �5 �4 �3 �2 �0

Figure 5: The extended Dynkin diagrams and representations

Then our main theorem is stated as follows.

Theorem 10.4 Let G be a �nite subgroup of SL(2; C ). Then

1. the map � 7! E(�) is a bijective correspondence between IrrG and IrrE;

2. E(�) is a smooth rational curve with E(�)2 = �2 for any � 2 IrrG;

3. P (�; �0) 6= ; if and only if � and �0 are adjacent. In this case P (�; �0) is a
single (reduced) point, at which E(�) and E(�0) intersect transversally;

4. P (�; �) = Q(�; �0; �00) = ; for any �; �0; �00 2 IrrG.

In the An case, Theorem 10.4 follows from Theorem 9.3 and the theorems
in Section 12; in the other cases, it follows from Theorem 9.3, Theorem 10.7
and Remark 10.8.

By Theorem 10.4, (3), �(IrrG) is the same thing as the dual graph �(IrrE)
of E, in other words, the Dynkin diagram of the singularity SG. Let h be the
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Coxeter number of �(IrrE). We also call h the Coxeter number of G. See
Table 2 and Section 11.1.

We de�ne nonnegative integers d(�) for any � 2 IrrG as follows. If G
is cyclic, choose a character � of G such that �nat = � � ��1, and de�ne
e(�k) = k, d(�k) = jn+1

2
�kj. Although there are two choices of the generator

�, the de�nition of the pair
�
h
2
� d(�); h

2
+ d(�)

�
=
�
e(�); n + 1 � e(�)

�
is

independent of the choice. If G is not cyclic, then �(IrrG) is star-shaped
with a unique centre. For any � 2 IrrG, we de�ne d(�) to be the distance
from the vertex � to the centre. It is obvious that d(�) = d(�0) � 1 if � and
�0 2 IrrG are adjacent. Also in the cyclic case if we de�ne the centre to be
the midpoint of the graph, then d(�) is the distance from the centre.

For any positive integer m let Sm := Sm(�nat) be the symmetric m-tensors
of �nat, that is, the space of homogeneous polynomials of degree m. We say
that a G-submodule W of m=n is homogeneous of degree m if it is generated
over C by homogeneous polynomials of degree m.

The G-module m=n splits as a direct sum of irreducible homogeneous G-
modules. IfW is a direct sum of homogeneous G-submodules, then we denote
the homogeneous part of W of degree m by Sm(W ). For any G-moduleW in
some Sm(m=n), we write Sj �W for the G-submodule of Sm+j(m=n) generated
over C by the products of Sj(m=n) and W . We denote by W [�] the � factor
of W , that is, the sum of all the copies of � in W ; and similarly, we denote
by [W : �] the multiplicity of � 2 IrrG in a G-module W .

We de�ne

SMcKay(m=n) =
X
�2IrrG

Sh
2
�d(�)(m=n)[�]:

Theorem 10.5 (First duality theorem) Let G be any �nite subgroup of
SL(2; C ) and h its Coxeter number. Then as G-modules, we have

1. m=n =
P

�2IrrG 2(deg �)�;

2. SMcKay(m=n) '
P

�2IrrG 2�;

3. Sh
2
�k(m=n) ' Sh

2
+k(m=n) for any k;

4. Sk(m=n) = 0 for k � h.

Theorem 10.6 (Second duality theorem) Assume that G is not cyclic.
Let h be the Coxeter number of G and Vh

2
�d(�)(�) := Sh

2
�d(�)(m=n)[�] for any

� 2 IrrG. Then

1. Vh
2
�d(�)(�) ' Vh

2
+d(�)(�) ' ��2 or � if d(�) = 0, respectively d(�) � 1.
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2. If � and �0 are adjacent with d(�0) = d(�) + 1 � 2, then

Vh
2
�d(�)(�) = fS1 � Vh

2
�d(�0)(�

0)g[�];
and Vh

2
+d(�0)(�

0) = fS1 � Vh
2
+d(�)(�)g[�0]:

3. If d(�) = 0, we write �i 2 IrrG for i = 1; 2; 3 for the three irreducible
representations adjacent to �; then

fS1 � Vh
2
�1(�i)g[�] ' �;

Vh
2
+1(�i) = fS1 � Vh

2
(�)g[�i] ' �i for i = 1; 2; 3; and

Vh
2
(�) = fS1 � Vh

2
�1(�i)g[�] + fS1 � Vh

2
�1(�j)g[�] ' ��2 for i 6= j.

See Section 11 for the proof of Theorems 10.5{10.6. It is the detailed form
of the duality in Theorems 10.6 and 12.4 that we need for the explanation of
the McKay observation in Section 13.5.

The exceptional sets of HilbG(A 2) are described in Theorems 10.7 and
12.3.

Theorem 10.7 Assume that G is not cyclic.

1. Assume that � is one of the endpoints of the Dynkin diagram. Then

I 2 E(�) n
�S

�0 P (�; �
0)
�
if and only if V (I) is a nonzero irreducible

G-submodule (' �) of Vh
2
�d(�)(�)�Vh

2
+d(�)(�) di�erent from Vh

2
+d(�)(�).

2. Assume d(�) � 1 and that � is not one of the endpoints of the Dynkin

diagram. Then I 2 E(�)n
�S

�0 P (�; �
0)
�
if and only if V (I) is a nonzero

irreducible G-submodule (' �) of Vh
2
�d(�)(�)�Vh

2
+d(�)(�) di�erent from

Vh
2
�d(�)(�) and Vh

2
+d(�)(�).

3. Let � and �0 be an adjacent pair with d(�0) = d(�) + 1 � 2. Then
I 2 P (�; �0) if and only if

V (I) = Vh
2
�d(�)(�)� Vh

2
+d(�0)(�

0):

We de�ne the latter to be W (�; �0).

4. Assume d(�) = 0.

(a) I 2 E(�) n
�S

�0 P (�; �
0)
�
if and only if V (I) is a nonzero irre-

ducible G-module of Vh
2
(�) di�erent from fS1 �Vh

2
�1(�

0)g[�] for any
�0 adjacent to � where we note that Vh

2
(�) ' ��2.



210 Hilbert schemes and simple singularities

(b) I 2 P (�; �0) 6= ; if and only if

V (I) = fS1 � Vh
2
�1(�

0)g[�]� Vh
2
+1(�

0):

We de�ne the latter to be W (�; �0).

The proofs of Theorems 10.4{10.7 are given in Sections 12{16 in the re-
spective cases.

Remark 10.8 One can recover I from V (I) by de�ning I = V (I)OA 2+n. By
Theorem 10.7, the curve E(�) is identi�ed with P(�� �) ' P1, the projective
space of nontrivial proper G-submodules � in �� �.

Remark 10.9 The relations in Theorem 10.6, (2){(3) as well as the following
observation explain why tensoring by �nat enters the McKay correspondence.
We observe

W (�; �0) = Vh
2
�d(�)(�)� Vh

2
+d(�0)(�

0) for d(�) � 1; d(�0) = d(�) + 1

= fS1 � Vh
2
�d(�0)(�

0)g[�]� Vh
2
+d(�0)(�

0)

= Vh
2
�d(�)(�)� fS1 � Vh

2
+d(�)(�)g[�0];

W (�; �0) = fS1 � Vh
2
�1(�

0)g[�]� Vh
2
+1(�

0) for d(�) = 0; d(�0) = 1

= fS1 � Vh
2
�1(�

0)g[�]� fS1 � Vh
2
(�)g[�0]:

11 Duality

11.1 Degrees of homogeneous generators

Let G be a noncyclic �nite subgroup of SL(2; C ). In this section we prove
Theorem 10.5, (3) and (4). Also assuming Theorem 10.6, (1) we prove Theo-
rem 10.6, (2) and the �rst half of (3). Theorem 10.5, (2) follows readily from
Theorem 10.6, (1). It remains to prove Theorem 10.5, (1), Theorem 10.6, (1)
and the second half of (3), which we prove by case by case examinations in
Sections 13{16. The cyclic case is treated in Section 12.

There are three G-invariant homogeneous polynomials 'i for i = 1; 2; 3
which generate the ring of all G-invariant polynomials. Let di := deg'i. We
may assume that d1 � d2 � deg d3 = h, where h is the Coxeter number
of G. We know that d1 + d2 = d3 + 2. We note that the triple di can
computed without using the classi�cation of G, using instead the method
of [Pinkham80]. See Section 4, Table 4 for the values of the di. We set
Sm := Sm(m=n).

Lemma 11.2 Sm 6= 0 for 1 � m � h� 1 and Sm = 0 for m � h.
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Proof Choosing suitable 'i, we may assume that the quotient space A 2=G
is de�ned by one of the equations '23 = F ('1; '2) given in 1.1. See [Klein] and
[Pinkham80]. We also see h = deg'3 = deg'1 + deg'2 � 2 by [Pinkham80].
Now we prove that '1 and '2 have no common factors as polynomials in x
and y. For otherwise, there is ' 2 C [x; y] such that deg' < d1, and ' divides
'i. Therefore ' also divides '3, because of the relation '

2
3 = F ('1; '2). This

implies that the one dimensional subscheme of A 2 de�ned by ' = 0 is mapped
to the origin of A 2=G. This contradicts that A 2 is �nite over A 2=G.

Thus '1 and '2 have no common factors. Hence '1Sm�d1 \ '2Sm�d2 =
'1'2Sm�d1�d2 = 0 for m � h. It follows that dimSm = dimSm�dimSm�d1�
dimSm�d2 for m < h, and thus

dimSm =

8><>:
m + 1 for 1 � m � d1 � 1,

d1 for d1 � m � d2 � 1,

d1 + d2 �m� 1 for d2 � m � d3 � 1.

Similarly we have

dimSh = dimSh=C '3 � dimSh�d1 � dimSh�d2
= h� (h+ 1� d1)� (h+ 1� d2) = d1 + d2 � h� 2 = 0:

�

Corollary 11.3 dimm=n = d1d2 � 2 = 2jGj � 2.

This corollary is not used elsewhere.

Proof The �rst equality is clear from the proof of Lemma 11.2. The second
d1d2 = 2jGj follows from the classi�cation of G. �

11.4 The bilinear form (f; g) on m=n

Let f; g 2 m be homogeneous. Then we de�ne a bilinear form (f; g) as follows.
First we de�ne (f; g) = 0 if deg(f)+deg(g) 6= h. If deg(f)+deg(g) = h, then
in view of Lemma 11.2 we can express fg as a linear combination of 'i with
coe�cients in OA 2 , say fg = a1'1+a2'2+a3'3 where ai is homogeneous and
a3 is a constant. We de�ne

(f; g) := a3:

This is well de�ned. In fact, assume that fg = b1'1 + b2'2 + b3'3. Then we
have (a3� b3)'3 = (b1� a1)'1+(b2� a2)'2. By the proof of Lemma 11.2, '3
is not a linear combination of '1 and '2 with coe�cients in OA 2 . It follows
that a3 = b3. Moreover if either f 2 n or g 2 n, then (f; g) = 0. Therefore
the bilinear form is well de�ned on m=n.
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Lemma 11.5 1. (fg; h) = (f; gh) for all f; g; h 2 m;

2. (f; g) = (��(f); ��(g)) and (��(f); g) = (f; (��1)�(g)) for all f; g 2 m,
and all � 2 G;

3. ( ; ) : f � g 7! (f; g) is a nondegenerate bilinear form on m=n.

Proof (1) and (2) are clear. We prove (3). For it, we prove the following
claim.

Claim 11.6 Let f(x; y) be a homogeneous polynomial of degree p < h. If
xf(x; y) = yf(x; y) = 0 in m=n, then f(x; y) = 0 in m=n.

