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0. 7 classes of surfaces

The purpose of this talk is to give a brief survey on surfaces of class VII0. This
is the updated version of my survey in Sugaku Expositions in 1989.

As you know, algebraic surfaces were classified by Italian school, later by the
Russian school of Shafarevich, and then by Kodaira. As everybody knows now,
compact complex surfaces, in other words, compact complex manifold of dimension
two, free from (−1)-curves, are classified into the following seven classes:
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I. Ruled surfaces, namely, P2 or birational to P1 × C, (C a curve)
II. K3 surfaces

III. Abelian surfaces
IV. Kähler elliptic surfaces including Enriques surfaces
V. Projective surfaces of general type, namely, Pm = O(m2).

VI. NonKähler elliptic surfaces with b1 ≥ 3 odd
VII. NonKähler elliptic surfaces with b1 = 1

where the classes from I to V are Kähler, while the other are nonKähler.
We say that a compact complex surface is a VII0-surface if b1 = 1 and free from

(−1)-curves.

1. Hopf surfaces

1.1. Hopf surfaces. In the study of VII0-surfaces, the construction of examples
was extremely important because there are few examples when Kodaira first defined
the class of surfaces. He knows only Hopf surfaces and some elliptic surfaces other
than Hopf surfaces.

A Hopf surface is a typical example of VII0-surfaces. It is the quotient of C2 \
O(:the origin)/ infinite cyclic group action.

Let us define
g : (z1, z2) = (αz1 + azm

2 , βz2).

for α, β ∈ C, 0 < |α| < 1, 0 < |β| < 1. Then let us define G to be the infinite cyclic
group G generated by g. Then the quotient of C2 \ O by G is a compact complex
surface with b1 = 1, free from (−1)-curves.

This is called a primary Hopf surface.
It has an elliptic curve z2 = 0.

Theorem 1.1.1. Let S be a primary Hopf surface. Then the following are equiva-
lent:

1. S has a nontrivial(=nonconstant) meromorphic functions,
2. a = 0 and αp = βq for some positive integers p and q.

Theorem 1.1.2. (Kodaira) Let S be a surface with b1 = 1, b2 = 0 having no
meromorphic functions. Then the following are equivalent:

1. S has a curve, (which is easily proved to be an elliptic curve,)
2. There is a primary Hopf surface S′ which is a finite unramified covering of S.

(Then we call S a (not necessarily primary) Hopf surface.)

Theorem 1.1.3. (Kato, see [N84]) Let S be a surface with b1 = 1 having no mero-
morphic functions. If S has precisely two elliptic curevs, the it is isomorphic to a
primary Hopf surface.

2. Inoue surfaces with b2 = 0

2.1. Construction. Let M be a 3 × 3 integral matrix with detM = 1. Let α, β, β
be eigenvalues of M with α > 0, α �= 1 and Imβ > 0. Let (a1, a2, a3) ∈ R3 and
(b1, b2, b3) ∈ C3 be eigenvectors of M corresponding to eigenvalues α, β. Let H be
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the upper half plane of dimension one and we define transformations of H× C by

g0 : (w, z) �→ (αw, βz),

gi : (w, z) �→ (w + a1, z + bi) (i = 1, 2, 3),

h0 : (w, z) �→ (αw, βz),

hi : (w, z) �→ (w + a1, z + bi) (i = 1, 2, 3).

Let G+
M be the group generated by gj (j = 0, 1, 2, 3), and G−

M the group generated
by hj (j = 0, 1, 2, 3). Both the groups are isomorphic as abstract groups, and
they have respectively compact quotients of H × C. Let S+

M = H × C/G+
M and

S−
M = H× C/G−

M .

Theorem 2.1.1. (Inoue 1974) The surfaces S+
M = H × C/G+

M and S−
M = H ×

C/G−
M have the following properties:

1. b1 = 1, b2 = 0,
2. they have no curves,
3. they are diffeomorpic to each other, but they are not isomorphic.

Suppose that S be a compact complex surface with b1 = 1, b2 = 0 having no
meromorphic functions except constants. Then we note that Pic(S) := H1(S,O∗

S) =
exp H1(OS) = H1(S,C∗), the set of all flat line bundles on S. Because

0 → H1(S,Z) → H1(S,OS)(= H1(S,C))
exp→ H1(S,O∗

S) → H2(S,Z) (exact),

where H2(S,Z) is a torsion group. In other words, a certain power of any holomor-
phic line bundle on S is a flat line bundle.

Theorem 2.1.2. (Inoue 1974) Let S be a compact complex surface with b1 = 1, b2 =
0 having no meromorphic functions except constants. If its tangent bundle is not
stable in the sense that H0(S,TS(F )) �= 0 for some line bundle F on S. (In other
words, TS has a nontrivial sublinebundle.) Then S is isomorphic to either S+

M or
S−

M .

Theorem 2.1.3. (Li-Yau-Zheng 1994, Teleman 1994) Let S be a compact complex
surface with b1 = 1, b2 = 0 having no meromorphic functions except constants. Then
the tangent bundle TS of S has a nontrivial sublinebundle.

The second theorem is very important in the sense that it suggests that the
stability or instability of the tangent bundle might be effective for classification of
the surfaces with b2 positive.

3. Inoue surfaces with b2 positive

3.1. Quadratic fields. There are three kinds of Inoue surfaces, hyperbolic, half
and parabolic. A hyperbolic (respectively, a half or a parabolic) Inoue surface has
two cycles of rational curves (respectively, a unique cycle of rational curves, or an
elliptic curve and a cycle of rational curves). Now let me recall the construction of
hyperbolic Inoue surfaces.
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Let K be a real quadratic field, M a complete module in K, namely a free Z-
module of rank two in K. As usual we define

U(M) = {x ∈ K;xM = M,x > 0},
U+(M) = {x ∈ K;xM = M,x > 0, x′ > 0},

where x′ denotes the conjugate of x.
By Dirichlet’s theorem the groups U(M) and U+(M) are infinite cyclic, and

U+(M) is a subgroup of U(M) with [U(M) : U+(M)] = 1 or 2.
For instance let K = Q(ω), ω a quadratic irrationality, M = Z + Zω, U(M) =