In fact, by the assumption, there exist homogeneous ai and bi 2 m such
that xf = a1'1 + a2'2 and yf = b1'1 + b2'2. Hence we have

(ya1 � xb1)'1 + (ya2 � xb2)'2 = 0:

We see that deg(yai�xbi) = p+2�di < h+2�di � d1+d2�di for i = 1; 2,
because h + 2 = d1 + d2. Meanwhile '1 and '2 have no nontrivial common
factors. It follows that yai � xbi = 0. This implies that x j ai and y j bi.
Hence f = 0 in m=n. �

We now proceed with the proof of Lemma 11.5, (3). Let f 2 m be homo-
geneous. Assume that (f; g) = 0 for any g 2 m=n. We prove that f = 0 inm=n
by descending induction on p := deg f . If p = h�1, then f = 0 by Claim 11.6.
Assume p < h � 1. By the assumption, we get (xf; g) = (f; xg) = 0 and
(yf; g) = (f; yg) = 0 for any g 2 m=n. By the induction hypothesis, xf = 0
and yf = 0 in m=n. Then by Claim 11.6 we have f = 0 in m=n. �

Lemma 11.7 Let V be a G-submodule of S(h=2)�k, and V � a G-submodule
of S(h=2)+k dual to V with respect to the bilinear form ( ; ), in the sense that
( ; ) de�nes a perfect pairing between V and V �. Then V is isomorphic to
the complex conjugate of V � as G-modules.

Proof Let V c be an arbitrary G-module of S(h=2)�k complementary to V .
Then we de�ne V � to be the orthogonal complement in S(h=2)+k to V c. By
Lemma 11.5, (2), ��(V �) � V � for any � 2 G. Moreover by Lemma 11.5, (2)
Tr(��jV ) = Tr((��1)�jV �), which is equal to the complex conjugate of Tr(��jV �)

because any eigenvalue of Tr(��jV �) is a root of unity. Although the de�nition
of V � depends on the choice of V c, we always have V ' the complex conjugate
of V �. �
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Corollary 11.8 Let V , V 0 be G-submodules of m=n. If V and the complex
conjugate of V 0 are not isomorphic as G-modules, then V and V 0 are orthog-
onal.

Lemma 11.9 Let � and �0 be equivalence classes of irreducible G-modules
with � 6= �0. Let V ' � and W ' �0 be G-submodules in S(h=2)�k and
S(h=2)�k+1 respectively, and W � ' (�0)� a dual to W in S(h=2)+k�1. If W �
S1 �V , there is a G-submodule V � of S1 �W � dual to V . If [�nat
(�0)� : �] = 1,
then V � is uniquely determined.

Proof Let V c and W c be (homogeneous) complementary G-submodules to
V and W respectively. Thus by de�nition,

V � V c = S(h=2)�k and W �W c = S(h=2)�k+1:

Let W � be the orthogonal complement to W c in S(h=2)+k�1 with respect to
( ; ). If W � S1V , then there exists g; h 2 V such that xg + yh 2 W . By
Lemma 11.5, (3), there exists f � 2 W � such that (f �; xg+yh) 6= 0 so that we
�rst assume that (xf �; g) = (f �; xg) 6= 0. Let U be a minimalG-submodule of
m=n containing xf �. Then U contains V � dual to V by Lemma 11.5, (3) and
(xf �; g) 6= 0. Obviously V � � S1W

� and V � ' the complex conjugate of V
by Lemma 11.7. If [S1 � W � : �0] � [�nat 
 (�0)� : �] = 1, then uniqueness
of V � is clear. If (yf �; g) = (f �; yg) 6= 0, then we see the same by the same
argument. �

Remark 11.10 For any �00 2 IrrG, �nat 
 �00 is a sum of G-submodules with
multiplicity one [McKay80] (recall that G � SL(2; C )), so that � has multi-
plicity at most one in S1 �W �. Therefore the dual V � is uniquely determined
and it is the orthogonal complement of V c in (S1 �W �) \ S(h=2)+k�1.

Lemma 11.9 implies the following. In the case of E6, since

S1 � S3[�
0
2] = S4[�

0
1] + S4[�3] and S1 � S3[�

00
2] = S4[�

00
1] + S4[�3];

we have S1�S8[�
0
1] = S9[�

0
2], S1�S8[�

00
1] = S9[�

00
2] and S1�S8[�3] = S9[�

0
2]+S9[�

0
2],

and vice versa. See Section 14.

11.11 Partial proofs of Theorems 10.5 and 10.6.

Since TrSk is real for any k, Sk contains any G-module and its complex con-
jugate with equal multiplicities. Theorem 10.5, (3) is clear from Lemma 11.5,
(3) and Lemma 11.7. Theorem 10.5, (4) follows from Lemma 11.2. Theo-
rem 10.6, (2) as well as the �rst half of (3) are clear from Lemma 11.9.
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12 The cyclic groups An

12.1 Characters

Let x; y be coordinates on A 2 and m = (x; y) be the maximal ideal of A 2 at
the origin. Let G be the cyclic group of order n + 1 with generator �. Let "
be a primitive (n + 1)st root of unity. We de�ne the action of the generator
� on C 2 by (x; y) 7! (x; y)� = ("x; "�1y). The simple singularity of type An
is the quotient SG = A 2=G. Let mS be the maximal ideal of SG at the origin
and n := mSOA 2 .

The Coxeter number h of An is equal to n + 1. Let �0 be the trivial
character, and �i for 1 � i � n the character with �i(�) = "i. Then e(�i) = i
and h� e(�i) = n + 1� i.

Lemma 12.2 Any I 2 HilbG(A 2) is one of the following ideals of colength
n+ 1:

I(�) :=
Y
p2�

mp = (xn+1 � an+1; xy � ab; yn+1 � bn+1);

where � = G � (a; b) is a G-orbit of A 2 disjoint from the origin; or

Ii(pi : qi) := (pix
i � qiy

n+1�i; xy; xi+1; yn+2�i);

for some 1 � i � n and some [pi; qi] 2 P1.

Proof Let I 2 HilbG(A 2) with I � m. Then by Corollary 9.5, OA 2 =I '
C [G] 'Ln

i=0 �i as G-modules. Thanks to Corollary 9.6, we de�ne N := m=n
and M := I=n, and for each i 6= 0, let M [�i] and N [�i] be the �i-part of
M , respectively N . Then N [�i] ' ��2i , spanned by xi and yn+1�i, while
M [�i] ' �i for all i 6= 0. It follows that for each i, there exists [pi; qi] 2 P1

such that pix
i � qiy

n+1�i 2 M . If piqi 6= 0 for some i, then setting u :=
pix

i � qiy
n+1�i, we have M = (u) + n=n and I = (u; xy) where i is obviously

uniquely determined by I. If M contains no pix
i � qiy

n+1�i with piqi 6= 0 for
any i, then I = (xj; yn+2�j; xy) for some j. �

Theorem 12.3 Let a and b be the parameters of A 2 on which the group G
acts by g(a; b) = ("a; "�1b).

Let S = A 2=G := Spec C [an+1 ; ab; bn+1] and eS ! S its toric minimal
resolution, with a�ne charts Ui de�ned by

Ui := Spec C [si ; ti] for 1 � i � n+ 1,

where si := ai=bn+1�i and ti := bn+2�i=ai�1. Then the isomorphism of eS
with HilbG(A 2) is given by (the morphism de�ned by the universal property of
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Hilbn(A 2) from) two dimensional 
at families of subschemes de�ned by the
G-invariant ideals of OA 2

Ii(si; ti) := (xi � siy
n+1�i; xy � siti; y

n+2�i � tix
i�1)

for 1 � i � n+ 1.

Proof Note �rst that Ii(si; 0) = Ii(1 : si) and Ii(0; ti) = Ii�1(ti : 1) for
i � 2.

If ab = siti 6= 0, we see Ii(si; ti) = (xn+1 � an+1; xy � ab; yn+1 � bn+1).
In fact, let p = (a; b) 6= (0; 0) 2 A 2 and � := fp � g; g 2 Gg. It is clear that
Ii(si; ti) � mp so that Ii(si; ti) � I� by the G-invariance of Ii(si; ti). Since
the colengths of Ii(si; ti) and I� in OA 2 are equal to n + 1, Ii(si; ti) = I� =
(xn+1 � an+1; xy � ab; yn+1 � bn+1).

By the universality of Hilbn(A 2) and by Lemma 12.2, we have a �nite

birational morphism of eS onto a smooth surface HilbG(A 2). It follows thateS ' HilbG(A 2). �

Theorem 12.4 (Duality for An) Assume that G is cyclic. Then for any
� 2 IrrG there exists a unique pair V +

e(�)(�) and V
�
n+1�e(�)(�) of homogeneous

G-submodules of Se(�)(m=n)[�] and Sn+1�e(�)(m=n)[�] such that

1. V +
e(�)(�) ' V �n+1�e(�)(�) ' �, and

2. if � and �0 are adjacent with e(�) = e(�0) + 1, then

V +
e(�)(�) = fS1 � V +

e(�0)(�
0)g[�]; V �n+1�e(�0)(�

0) = fS1 � V �n+1�e(�)(�)g[�0]:

Proof First we prove uniqueness of V �j (�). Since S1 = �1 � �n, we have
unique choices V +

1 (�1) = S1[�1] = fxg and V �
1 (�n) = S1[�n] = fyg. Then we

have

V +
i+1(�i+1) = fS1 � V +

i (�i)g[�i+1] = fxi+1g
V �n+1�i(�i) = fS1 � V �

n�i(�i+1)[�i] = fyn+1�ig:

In fact, this follows from (2) by induction. This proves Theorem 12.4. �

Theorem 10.4 for G cyclic follows from setting E(�i) = Ei. There is a way
of understanding Ii(pi; qi) similar to that of Theorem 10.7.
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13 The binary dihedral groups Dn

13.1 Binary dihedral group

Let G be the subgroup of SL(2; C ) of order 4n� 8 generated by two elements
� and � :

� =

�
"; 0
0; "�1

�
; � =

�
0; 1
�1; 0

�
;

where " is a primitive ` := (2n� 4)th root of unity. Then we have

�2n�4 = 1; � 4 = 1; �n�2 = � 2; ����1 = ��1:

The group G is called the binary dihedral group D n�2 . The Coxeter number
h of Dn is equal to 2n� 2. See Table 6 for the characters of Dn.

G acts on A 2 from the right by (x; y) 7! (x; y)g for g 2 G. The ring of
all G-invariant polynomials is generated by x`+ y`, xy(x`� y`) and x2y2. By
Theorem 9.3, XG := HilbG(A 2) is a minimal resolution of SG := A 2=G with
a simple singularity of type Dn.

Remark 13.2 We note that if we let H be the (normal) subgroup of G
generated by � and N := G=H, N acts on HilbH(A 2) so that we have a
minimal resolution HilbN(HilbH(A 2))(' XG) of SG.

13.3 Symmetric tensors modulo n

Recall ` := 2n�4. Let Sm be the space of symmetric m-tensors of �nat := �2,
that is, the space of homogeneous polynomials of degree m and Sm the images
of Sm in m=n. They decompose into irreducible G-modules as follows. Let
�1 := �00 + �01, �n�1 := �0n�1 + �0n and �k := �j if k � j mod 2n� 4. Then we
have

Sm =

8><>:
�00 + �3 + �5 + � � �+ �m�1 + �m+1 for m � 0 mod 4,

�01 + �3 + �5 + � � �+ �m�1 + �m+1 for m � 2 mod 4,

�2 + �4 + �6 + � � �+ �m�1 + �m+1 for m � 1; 3 mod 4.

13.4

By Table 7 we see that m=n ' (C [G]	�0)�2. This isomorphism is realized by
giving G-submodules 2�0i for i = 1; n�1; n and 4�i for 2 � i � n�2 explicitly
as follows. We de�ne a G-submodule of m=n by �Vi(�j) := Si(m=n)[�j ], and
de�ne Vi(�j) to be aG-submodule of Si such that Vi(�j) ' �Vi(�j) and Vi(�j) �



Y. Ito and I. Nakamura 217

� 1 � � d (h
2
� d)

�00 1 1 1 (n� 3) {

�01 1 1 �1 n� 3 (2; `)

�2 2 "+ "�1 0 n� 4 (3; `� 1)

�k 2 "k�1 + "�(k�1) 0 n� 2� k (k + 1; `+ 1� k)

�n�2 2 "n�3 + "�(n�3) 0 0 (n� 1; n� 1)

�0n�1 1 �1 in 1 (n� 2; n)

�0n 1 �1 �in 1 (n� 2; n)

Table 6: Character table of Dn

m Sm m Sm

0 0 `+ 2 0

1 �2 `+ 1 �2

2 �01 + �3 ` �01 + �3

3 �2 + �4 `� 1 �2 + �4

: : : : : : : : : : : :

k �k�1 + �k+1 `� k + 2 �k�1 + �k+1

n� 2 �n�3 + �0n�1 + �0n n �n�3 + �0n�1 + �0n
n� 1 2�n�2

Table 7: Irreducible decompositions of Sm(Dn)

V2(�
0
1) xy V`(�

0
1) x` � y`

: : : : : : : : : : : :

Vk�1(�k) xk�1; yk�1 Vk+1(�k) xky; xyk

V`�k+1(�k) x`�k+1; y`�k+1 V`�k+3(�k) x`�k+2y; xy`�k+2

: : : : : : : : : : : :

Vn�3(�n�2) xn�3; yn�3 Vn+1(�n�2) xny; xyn

Vn�1(�n�2) xn�1; yn�1; xn�2y; xyn�2

V 0
n�1(�n�2) xn�1; yn�1 V 00n�1(�n�2) xn�2y; xyn�2

Vn�2(�0n�1) xn�2 � inyn�2 Vn(�
0
n�1) xy(xn�2 + inyn�2)

Vn�2(�0n) xn�2 + inyn�2 Vn(�
0
n) xy(xn�2 � inyn�2)

Table 8: Vm(�)(Dn)
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�Vi(�j) mod n. We use Vi(�j) and �Vi(�j) interchangeably whenever this is
harmless. We see easily that Vi(�j) ' �j or 0 except for (i; j) = (n�1; n�2),
while Vn�1(�n�2) ' ��2n�2. We list the nonzero G-submodules of m=n.

It is easy to see that n is generated by x` + y`, (x` � y`)xy and x2y2.
We also note that x`+2; y`+2 2 n and that m=n is spanned by xi, yi, xiy and
xyi for 1 � i � ` with the single relation x` + y` � 0 mod n. Hence we
see easily that m=n is the sum of the above Vi(�j). It follows that m=n 'P

�2IrrG 2 deg(�)� ' (C [G] 	 �0)
�2.

13.5 A sketch for D5

Before starting on the general case, we sketch the case of D5 without rigorous
proofs. First we recall

V2(�
0
1) = fxyg; V6(�

0
1) = fx6 � y6g;

V3(�2) = fx2y; xy2g; V5(�2) = fx5; y5g:
We consider the case I(W ) 2 E(�01) n P (�01; �2). Let I(W ) := WOA 2 + n

for any nonzero G-module W 2 P(V2(�
0
1) + V6(�

0
1)) = P(fxy; x6 � y6g) such

that W 6= V6(�
0
1), that is, W 6= fx6 � y6g. Then we see that

I(W )=n = W +
5X

k=1

SkW + n=n =W +
5X

k=1

SkV2(�
0
1) + n=n

' W + �2 + �3 + (�04 + �05) + �3 + �2 '
X
�2IrrG

deg(�)�:

Thus I(W ) 2 HilbG(A 2). It is clear that V (I(W )) := I(W )=mI(W ) + n '
W ' �01. It follows that I(W ) 2 E(�01) n P (�01; �2). Hence we have

lim
W!V6(�01)

I(W ) = V6(�
0
1) +

X
k�1

SkV2(�
0
1)

= I(V6(�01)� S1V2(�
0
1)) = I(V6(�01)� V3(�2)) 2 P (�01; �2);

where S1 
 V2(�
0
1) ' S1V2(�

0
1) ' V3(�2) ' �2. The factor S1 
 V2(�

0
1) '

�2 among generators of P (�01; �2) explains the relation between tensoring by
S1 ' �2 and the intersection of E(�01) with E(�2) in McKay's observation.

Next we consider W 2 P(V3(�2) � V5(�2)) with W 6= V3(�2); V5(�2). We
have

I(W )=n := W +
X

k�1
SkW + n=n

= W +
X2

k�1
SkV3(�2) + S6 + S7 + n=n

' W + �3 + (�04 + �05) + (�01 + �3) + �2 '
X

�2IrrG
deg(�)�:
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Since S6 = V6(�
0
1) + S3V3(�2) 6= S3V3(�2), we have

lim
W!V3(�2)

I(W ) = V6(�
0
1) + V3(�2) +

X
k�1

SkV3(�2)

= I(V6(�01)� V3(�2)) 2 P (�01; �2)
= I(fS1V5(�2)g[�01]� V3(�2));

where V6(�
0
1) = fS1V5(�2)g[�01] ' �01, and fS1V5(�2)g[�01] = V6(�

0
1) ' �01 is by

de�nition the sum of all the �01 factors of S1V5(�2) ' S1 
 V5(�2). Hence

lim
W!V6(�01)

W'�01

I(W ) = lim
W!V3(�2)
W'�2

I(W ) 2 P (�01; �2):

The above argument explains the relation between tensoring by �2 =
�nat and the intersection of two rational curves. The argument also shows
that E(�) is naturally identi�ed with P(V4�d(�)(�) + V4+d(�)(�)), the set of
all nontrivial proper G-submodules of V4�d(�)(�) + V4+d(�)(�) ' ��2, which is
isomorphic to P1 by Schur's lemma.

Now we consider the general case. We restate Theorem 10.7 as follows.

Theorem 13.6 Let E be the exceptional set of the morphism � : XG ! SG,
and Sing(E) the singular points of E. Let E(�) be an irreducible component
of E for � 2 IrrG and E0(�) := E(�) n Sing(E). Then E0(�) and Sing(E)
are as follows:

E0(�01) =

(
I(W );

W � V2(�
0
1)� V`(�

0
1)

W 6= 0; V`(�
0
1)

)
;

E0(�k) =

(
I(W );

W � Vk+1(�k)� V`�k+1(�k)

W 6= 0; Vk+1(�k); V`�k+1(�k)

)
for 2 � k � n� 3;

E0(�n�2) =

(
I(W );

W � Vn�1(�n�2);W 6= 0; V 00
n�1(�n�2)

W 6= S1 � Vn�2(�0j) for j = n� 1; n

)
;

E0(�j) =

(
I(W );

W � Vn�2(�0j)� Vn(�
0
j)

W 6= 0; Vn(�
0
j)

)
for j = n� 1; n;

and

Sing(E) =

(
P (�01; �2); P (�k; �k+1) for 2 � k � n� 3

P (�n�2; �0n�1); P (�n�2; �
0
n)

)
;
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where

P (�01; �2) = I(V`(�01)� V3(�2));

P (�k; �k+1) = I(V`�k+1(�k)� Vk+2(�k+1)) for 2 � k � n� 4,

P (�n�3; �n�2) = I(Vn(�n�3)� V 00n�1(�n�2));

P (�n�2; �0j) = I(S1Vn�2(�0j)� Vn(�
0
j)):

13.7 Proof of Theorem 13.6 { Start

For 2 � k � n � 2, write C(�k) for the set of all proper G-submodules
of Vk+1(�k) � V`�k+1(�k); similarly, let C(�01) be the set of all proper G-
submodules of V2(�

0
1) � V`(�

0
1) and for i = n � 1; n, let C(�0i) be the set of

all proper G-submodules of Vn�2(�0i)� Vn(�
0
i). It is clear that the C(�k) and

C(�0i) are rational curves. As we will see in the sequel, they are embedded
naturally into Grass(m=n; 2`� 2).

Case I(W ) 2 E(�01) n P (�01; �2) Let I(W ) := WOA 2 + n for any nonzero
G-module W 2 C(�01) with W 6= V`(�

0
1). First assume W = V2(�

0
1). Then

it is easy to see that I(W )=n contains Vk+1(�k), V`�k+3(�k), V 00n�1(�n�2) and
Vn+1(�n�2) for any 2 � k � n � 3. Similarly I(W )=n contains Vn(�

0
n�1) and

Vn(�
0
n) as well as W = V2(�

0
1). It follows that

I(W )=n =W +
`�1X
k=1

Sk �V2(�
0
1) = W +

`�2X
k=1

Sk �V2(�
0
1) + S`+1

In particular, I(W )=n 'P�2IrrG deg(�)�. Hence I(W ) 2 HilbG(A 2). We
see that

V (I(W )) := I(W )= fmI(W ) + ng ' W ' �01:

It follows that I(W ) 2 E(�01).
Next we assume W 6= V2(�

0
1); V`(�

0
1). Then we �rst see that x3y 2 I(W )

because x3y � (x3y � 2tx`+2) = 2tx`+2 2 n. It follows that I(W )=n contains
V`+1(�2), Vk+1(�k), V`�k+3(�k), V 00n�1(�n�2), Vn+1(�n�2), Vn(�

0
n�1) and Vn(�

0
n)

where 3 � k � n � 3. Since S1 �W + V`+1(�2) = V3(�2) + V`+1(�2) ' ��22 ,
I(W )=n also contains 2�2. It follows that

I(W )=n =W +
`�2X
m�0

Sm �V2(�
0
1) = W +

`�3X
m=0

Sm �V2(�
0
1) + S`+1:

Hence we have I(W )=n ' P�2IrrG deg(�)�. Therefore I(W ) 2 HilbG(A 2).
By the above structure of I(W )=n, V (I(W )) ' W ' �01. It follows that
I(W ) 2 E(�01) n P (�01; �2).
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Case I(W ) 2 P (�01; �2) Let W = W (�01; �2) := V`(�
0
1) � V3(�2). Now

I(W )=n contains x2y and xy2, hence also Vi+1(�i), V`�i+3(�i) for 3 � i �
n�3, V`+1(�2), Vn+1(�n�2), Vn(�0n�1) and Vn(�

0
n). Similarly, I(W )=n contains

V 00
n�1(�n�2). We note that fI(W )=ng [�01] =W = V`(�

0
1) = fS1 � V`�1(�2)g [�01]

and fI(W )=ng [�2] = V3(�2) � V`+1(�2) = S1 � V2(�01) � V`+1(�2). It follows
that

I(W )=n =W +
`�2X
m=0

Sm �V3(�2) = W +
`�3X
m=0

Sm �V3(�2) + S`+1

Hence we have I(W )=n ' P�2IrrG deg(�)�. Therefore I(W ) 2 HilbG(A 2).
We also see that I(W ) 2 P (�01; �2), because

V (I(W )) = V`(�
0
1)� fS1 � V2(�01)g [�2]

= fS1 � V`�1(�2)g [�01]� V3(�2) ' �01 � �2:

Case I(W ) 2 E(�k) n P (�k�1; �k) for 2 � k � n � 3 We consider now
W 2 C(�k) = P(�k � Vk+1(�k)� V`�k+1(�k)) with W 6= Vk+1(�k), V`�k+1(�k).
Let I(W ) =WOA 2 + n.

Hence we may assume that xk+1y� ty`�k+1 2 W for a nonzero constant t.
Since xk+3y = x2(xk+1y� ty`�k+1) + tx2y`�k+1, and x2y2 2 n, I(W ) contains
xk+3y. Similarly, ty`�k+2 = �y(xk+1y � ty`�k+1) + xk+1y2 gives y`�k+2 2
I(W ). Hence we see that I(W )=n contains V`�i+1(�i) for 2 � i � k � 1,
Vi+1(�i) for k + 2 � i � n � 3, V`�i+3(�i) for 2 � i � n � 3, V 0n�1(�n�2),
V 00
n�1(�n�2), V`(�

0
1), Vn(�

0
n�1) and Vn(�

0
n). Since xy`�k+1 2 V`�k+2(�k+1), we

have V`�k+3(�k) � I(W )=n and xk+2y = x(xk+1y � ty`�k+1) + txy`�k+1 2
I(W )=n. Hence Vk+2(�k+1) � I(W )=n if k � n� 4. It follows that

I(W )=n = W +
X`�k

m=1
Sm �Vk+1(�k) +

Xk�1
m=0

Sm �V`�k+2(�k�1)

= W +
X`�2k

m=1
Sm �Vk+1(�k) +

X`+1

m=`�k+2
Sm:

It follows from W ' �k that I(W )=n 'P�2IrrG deg(�)�. Therefore I(W ) 2
HilbG(A 2). It is easy to see that V (I(W )) ' W ' �k so that I(W ) 2 E(�k).

Case I(W ) 2 P (�k; �k+1) Let W =W (�k; �k+1) := V`�k+1(�k)�Vk+2(�k+1)
for 2 � k � n� 4. For k = n� 3, set

W = W (�n�3; �n�2) := Vn(�n�3)� V 00
n�1(�n�2):

Now I(W )=n contains V`�i+1(�i) for 2 � i � k, Vi+1(�i) for k+1 � i � n�3,
V`�i+3(�i) for 2 � i � n� 2, V 00n�1(�n�2) and Vn(�

0
i) for i = n� 1; n. Similarly
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V`(�
0
1) � I(W )=n. Hence I(W ) 2 P (�k; �k+1) � HilbG(A 2). We also see that

V (I(W )) =

(
V`�k+1(�k)� fS1 � Vk+1(�k)g [�k+1] for 2 � k � n� 4,

Vn(�n�3)� fS1 � Vn�2(�n�3)g [�n�2] for k = n� 3

=

(
fS1 � V`�k(�k+1)g [�k]� Vk+1(�k) ' �k � �k+1;�
S1 � V 0

n�1(�n�2)
	
[�n�3]� V 00n�1(�n�2) ' �n�3 � �n�2:

Case I(W ) 2 E(�n�2) n
�
P (�n�2; �n�3) [ P (�n�2; �0n�1) [ P (�n�2; �0n)

�
Let

W 2 C(�n�2) = P(Vn�1(�n�2)), and de�ne I(W ) :=WOA 2 + n. Set

W0 = S1 � Vn�2(�0n�1); W1 = S1 � Vn�2(�0n) and W1 = V 00n�1(�n�2):

Let H = xn�2 � in=2yn�2 and G = xn�2 + in=2yn�2. Then W = fxH � txG;
yH + tyGg for some t. Assume t 6= 0; 1;1, or equivalently, W 6= W� for
� = 0; 1;1. Then xn 2 I(W )=n, so that V`(�

0
1), V`�i+1(�i) for 2 � i � n� 3

and V`�i+3(�i) for 2 � i � n � 2 are contained in I(W )=n. We also see that
xyH 2 Vn(�0n�1) � I(W )=n and xyG 2 Vn(�0n) � I(W )=n. It follows that

I(W )=n =W +
`+1X
m=n

Sm:

Since W ' �n�2, we have I(W )=n ' P�2IrrG deg(�)� with V (I(W )) ' W .

It follows that I(W ) 2 HilbG(A 2).

Case I(W ) 2 E(�0n�1)nP (�n�2; �0n�1) Let W 2 C(�0n�1) := P(Vn�2(�0n�1)�
Vn(�

0
n�1)). Assume W 6= Vn(�

0
n�1). Then I(W )=n contains xny and hence

xn. It follows that I(W )=n contains V`�i+1(�i), V`�i+3(�i) for 2 � i � n� 3,
and Vn+1(�n�2). We also see that I(W )=n contains xn�1 � in=2xyn�2 so that
fI(W )=ng\ Vn�1(�n�2) ' �n�2. Similarly we see easily that V`(�

0
1); Vn(�

0
n) �

I(W )=n. It follows that

I(W )=n = W +
2X

m=1

Sm �Vn�2(�
0
n�1) +

`+1X
m=n+1

Sm:

Since W ' �0n�1, I(W )=n 'P�2IrrG deg(�)�. Therefore I(W ) 2 E(�0n�1) �
HilbG(A 2) with V (I(W )) ' W .

Case I(W ) 2 P (�n�2; �0n�1) We consider

W = W (�n�2; �0n�1) := S1 � Vn�2(�0n�1)[�n�2]� Vn(�
0
n�1) = W0 � Vn(�

0
n�1):

Then I(W )=n contains xn, therefore I(W )=n contains V`(�
0
1), V`�i+1(�i),

V`�i+3(�i) for 2 � i � n � 3, Vn+1(�n�2) and Vn(�
0
n). Since W � I(W )=n,

we see that I(W )=n ' P
�2IrrG deg(�)�. Hence I(W ) 2 P (�n�2; �0n�1) �

HilbG(A 2) with V (I(W )) ' W .
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Case I(W ) 2 E(�0n) n P (�n�2; �0n) or I(W ) 2 P (�n�2; �0n) This is similar
to the above, and we omit the details. �

Lemma 13.8 For �0 adjacent to �, the limit of I(W ) as I(W ) 2 E(�) ap-
proaches P (�; �0) is I(W (�; �0)).

Proof We �rst consider W 2 C(�01) with W 6= V`(�
0
1). Then by 13.7 we see

that I(W ) = W + V3(�2) +
P

m�1 SmV3(�2). Hence we have

lim
W!V`(�

0

1)

W2C(�01)

I(W ) = V`(�
0
1) + V3(�2) +

X
m�1

SmV3(�2)

= I(V`(�01)� V3(�2)) = I(W (�01; �2)):

Next we consider W 2 C(�2) with W 6= V3(�2); V`�1(�2). Then by 13.7
we have I(W ) =W + V`(�

0
1) +

P
m�0 SmV4(�3). Since V4(�3) � S1V3(�2), we

have

lim
W!V3(�2)
W2C(�2)

I(W ) = V`(�
0
1) + V3(�2) +

X
m�1

SmV3(�2)

= I(W (�01; �2)) = lim
W!V`(�

0

1)

W2C(�01)

I(W ):

Suppose that W 2 C(�k) = P(V`�k+1(�k)� Vk+1(�k)) with W 6= Vk+1(�k),
V`�k+1(�k). By 13.7 we see

I(W ) =W +
X
m�0

SmVk+2(�k+1) +
X
m�0

SmV`�k+2(�k�1):

Thus for 2 � k � n� 4 we see that

lim
W!V`�k+1(�k)

I(W ) = I(W (�k; �k+1)) = lim
W!Vk+2(�k+1)

I(W ):

Similarly for W 2 C(�n�2) with W 6=W� for � = 0; 1;1 we have

I(W ) = W +
X
m�0

SmVn(�n�3) +
X
m�0

j=n�1;n

SmVn(�
0
j) = W +

X
m�n

Sm;

lim
W!W1

I(W ) =
X
m�0

SmVn(�n�3) +
X
m�0

SmW1 = I(W1 � Vn(�n�3));

because Vn(�n�3) � S1W0 + n. Consequently

lim
W 0!Vn(�n�3)

I(W 0) = Vn(�n�3) +
X
m�0

SmVn+1(�n�4) +
X
m�0

SmV
00
n�1(�n�2)

=
X
m�0

SmVn(�n�3) +
X
m�0

SmW1 = lim
W 00!W1

I(W 00);
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where W 0 2 C(�n�3), W 00 2 C(�n�2). The limit when W approaches W0 or
W1 is similar. �

To complete the proofs of Theorem 13.6, we also need to prove:

Lemma 13.9 E(�) and E(�0) intersects at P (�; �0) transversally if � and �0

are adjacent.

Proof By the proof of Theorem 9.3, XG = HilbG(A 2) is smooth, with tan-
gent space T[I](XG) at [I] the G-invariant subspace HomO

A2
(I;OA 2 =I)

G of
T[I](Hilb

n(A 2)), which is isomorphic to HomO
A2
(I;OA 2 =I), where n = jGj.

Assume that � and �0 are adjacent with d(�0) = d(�) + 1. Let W (�; �0) =
Vh

2
�d(�)(�) � Vh

2
�d(�0)(�

0). Then I(W (�; �0)) 2 P (�; �0). We prove the follow-

ing formula

T[I](XG) ' HomO
A2
(I;OA 2=I)

G '
HomG(Vh

2
�d(�)(�); Vh

2
+d(�)(�))� HomG(Vh

2
+d(�0)(�

0); Vh
2
�d(�0)(�

0));

where I = I(W (�; �0)). First assume � = �2 and �
0 = �01. Then

HomO
A2
(I;OA 2 =I)

G �
HomG(V`(�

0
1); V2(�

0
1))� HomG(V3(�2); V1(�2)� V`�1(�2))

Let ' be any element of HomO
A2
(I;OA 2=I)

G. A nontrivial G-isomorphism
'0 of V3(�2) onto V1(�2) is given by '0(x

2y) = x, '0(xy
2) = �y. Therefore

we may assume ' = c'0 mod V`�1(�2) for some constant c. Since ' de�nes
an OA 2 -homomorphism, we have y'(x2y) = x'(xy2), so that 2cxy = 0 in
OA 2 =I. It follows that c = 0, and '(V3(�2)) � V`�1(�2). Thus the formula for
I = I(W (�01; �2)) is proved.

Now we consider the general case. By 13.7 we see that fm=Ig[�] con-
tains V�h+d(�)(�) as a nontrivial factor, while fm=Ig[�0] contains V�h�d(�0)(�0)
similarly. Moreover by the proof in 13.7 we see that either of the linear
subspaces HomG(Vh

2
�d(�)(�); Vh

2
+d(�)(�)) and HomG(Vh

2
+d(�0)(�

0); Vh
2
�d(�0)(�

0))
yield nontrivial deformations of the ideal I inside the exceptional set E.
Since dimT[I](XG) = 2 by Theorem 9.3, these linear subspaces span T[I](XG).
Hence we have

T[I](XG) '
HomG(Vh

2
�d(�)(�); Vh

2
+d(�)(�))� HomG(Vh

2
+d(�0)(�

0); Vh
2
�d(�0)(�

0));

with

T[I](E(�)) ' HomG(Vh
2
�d(�)(�); Vh

2
+d(�)(�));

T[I](E(�
0)) ' HomG(Vh

2
+d(�0)(�

0); Vh
2
�d(�0)(�

0)):
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This completes the proof of Lemma 13.9 for �; �0 6= �n�2. The cases � = �n�2
are proved similarly. �

Lemma 13.10 Let E�(�) be the closure in E of the set�I(W );W 2 C(�);W 6= Vh
2
�d(�)

	
:

Then E�(�) is a smooth rational curve.

Proof By Lemma 13.9, E�(�) is smooth at I(W (�; �0)) for �0 adjacent to �.
It remains to prove the assertion elsewhere on E�(�).

Let C0(�) := fW 2 C(�);W 6= Vh
2
�d(�)g and I := I(W ) for W 2 C0(�).

Since we have a 
at family of ideals I(W ) for W 2 C0(�), we have a
natural morphism � : C0(�) ! HilbG(A 2), and a natural homomorphism
(d�)� : T[W ](C(�))! T[I](Hilb

G(A 2)). Equivalently there is a homomorphism

(d�)� : Hom(W;Vh
2
�d(�)(�) + Vh

2
+d(�)(�)=W )! HomO

A2
(I;OA 2 =I)

G

Let ' 2 T[W ](C(�)). Then (d�)�(')(I) � m=I because C(�) � E. Recall
that fm=Ig[�0] = 0 by Corollary 9.6. Hence (d�)�(')(n) = 0. Since I=n is
generated byW by 13.7, (d�)�(') is induced from ' by extending it to

L
SkW

as an OA 2 -homomorphism. Note that we have

Vh
2
�d(�)(�) + Vh

2
+d(�)(�)=W � m=I:

It follows that (d�)� is injective and that C0(�) is immersed at I(W ). The
same argument applies as well when W = Vh

2
+d(�) if there is no adjacent �0

with d(�0) > d(�). Hence E�(�) is a smooth rational curve. �

We will see E(�) = E�(�) soon in 13.11.

13.11 Proof of Theorem 13.6 { Conclusion

Let E be the exceptional set of �, and E� the union of all E�(�) for � 2 IrrG.
Since E�(�) � E(�) by 13.7, E� is a subset of E. Since � is a birational
morphism, E is connected and it is set theoretically the total �ber ��1(0)
over the singular point 0 2 SG. Hence in particular P (�; �0) � E for any
�; �0. By Lemma 13.9, the dual graph of E� is the same as the Dynkin
diagram �(IrrG) of IrrG. Hence E� is connected because �(IrrG) is con-
nected. By Lemma 13.10 E� is smooth except at I(W (�; �0)), while E� has
two smooth irreducible components E�(�) and E�(�0) meeting transversally
at I(W (�; �0)) by Lemma 13.9. It follows that E� is a connected compo-
nent of E. Hence E� = E. It follows that E(�) = E�(�) for all � 2 IrrG,
P (�; �0) = fI(W (�; �0))g for �; �0 adjacent, and P (�; �0) = ; otherwise. Simi-
larly Q(�; �0; �00) = ;. Thus Theorem 13.6 is proved.
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13.12 Conclusion

The proof of Theorem 13.6 proves also Theorems 10.4 and 10.7 automati-
cally. Theorems 10.5{10.6 are clear from Tables 7{8. Since any subscheme in
HilbG(A 2) with support outside the exceptional set E is a G-orbit of jGj dis-
tinct points in A 2 nf0g, the de�ning ideal I of it is given by using G-invariant
functions as follows

I =
�
F (x; y)� F (a; b); G(x; y)�G(a; b); H(x; y)�H(a; b)

�
;

where F (x; y) = x` + y`, G(x; y) = xy(x` � y`), H(x; y) = x2y2 and (a; b) 6=
(0; 0). Thus we obtain a complete description of the ideals in HilbG(A 2).

14 The binary tetrahedral group E6

14.1 Character table

The binary tetrahedral group G = T is de�ned as the subgroup of SL(2; C )
of order 24 generated by D 2 = h�; �i and �:

� =

�
i; 0
0; �i

�
; � =

�
0; 1
�1; 0

�
; � =

1p
2

�
"7; "7

"5; "

�
;

where " = e2�i=8 [Slodowy80], p. 74. G acts on A 2 from the right by (x; y) 7!

� 1 2 3 4 5 6 7 d (h
2
� d)

1 �1 � � �2 �4 �5

(]) 1 1 6 4 4 4 4

�0 1 1 1 1 1 1 1 (2) {

�2 2 �2 0 1 �1 �1 1 1 (5; 7)

�3 3 3 �1 0 0 0 0 0 (6; 6)

�02 2 �2 0 !2 �! �!2 ! 1 (5; 7)

�01 1 1 1 !2 ! !2 ! 2 (4; 8)

�002 2 �2 0 ! �!2 �! !2 1 (5; 7)

�001 1 1 1 ! !2 ! !2 2 (4; 8)

Table 9: Character table of E6

(x; y)g for g 2 G. D 2 is a normal subgroup of G and the following is exact:

1! D 2 ! G! Z=3Z! 1:

See Table 9 for the character table of G [Schur07] and the other relevant
invariants. The Coxeter number h of E6 is equal to 12. Let ! = (�1+p3i)=2.
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14.2 Symmetric tensors modulo n

Let Sm be the space of homogeneous polynomials in x and y of degree m.
The G-modules Sm and Sm := Sm(m=n) by �2 decompose into irreducible
G-modules. We de�ne a G-submodule of m=n by �Vi(�j) := Si(m=n)[�j] the
sum of all copies of � in Si(m=n), and de�ne Vi(�j) to be a G-submodule of Si
such that Vi(�j) ' �Vi(�j), Vi(�j) � �Vi(�j) mod n. We use Vi(�j) and �Vi(�j)
interchangeably whenever this is harmless. For a G-moduleW we de�neW [�]
to be the sum of all the copies of � in W .

It is known by [Klein], p. 51 that there are G-invariant polynomials A6,
A8, A

2
6 and A12 respectively of homogeneous degrees 6, 8, 12 and 12. In

his notation, we may assume that A6 = T , A8 = W and A12 = '3. See
Section 14.3.

The decomposition of Sm and Sm for small values of m are given in Ta-
ble 10. The factors of Sm in brackets are those in SMcKay. We see by Ta-
ble 10 that V6�d(�)(�) ' ��2 if d(�) = 0, or � if d(�) � 1. We also see that
S6�k ' S6+k for any k. Thus Theorems 10.5{10.6 for E6 follows from Table 10
immediately.

14.3 Generators of Vj(�)

We prepare some notation for Table 11. Let

p1 = x2 � y2; p2 = x2 + y2; p3 = xy

q1 = x3 + (2! + 1)xy2; q2 = y3 + (2! + 1)x2y;

s1 = x3 + (2!2 + 1)xy2; s2 = y3 + (2!2 + 1)x2y


1 = x5 � 5xy4; 
2 = y5 � 5x4y; T = p1p2p3;

' = p22 + 4!p23;  = p22 + 4!2p23; W = ' :

We note that n is generated by T , W and '3 (or  3) by [Klein], p. 51.
Computations give Table 11. We note the relations

�02 = �01 � �2 = �001 � �002; �002 = �01 � �02 = �001 � �2;
�2 = �01 � �002 = �001 � �02; �3 = �01 � �3 = �001 � �3:

In view of Table 10, each irreducible G factor appears in Sm with multi-
plicity at most one except when m = 6, � = �3. Therefore the following
congruence of G-modules modulo n are clear from the fact that these G-
modules are nontrivial modulo n.

V3(�
00
2)' � V3(�

0
2) ; V4(�3)' � V4(�3) ;

V1(�2)'
2 � V5(�2) ; V5(�2)' � V1(�2) 

2;

V2(�3)'
2 � V2(�3) 

2; V3(�
0
2)'

2 � V3(�
00
2) 

2:
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m Sm Sm

0 �0 0

1 �2 �2

2 �3 �3

3 �02 + �002 �02 + �002
4 �01 + �001 + �3 (�01 + �001) + �3

5 �2 + �02 + �002 (�2 + �02 + �002)

6 �0 + 2�3 (2�3)

7 2�2 + �02 + �002 (�2 + �02 + �002)

8 �0 + �01 + �001 + 2�3 (�01 + �001) + �3

9 �2 + 2�02 + 2�002 �02 + �002
10 �01 + �001 + 3�3 �3

11 2�2 + 2�02 + 2�002 �2

12 2�0 + �01 + �001 + 3�3 0

Table 10: Irreducible decompositions of Sm(E6)

m � Vm(�) m � Vm(�)

1 �2 x; y 7 �2 s1'; s2'

2 �3 x2; xy; y2 7 �02 s1 ; s2 

3 �02 q1; q2 7 �002 q1'; q2'

3 �002 s1; s2 8 �01  2

4 �01 ' 8 �001 '2

4 �001  8 �3 p1p2'; p2p3'; p3p1'

4 �3 p1p2; p2p3; p3p1 9 �02 x 2; y 2

5 �2 
1; 
2 9 �002 x'2; y'2

5 �02 x'; y' 10 �3 x2'2; xy'2; y2'2

5 �002 x ; y 11 �2 q1'
2; q2'

2

6 �3 V2(�3)'� V2(�3) 

Table 11: Vm(�)(E6)
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For instance, si' � qi � 0 mod T , so that V3(�
00
2)' � V3(�

0
2) . Since

p1p2('�  ) � 0 mod T , p2p3('� ! ) � 0 mod T and p3p1('� !2 ) � 0
mod T so that V4(�3)' � V4(�3) .

Lemma 14.4 1.

Sm �V4(�
0
1) =

8>>><>>>:
�02 for m = 1,

�3 for m = 2,

�2 + �002 for m = 3, and

�001 + �3 for m = 4.

2. Sm �V4(�
0
1) = Sm+4 for m � 5, and Sm �V5(�

0
2) = Sm+1

�V4(�
0
1) for m � 1.

3. Sm �V5(�2) = �3 for m = 1, �02 + �002 for m = 2, and Sk+5 for m � 3.

4. S1 �V7(�
0
2) = �01 + �3.

Proof (1) is clear for k = 1; 2. Next we consider S3V4(�
0
1). By Table 10

S3V4(�
0
1) ' S3 
 V4(�

0
1) ' �002 + �2. We prove S1 � A6 6= fS3V4(�01)g[�2] =

V3(�
00
2)V4(�

0
1). For otherwise, A6 is divisible by ' 2 V4(�

0
1), whence A6=' 2

V2(�
00
1) = f0g, a contradiction. Hence we have S3 �V4(�

0
1) = �2 + �002. Similarly

S4V4(�
0
1) = �0+�

00
1+�3 where fS4V4(�01)g[�0] = S0 �A8. The factors �

00
1 and �3

in S4V4(�
0
1) are not divisible by A6. In fact, otherwise fS4V4(�01)g[�3] = S2 �A6

because S2 ' �3. It follows that A6 is divisible by ', which is a contradiction.
Therefore S4 �V4(�

0
1) = �001 + �3. Finally we see S5V4(�

0
1) = �2 + �02 + �002 where

fS5V4(�01)g[�2] = S1 � A8. The factors �
0
2 and �

00
2 in S5V4(�

0
1) are not divisible

by A6. For instance if fS5V4(�01)g[�02] = V3(�
0
2) �A6, then since the generators

of V3(�
0
2) are coprime, A6 is divisible by ', a contradiction. It follows that

S5 �V4(�
0
1) = �02 + �002 = S9. The rest of (1) is clear. (2) is clear from (1).

Next, we prove that S1 �V5(�2) = �3. First, Table 11 gives dimS1V5(�2) = 4.
Thus S1V5(�2) ' �2
�2 ' �0+�3. Hence fS1V5(�2)g[�0] = S0 �A6. It follows
that S1 �V5(�2) = �3. Now consider S2V5(�2). Since dimS1 
 V5(�2) = 4,
we have dimS2 
 V5(�2) � 5. We see that S2V5(�2) = S2 
 V5(�2) = �2 +
�02 + �002, and that �2 ' S1 � A6 � S2V5(�2), V3(�

00
2)V4(�

00
1) = V7(�

0
2) ' �02 and

V3(�
0
2)V4(�

0
1) = V7(�

00
2) ' �002. Hence S2 �V5(�2) = �02 + �002.

On the other hand, S1V3(�
00
2) = S1 
 V3(�

00
2) = �001 + �3, so that S1V7(�

0
2) =

S1V3(�
00
2)V4(�

00
1) = �01 + �3. We prove that S1 �V7(�

0
2) = �01 + �3. For otherwise,

by Table 10, we have fS1 �V7(�02)g[�3] = 0 so that fS1V7(�02)g[�3] = S2A6.
V7(�

0
2) is divisible by  , so that A6 is divisible by  . Hence A6= 2 V2(�

0
1),

which contradicts S2 = �3. Therefore fS1V7(�02)g[�3] = �3 and S1 �V7(�
0
2) =

�01 + �3. Similarly S1 �V7(�
00
2) = �001 + �3. This proves (4). Moreover S3 �V5(�2) =

S1S2 �V5(�2) = S1( �V7(�
0
2) + �V7(�

00
2)) so that S3 �V5(�2) � �01 + �001 + �3 = S8. This

proves (3). �
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Lemma 14.5 Let Wk = S1 � �V5(�(k)2 ) (' �3) for any k = 0; 1; 2, where �
(k)
2 =

�2; �
0
2; �

00
2. Let W 2 P(V6(�3)). Then S1W = �2 + �02 + �002 if and only if

W 6= Wk for k = 1; 2; 3.

Proof We see S1 �W1 = S2 � �V5(�02) = S3 � �V4(�01) = �2 + �002 by Lemma 14.4.
Similarly S1 �W2 = S3 � �V4(�001) = �2 + �02. Also by Lemma 14.4, (3) we have
S1 �W0 = �02 + �002.

Conversely assume W 6= Wk for any k. Choose and �x a G-module
isomorphism h : W1 ! W2. For instance, h(pk') = !�kpk . Then h induces
a natural isomorphism fS1 
 hg[�2] : fS1 
W1g[�2]! fS1 
W2g[�2], which
induces an isomorphism fS1 � hg[�2] : fS1 � W1g[�2] ! fS1 � W2g[�2]. Since
S7 contains a single �2, we have fS1 � W1g[�2] ' fS1 � W2g[�2] (' �2) by
fS1 � hg[�2]. It follows that fS1 � hg[�2] is a nonzero constant multiple of the
identity. Since V6(�3) = W1�W2, this proves uniqueness of the G-submodule
W ' �3 of V6(�3) such that fS1 �Wg[�2] = 0. Since fS1 �W0g[�2] = 0, we
have fS1 �Wg[�2] 6= 0 by the assumption W 6= W0. Similarly there exists
a unique proper G-submodule W 2 V6(�3) such that fS1 � Wg[�02] = 0 or
fS1 �Wg[�002] = 0. As we saw above, fS1 �W1g[�02] = 0 and fS1 �W2g[�002] = 0.
Therefore S1 �W = �2 + �02 + �002 if W 6= Wk for k = 0; 1; 2. �

14.6 Proof of Theorem 10.7 in the E6 case

Consider I 2 XG in the exceptional set E, or equivalently, I 2 XG with
I � m. For a �nite submodule W of m we de�ne I(W ) = WOA 2 + n and
V (I(W )) := I(W )=mI(W ) + n. We write � for congruence modulo n.

Case I(W ) 2 E0(�01) LetW 2 P(V4(�
0
1)�V8(�01)), so thatW ' �01. Suppose

that W 6= V8(�
0
1) and set I(W ) = WOA 2 + n. Since S12 = 0, by Lemma 14.4

we have Sk �W � Sk � �V4(�01) for k � 4. Also by Lemma 14.4 Sk � �V4(�01) = Sk+4
for k � 5. Hence Sk � I(W )=n for k � 9. Since Sk �W = Sk � �V4(�01) mod S9

for k � 1, we deduce that

I(W )=n = W +
X
k�1

Sk � �V4(�01) = W +
4X

k=1

Sk � �V4(�01) +
11X
k=9

Sk:

We see by Lemma 14.4

W + S4 �V4(�
0
1) = �01 + �001 + �3 =

1

2
(S4 + S8);

S1 �V4(�
0
1) + S3 �V4(�

0
1) = �2 + �02 + �002 =

1

2
(S5 + S7);

S2 �V4(�
0
1) = �3 =

1

2
S6:
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By duality I(W )=n =
P

�2IrrG deg(�)�. Thus I(W ) 2 XG and V (I(W )) '
W .

Case I(W ) 2 E0(�02) Let W 2 P(V5(�
0
2) � V7(�

0
2)) with W ' �02. Suppose

W 6= V5(�
0
2); V7(�

0
2). Since S12 = 0, we have Sk �W � Sk � �V5(�02) = Sk+5 for

k � 5 by the condition W 6= V7((�
0
2). We also see that S4 �W = S4 � �V5(�02)

mod S11 = S9. Therefore S9 � I(W )=n. Hence Sk �W = Sk � �V5(�02) mod S9

for k � 2. Since S1 � �V5(�02) = �3 and S1 � �V7(�02) = �01 + �3, we have S1 �W �
�01+ �3 and fS1 �Wg[�01] � �V8(�

0
1) � I(W )=n by the assumption W 6= V5(�

0
2).

Since S3 �V5(�
0
2) = �001 + �3, we have S8 = �V8(�

0
1) � S3 �V5(�

0
2) � I(W )=n. It

follows that

I(W )=n =W +
X
k�1

Sk � �V5(�02) = W +
2X

k=1

Sk � �V5(�02) +
11X
k=8

Sk and

W + S1 �V5(�
0
2) + S2 �V5(�

0
2) = �2 + �02 + �002 + �3 =

1

2
(S5 + S6 + S7):

Hence I(W )=n =
P

�2IrrG deg(�)�. Thus I(W ) 2 XG with V (I(W )) ' W .

Case I(W ) 2 E0(�001) or I(W ) 2 E0(�002) These cases are similar.

Case I(W ) 2 E0(�2) LetW 2 P(V5(�2)�V7(�2)), so thatW ' �2. Suppose
that W 6= V7(�2). As above, we see that Sk � I(W )=n for k � 10. It follows
that S3 �W = S3 � �V5(�2) mod S10 = S8. Therefore Sk � I(W )=n for k � 8.
Similarly S2 �W � S2 � �V5(�2) = �02+�

00
2 mod S8 and S1 �W � S1 � �V5(�2) = �3

mod S8. It follows that

I(W )=n = W +
X
k�1

Sk � �V5(�2) = W +
2X

k=1

Sk � �V5(�2) +
11X
k=8

Sk; and

W + S1 �V5(�2) + S2 �V5(�2) = �2 + �02 + �002 + �3 =
1

2
(S5 + S6 + S7):

Hence I(W )=n =
P

�2IrrG deg(�)�. Thus I(W ) 2 XG with V (I(W )) ' W .

Case I(W ) 2 E0(�3) Let W 2 P(V6(�3)). Let Wk = S1 � V5(�(k)2 ) for any

k = 0; 1; 2 where �
(k)
2 = �2; �

0
2; �

00
2. Now we suppose that W 6= Wk. Then

S1 � W � S7 by Lemma 14.5 so that I(W ) contains Sk for any k � 7. It
follows that

I(W )=n = W +
X
k�1

SkW = W +
11X
k=7

Sk:

Hence I(W )=n =
P

�2IrrG deg(�)�, and so I(W ) 2 XG with V (I(W )) ' W .
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Case I(W ) 2 P (�01; �
0
2) Let W = W (�01; �

0
2) := V8(�

0
1) � V5(�

0
2). Recall

that W = fS1 � V7(�02)g[�01] � V5(�
0
2) = V8(�

0
1) � S1 � V4(�01). By Lemma 14.4,

we see that S1 � �V5(�02) = �3, S2 � �V5(�02) = �2 + �002, S3 � �V5(�02) = �001 + �3
and Sk � I(W )=n for k � 8. It follows that I(W )=n =

P
�2IrrG deg(�)� by

Table 10. Therefore I(W ) 2 XG with V (I(W )) ' W .

Case I(W ) 2 P (�02; �3) LetW =W (�02; �3) := V7(�
0
2)�S1V5(�02) = V7(�

0
2)�

W1. We recall that S1 � W1 = �2 + �002, so that Sk � I(W )=n for k � 7.
Since W1 = �3 we have I(W )=n =

P
�2IrrG deg(�)� by Table 10. Therefore

I(W ) 2 XG with V (I(W )) ' W .

Cases I(W ) 2 P (�2; �3) or I(W ) 2 P (�002; �3) Similar.
The following Lemma is proved in the same manner as before. It allows us

to complete the proof of Theorem 10.7 by the same argument as in Section 13.

Lemma 14.7 Each E(�) is a smooth rational curve. Moreover, if � and �0

are adjacent then

1. as I(W ) 2 E(�) approaches the point P (�; �0), the limit of I(W ) is
I(W (�; �0));

2. E(�) and E(�0) intersect transversally at P (�; �0).

14.8 Conclusion

Theorem 10.4 also follows from the lemma. Theorem 10.7, (3) follows from
Tables 10{11 and Lemma 14.5.

Let I 2 XG. If Supp(OA 2=I) is not the origin, then

I = (T (x; y)� T (a; b); '3(x; y)� '3(a; b);W (x; y)�W (a; b))

where (a; b) 6= (0; 0).
By the same argument as in Section 13 we thus obtain a complete descrip-

tion of the G-invariant ideals in XG.

15 The binary octahedral group E7

15.1 Character table

The binary octahedral group O is de�ned as the subgroup of SL(2; C ) of order
48 generated by T = h�; �; �i and �:

� =

�
i; 0
0; �i

�
; � =

�
0; 1
�1; 0

�
; � =

1p
2

�
"7; "7

"5; "

�
; � =

�
"; 0
0; "7

�
;
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where " = e2�i=8 [Slodowy80], p. 73. G acts on A 2 from the right by (x; y) 7!
(x; y)g for g 2 G. D 2 and T are normal subgroups of G and the following
sequences are exact:

1! T ! G! Z=2Z! 1

and

1! D 2 ! G! S3 ! 1;

where S3 is the symmetric group on 3 letters.
See Table 12 for the character table of G and other relevant invariants.

E7 has Coxeter number h = 18.

15.2 Symmetric tensors modulo n

The G-modules Sm and Sm := Sm(m=n) by �nat := �2 for small values of
m split into irreducible G-modules as in Table 13. The factors of Sm in
brackets are those in SMcKay. We use the same notation �Vm(�) and Vm(�) for
� 2 IrrG as before. Let ' = p22+4!p23,  = p22+4!2p23, T (x; y) = (x4�y4)xy.
In Table 14 we denote by W

(i)
j ' �4 the G-submodules of V9(�4) ' ��24 ;

W 00
2 := S1 � V8(�002), W3 := S1 � V8(�3), W 0

3 := S1 � V8(�03),
Lemma 15.3 The G-module Sm �Vk(�) splits into irreducible G-submodules as
in Table 15. We read the table as S2 �V6(�

0
1) = �03, S2 �V8(�

00
2) = �3 + �03 and so

on.

Proof The assertions for (m; k) = (1; 6); (2; 6); (3; 6) are clear. There are
three generators A8, A12 and A18 of respective degrees 8, 12 and 18 for the ring
of G-invariant polynomials. We know that A8 = ' , A12 = T 2 by [Klein],
p. 54.

Note �rst that Sm = Sm�8 � A8 � Sm for m = 10; 11 and

S4V6(�
0
1) = (�002 + �03)
 �01 = �002 + �3; S5V6(�

0
1) = (�02 + �4)
 �01 = �2 + �4:

If fS4 �V6(�01)g[�3] = 0 in S10, then fS4V6(�01)g[�3] = S2 � A8. A8 would be
divisible by T , a generator of V6(�

0
1). However, this is impossible. Hence

fS4 �V6(�01)g[�3] = �3 so that S4 �V6(�
0
1) = �002 + �3. S5 �V6(�

0
1) = �2 + �4 is proved

similarly.
Since S6V6(�

0
1) = (�01)

2 + �3 + �03 = �0 + �3 + �03, S6 �V6(�
0
1) = �3 + �03 or

�3. If S6 �V6(�
0
1) = �3, then S6[�3] � V6(�01) is divisible by T 2, so that S6[�3] is

divisible by T . Since deg T = 6, this is impossible. Hence S6 �V6(�
0
1) = �3+ �

0
3.

Next we have S7V6(�
0
1) = �02 + �2 + �4 and fS7V6(�01)g[�2] = �2 � A12. If

fS7 �V6(�01)g[�4] = 0, then fS7V6(�01)g[�4] = V7[�4]V6(�
0
1) = �4 �A12 or �4 �A8. In
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� 1 2 3 4 5 6 7 8 d (h
2
� d)

1 �1 � �2 � � �� �3

] 1 1 8 8 6 6 12 6

�0 1 1 1 1 1 1 1 1 (3) {

�2 2 �2 1 �1 0
p
2 0 �p2 2 (7; 11)

�3 3 3 0 0 �1 1 �1 1 1 (8; 10)

�4 4 �4 �1 1 0 0 0 0 0 (9; 9)

�03 3 3 0 0 �1 �1 1 �1 1 (8; 10)

�02 2 �2 1 �1 0 �p2 0
p
2 2 (7; 11)

�01 1 1 1 1 1 �1 �1 �1 3 (6; 12)

�002 2 2 �1 �1 2 0 0 0 1 (8; 10)

Table 12: Character table of E7

m Sm Sm

1 �2 �2

2 �3 �3

3 �4 �4

4 �002 + �03 �002 + �03
5 �02 + �4 �02 + �4

6 �01 + �3 + �03 (�01) + �3 + �03
7 �2 + �02 + �4 (�2 + �02) + �4

8 �0 + �002 + �3 + �03 (�002 + �3 + �03)

9 �2 + 2�4 (2�4)

10 �002 + 2�3 + �03 (�002 + �3 + �03)

11 �2 + �02 + 2�4 (�2 + �02) + �4

12 �0 + �01 + �002 + �3 + 2�03 (�01) + �3 + �03
13 �2 + 2�02 + 2�4 �02 + �4

14 �01 + �002 + 2�3 + 2�03 �002 + �03
15 �2 + �02 + 3�4 �4

16 �0 + 2�002 + 2�3 + 2�03 �3

17 2�2 + �02 + 3�4 �2

18 �0 + �01 + �002 + 3�3 + 2�03 0

Table 13: Irreducible decompositions of Sm(E7) and Sm(E7)
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m � Vm(�)

7 �2 7x4y3 + y7;�x7 � 7x3y4

11 �2 x10y � 6x6y5 + 5x2y9;�xy10 + 6x5y6 � 5x9y2

8 �3 �2xy7 � 14x5y3; x8 � y8; 2x7y + 14x3y5

10 �3 4x10 + 60x6y4; 5x9y + 54x5y5 + 5xy9

60x4y6 + 4y10

9 �4 W 00
2 +W3 =W3 +W 0

3 = W 0
3 +W 00

2 ' ��24
9 W 00

2 12x6y3 + 12x2y7; x9 � 10x5y4 + xy8

�x8y + 10x4y5 � y9; 12x7y2 + 12x3y6

9 W3 21x6y3 + 3x2y7;�x9 + 7x5y4 + 2xy8

�2x8y � 7x4y5 + y9;�3x7y2 � 21x3y6

9 W 0
3 x3T; x2yT; xy2T; y3T

8 �03 x2T; xyT; y2T

10 �03 �3x8y2 � 14x4y6 + y10; 8x7y3 + 8x3y7

x10 � 14x6y4 � 3x2y8

7 �02 xT; yT

11 �02 �11x8y3 � 22x4y7 + y11; 11x3y8 + 22x7y4 � x11

6 �01 T

12 �01 x12 � 33x8y4 � 33x4y8 + y12

8 �002  2;�'2
10 �002 x5y � xy5';�x5y'+ xy5 

Table 14: Vm(�)(E7)

the �rst case, V7[�4] is divisible by T , which is impossible because deg T = 6
and dimS1 = 2 < deg �4 = 4. In the second case, V7[�4] is divisible by A8,
which is impossible. It follows that fS7 �V6(�01)g[�4] = �4. If fS7 �V6(�01)g[�02] =
0, then V7[�2]V6(�

0
1) = �02 �A12 or �

0
2 �A8. In the �rst case V7[�2] is divisible by

T , which contradicts Table 14. In the second case V7[�2] is divisible by A8,
absurd. Hence fS7 �V6(�01)g[�02] = �02. It follows that S7 �V6(�

0
1) = �02 + �4 = S13.

We note next dimS1V11(�
0
2) � 3. If dimS1V11(�

0
2) = 3, then there exists a

f 2 S10 such that V11(�
0
2) = S1 � f . Hence f 2 S10[�01] = f0g, a contradiction.

Hence dimS1V11(�
0
2) = 4. so that S1V11(�

0
2) = �01+�

0
3. If fS1 �V11(�02)g[�03] = 0,

we have fS1V11(�02)g[�03] = V4[�
0
3] �A8 by Table 13. Since dimS1 < deg �03 = 3,

there exists a nontrivial element of fS1V11(�02)g[�03] divisible by both x and A8.
Hence V11(�

0
2) contains a nontrivial element divisible by A8. This implies that

V11(�
0
2) is divisible by A8. Then V3(�

0
2) = V11(�

0
2)A

�1
8 = �02, which contradicts
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m k � Sm �Vk(�) m k � Sm �Vk(�)

1 6 �01 �02 2 8 �002 �3 + �03
2 6 �03 3 8 �2 + �02 + �4

3 6 �4 1 7 �2 �3

4 6 �002 + �3 2 7 �4

5 6 �2 + �4 3 7 �002 + �03
6 6 �3 + �03 4 7 �02 + �4

7 6 �02 + �4 5 7 �01 + �3 + �03
1 11 �02 �01 + �03 1 10 �3 �2 + �4

1 8 �002 �4 1 10 �03 �02 + �4

Table 15: Decomposition of Sm �Vk(�)

S3 = �4. Hence S1 �V11(�
0
2) = �01 + �03.

It is clear from �2 
 �002 = �4 and Table 13 that S1 �V8(�
00
2) = �4.

Next S2 
 V8(�
00
2) = �3 + �03 by Table 12. Since dimS2V8(�

00
2) � 4, we have

S2V8(�
00
2) = �3+�

0
3. If fS2 �V8(�002)g[�3] = 0, then fS2V8(�002)g[�3] = S2 �A8. Since

deg �002 < deg �3 and V8(�
00
2) is generated by '

2 and  2, there exists a nontrivial
element of fS2V8(�002)g[�3] divisible by both '2 and A8. Since ' and  are
coprime, S10 contains a nontrivial element divisible by '2 , a contradiction.
If fS2 �V8(�002)g[�03] = 0, then fS2V8(�002)g[�03] = S2 � A8 = �3, a contradiction.
Hence S2 �V8(�

00
2) = �3 + �03.

Next we consider S3 �V8(�
00
2). Since dimS2V8(�

00
2) = 6 by the above proof,

we have dimS3V8(�
00
2) � 7. By Table 12 S3 
 V8(�

00
2) = �2 + �02 + �4 so that

S3V8(�
00
2) = �2+�

0
2+�4. Assume S3 �V8(�

00
2) 6= �2+�

0
2+�4. Then by Table 13 the

only possibility is that fS3 �V8(�002)g[�4] = 0. Assume fS3V8(�002)g[�4] = S3 � A8

so that there exists an element of fS3V8(�002)g[�4] divisible by both '2 and A8.
Therefore there exists a nontrivial element of S3 divisible by  , which is a
contradiction. Hence S3 �V8(�

00
2) = �2 + �02 + �4.

Clearly S1V7(�2) = �0 + �3, S2V7(�2) = �2 + �4. Hence S1 �V7(�2) = �3 and
S2 �V7(�2) = �4.

Next S3
V7(�2) = �4
�2 = �002+�3+�
0
3 by Table 12. Since dimS2V7(�2) =

6, we have dimS3V7(�2) � 7 so that S3
V7(�2) = �002+�3+�
0
3. It is clear that

fS1V7(�2)g[�0] = S0 � A8, fS2V7(�2)g[�2] = S1 � A8. Hence fS3V7(�2)g[�3] =
S2 �A8. It is clear that fS3V7(�2)g[�03] 6= S2 �A8 and fS3V7(�2)g[�002] 6= S2 �A8.
Hence S3 �V7(�2) = �002 + �03.

Next we see dimS4V7(�2) = 10, S4V7(�2) ' S4
V7(�2) = �02+2�4. Hence
S4 �V7(�2) = �02+�4 by Table 13. It is easy to see that dimS5V7(�2) = 12. Hence
S5V7(�2) = S5
V7(�2) = �01+�

00
2+�3+2�

0
3 so that S5 �V7(�2) = �01+�3+�

0
3 = S12
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by Table 13.
Similarly we see easily that dimS1V10(�3) = dimS1V10(�

0
3) = 6. Hence

S1V10(�3) = �2 + �4, S1V10(�
0
3) = �02 + �4. If fS1 �V10(�3)g[�4] = 0, then

fS1V10(�3)g[�4] = S3 � A8. Therefore there exists a nontrivial element of
V10(�3) divisible by A8 so that V10(�3) is divisible by A8. This implies that
�V10(�3) = 0. But by the choice of it, V10(�3) ' �V10(�3), a contradiction. This
completes the proof. �

Corollary 15.4 1. S1 �V6(�
0
1) = �V7(�

0
2), S2 �V6(�

0
1) = �V8(�

0
3), S1 �V7(�2) =

�V8(�3).

2. S3 �V8(�
00
2) = S11, S5 �V7(�2) = S12, S7 �V6(�

0
1) = S13.

3. S2 �V8(�
0
3) = �002 + �3, S2 �V8(�

00
2) = �3 + �03, S2 �V8(�3) = �002 + �03.

Proof Clear. �

We omit the proof of Theorem 10.7 because we need only to follow the
proof in the E6 case verbatim.

15.5 Conclusion

We also can give a complete description of G-invariant ideals in XG. Let

� = x12 � 33x8y4 � 33x4y8 + y12; F (x; y) = �T; W (x; y) = ' :

Let I 2 XG. If Supp(OA 2=I) is not the origin, then we know that

I =
�
W (x; y)�W (a; b); T 2(x; y)� T 2(a; b); F (x; y)� F (a; b)

�
:

where (a; b) 6= (0; 0).

16 The binary icosahedral group E8

16.1 Character table

The binary icosahedral group I is de�ned as the subgroup of SL(2; C ) of order
120 generated by � and � :

� = �
�
"3; 0
0; "2

�
; � =

1p
5

��("� "4); "2 � "3

"2 � "3; "� "4

�
where " = e2�i=5. We note �5 = � 2 = �1. G acts on A 2 from the right by
(x; y) 7! (x; y)g for g 2 G. G is isomorphic to SL(2; F5). An isomorphism of
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� 1 2 3 4 5 6 7 8 9 d (h
2
� d)

1 �1 � �2 �3 �4 � �2� �7�

] 1 1 12 12 12 12 30 20 20

�0 1 1 1 1 1 1 1 1 1 (5) �
�2 2 �2 �+ ��� �� ��+ 0 �1 1 4 (11; 19)

�3 3 3 �+ �� �� �+ �1 0 0 3 (12; 18)

�4 4 �4 1 �1 1 �1 0 1 �1 2 (13; 17)

�5 5 5 0 0 0 0 1 �1 �1 1 (14; 16)

�6 6 �6 �1 1 �1 1 0 0 0 0 (15; 15)

�04 4 4 �1 �1 �1 �1 0 1 1 1 (14; 16)

�02 2 �2 �� ��+ �+ ��� 0 �1 1 2 (13; 17)

�003 3 3 �� �+ �+ �� �1 0 0 1 (14; 16)

Table 16: Character table of E8

m Sm m Sm

0 0 30 0

1 �2 29 �2

2 �3 28 �3

3 �4 27 �4

4 �5 26 �5

5 �6 25 �6

6 �003 + �04 24 �003 + �04
7 �02 + �6 23 �02 + �6

8 �04 + �5 22 �04 + �5

9 �4 + �6 21 �4 + �6

10 �3 + �003 + �5 20 �3 + �003 + �5

11 (�2) + �4 + �6 19 (�2) + �4 + �6

12 (�3) + �04 + �5 18 (�3) + �04 + �5

13 (�02 + �4) + �6 17 (�02 + �4) + �6

14 (�003 + �04 + �5) 16 (�003 + �04 + �5)

15 (2�6)

Table 17: Irreducible decompositions of Sm(E8)
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G with SL(2; F5) is given by � 7! ( 3 3
3 0 ) ; � 7! ( 2 0

0 3 ). Let � = "2 = e4�i=5. In
Slodowy's notation [Slodowy80], p. 74

� =
1

�2 � �3

�
� + �4; 1
�1; �� � �4

�
:

See Table 16 for the character table of G [Schur07] and the other relevant

invariants. The Coxeter number h of E8 is equal to 30. Let �
� = 1�p5

2
.

m k � Sm �Vk(�) m k � Sm �Vk(�)

1 11 �2 �3 1 16 �5 �4 + �6

2 11 �4 1 13 �02 �04
3 11 �5 2 13 �6

4 11 �6 3 13 �003 + �5

5 11 �003 + �04 4 13 �4 + �6

6 11 �02 + �6 5 13 �3 + �04 + �5

7 11 �04 + �5 1 16 �04 �02 + �6

8 11 �4 + �6 1 14 �003 �6

9 11 �3 + �003 + �5 2 14 �04 + �5

1 18 �3 �2 + �4 3 14 �02 + �4 + �6

1 17 �4 �3 + �5

Table 18: Irreducible decompositions of Sm �Vk(�)

16.2 Symmetric tensors modulo n

The G-modules Sm := Sm(m=n) by �nat := �2 for small values of m split into
irreducible G-modules as in Table 17. The factors of Sm in brackets are those
in SMcKay. We use the same notation �Vm(�) and Vm(�) for � 2 IrrG as before.

We de�ne irreducible G-submodules of V15(�6) (' ��26 ) and �i, �j by

W 00
3 := S1V14(�

00
3); W 0

4 := S1V14(�
0
4); W5 := S1V14(�5);

�1 := x10 + 66x5y5 � 11y10; �2 := �11x10 � 66x5y5 + y10

�1 := x10 � 39x5y5 � 26y10; �2 := �26x10 + 39x5y5 + y10

Lemma 16.3 The G-modules Sm �Vk(�) split into irreducible G-submodules as
in Table 18.
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Proof We give a brief proof of the lemma. Recall that the ring of G-
invariant polynomials is generated by three elements A12, A20 and A30 of
degree 12, 20, 30 respectively. See [Klein], p. 55 or Table 4. Note that
S1 
 V11(�2) = �2 
 �2 = �0 + �3. Hence S1 
 V11(�2) = �0A12 + �3. In fact
A12 = xy(x10 + 11x5y5 � y10) by [Klein], p. 56. It follows that S1 �V11(�2) =
�3. Similarly Sk 
 V11(�2) � Sk�1A12. Therefore S2 
 V11(�2) = �2 + �4,
S2 �V11(�2) = �4, S3
V11(�2) = �3+�5, S3 �V11(�2) = �5, S4
V11(�2) = �4+�6,
S4 �V11(�2) = �6, S5 
 V11(�2) = �003 + �04 + �5, S5 �V11(�2) = �003 + �04. All of
these are proved as in Lemma 15.3. In fact, for instance dimS5V11(�2) = 7
by Table 19, and �6 
 �2 = �003 + �04 + �5 so that S5 �V11(�2) = �003 + �04.

We see S6 �V11(�2) = �02+�6 because S17 = �02+�4+�6 and �2
S5 �V11(�2) =
�2
(�003+�04) = �02+2�6 contains no �4. S18 = �3+�

0
4+�5 and �2
S6 �V11(�2) =

�2
(�02+�6) contains no �3, whence S7 �V11(�2) = �04+�5. Similarly S8 �V11(�2) =
�4 + �6 because S19 = �2 + �4 + �6, �2 
 S7 �V11(�2) = �02 + �4 + 2�6. By
Table 17 S20 = �3 + �003 + �5. �2 
 S8 �V11(�2) = �3 + 2�5 + �003 + �04. Hence
S9 �V11(�2) = �3 + �003 + �5 = S20.

S1 �V18(�3) = �2 + �4 follows from comparison of S1 
 �V18(�3) and S19 and
the fact that any polynomial in V18(�3) is not divisible by A12.

Similarly S1 �V17(�4) = �3 + �5, S1 �V16(�5) = �4 + �6 and S1 �V13(�
0
2) = �04.

Since �3 
 �02 = �6, we see S2 �V13(�
0
2) = �6. One checks dimS3V13(�

0
2) =

dimS1W
0
4 = 8 by using Table 19. It follows from this that S3 �V13(�

0
2) =

�003 + �5. Similarly it is clear that S4V13(�
0
2) = S4 
 V13(�

0
2) = �4 + �6 and

S5 �V13(�
0
2) = S5
 �V13(�

0
2) = S18. Note dimSkV14(�

00
3) = 3(k+1) for k = 1; 2; 3

so that SkV14(�
00
3) = Sk 
 V14(�

00
3). It follows from it that Sk �V14(�

00
3) = Sk 
 �003

for k = 1; 2; 3. In particular, S2 �V14(�
00
3) = �3 
 �03 = �04 + �5, S3 �V14(�

00
3) =

�02 + �4 + �6 = S17. �

Corollary 16.4 1. Sk �V11(�2) = �V11+k(�k+2) for 1 � k � 3; S1 �V13(�
0
2) =

�V14(�
0
4).

2. S9 �V11(�2) = S20, S5 �V13(�
0
2) = S18, S3 �V14(�

00
3) = S17.

3. S2 �V14(�5) = �003 + �04, S2 �V14(�
0
4) = �003 + �5, S2 �V14(�

00
3) = �04 + �5.

Proof By Table 19, dimS1W
00
3 = 9, dimS1W

0
4 = 8, dimS1W5 = 7. Hence

S2V14(�
00
3) = S1W

00
3 = �4 + �5, S2 �V14(�

0
4) = S2V14(�

0
4) = S1W

0
4 = �003 + �5,

S5 �V11(�2) = S2 �V14(�5) = S1W5 = �003 + �04. �

In order to prove Theorem 10.7 in the E8 case we have only to follow the
proof of Theorem 10.7 in the Dn or E6 case verbatim. We omit the details.
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m � Vm(�)

11 �2 x�1;�y�2
19 �2 �57x15y4 + 247x10y9 + 171x5y14 + y19

�x19 + 171x14y5 � 247x9y10 � 57x4y15

12 �3 x2�1;�5x11y � 5xy11; y2�2

18 �3 �12x15y3 + 117x10y8 + 126x5y13 + y18

45x14y4 � 130x9y9 � 45x4y14

x18 � 126x13y5 + 117x8y10 + 12x3y15

13 �4 x3�1;�3x12y + 22x7y6 � 7x2y11

�7x11y2 � 22x6y7 � 3xy12; y3�2

17 �4 �2x15y2 + 52x10y7 + 91x5y12 + y17

10x14y3 � 65x9y8 � 35x4y13

�35x13y4 + 65x8y9 + 10x3y14

�x17 + 91x12y5 � 52x7y10 � 2x2y15

14 �5 x4�1;�2x13y + 33x8y6 � 8x3y11

�5x12y2 � 5x2y12

�8x11y3 � 33x6y8 � 2xy13;�y4�2
16 �5 64x15y + 728x10y6 + y16

66x14y2 + 676x9y7 � 91x4y12

56x13y3 + 741x8y8 � 56x3y13

91x12y4 + 676x7y9 � 66x2y14

x16 + 728x6y10 � 64xy15

13 �02 y3�2;�x3�1
17 �02 x17 + 119x12y5 + 187x7y10 + 17x2y15

�17x15y2 + 187x10y7 � 119x5y12 + y17

14 �003 x14 � 14x9y5 + 49x4y10

7x12y2 � 48x7y7 � 7x2y12

49x10y4 + 14x5y9 + y14

16 �003 3x15y � 143x10y6 � 39x5y11 + y16

�25x13y3 � 25x3y13

x16 + 39x11y5 � 143x6y10 � 3xy15

Table 19: Vm(�)(E8)
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m � Vm(�)

14 �04 xy3�2;�x4�1; y4�2;�x3y�1
16 �04 �2x15y + 77x10y6 � 84x5y11 + y16

35x12y4 + 110x7y9 + 15x2y14

15x14y2 � 110x9y7 + 35x4y12

�x16 � 84x11y5 � 77x6y10 � 2xy15

15 �6 W 00
3 +W 0

4 =W 0
4 +W5 = W5 +W 00

3 ' ��26
15 W 00

3 := S1V14(�
00
3) (' �6)

x15 + 84x10y5 + 77x5y10 + 2y15

�x14y + 14x9y6 � 49x4y11

�7x13y2 + 48x8y7 + 7x3y12

7x12y3 � 48x7y8 � 7x2y13

�49x11y4 � 14x6y9 � xy14

�2x15 + 77x10y5 � 84x5y10 + y15

15 W 0
4 := S1V14(�

0
4) (' �6)

x15 + 39x10y5 � 143x5y10 � 3y15

�2x14y + 78x9y6 + 52x4y11

x13y2 � 39x8y7 � 26x3y12

�26x12y3 + 39x7y8 + x2y13

52x11y4 � 78x6y9 � 2xy14

3x15 � 143x10y5 � 39x5y10 + y15

15 W5 := S1V14(�5) (' �6)

5x15 + 330x10y5 � 55x5y10

�7x14y + 198x9y6 � 43x4y11

�19x13y2 + 66x8y7 � 31x3y12

�31x12y3 � 66x7y8 � 19x2y13

�43x11y4 � 198x6y9 � 7xy14

�55x10y5 � 330x5y10 + 5y15

Table 19: Vm(�)(E8), continued
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17 Fine

We would like to mention some related problems that are unsolved or the
subject of current research.

Conjecture 17.1 Let G be any �nite subgroup of SL(3; C ). Then HilbG(A 3)
is a crepant smooth resolution of A 3=G.

The conjecture is solved a�rmatively in the Abelian case [Nakamura98],
where for any �nite Abelian subgroup G of GL(n; C ) the Hilbert scheme
HilbG(A n) is described as a (possibly nonnormal) toric variety. There is
a McKay correspondence [Reid97], [INkjm98] similar to [GSV83]. See also
[Nakamura98]. In general the normalization of HilbG(A n) is a torus embed-
ding associated with a certain fan Fan(G) given explicitly by using some
combinatorial data arising from the given group G. However in general it
is not known whether HilbG(A n) is normal. There are various examples of
HilbG(A n). Reid gave some examples of singular HilbG for �nite Abelian
subgroups G in GL(3; C ) in private correspondence.

If G is the cyclic subgroup of SL(4; C ) of order two generated by minus the
identity then HilbG(A 4) is nonsingular; however, it is not a crepant resolution
of A 3=G. There are also some examples of Abelian subgroups of SL(4; C ) for
which HilbG(A 4) is singular, although a crepant resolution does exist. The
simplest example is the Abelian subgroup of order eight consisting of diago-
nal 4 � 4 matrices with diagonal coe�cients �1. [Kidoh98] gave a concrete
description of HilbG(A 2) for a �nite Abelian subgroup G of GL(2; C ) by using
two kinds of continued fractions.

We will treat the non-Abelian cases of Conjecture 17.1 elsewhere [GNS98];
in almost all the non-Abelian case, a certain beautiful duality in m=n is ob-
served [GNS98]. See also Section 7.

The following question would be important for future applications:

Problem 17.2 Let G be a �nite subgroup of SL(n; C ), N a normal subgroup
of G. When is HilbG(A n) ' HilbG=N (HilbN (A n))?

Unfortunately the answer is negative in general in dimension three. This will
appear in [GNS98].
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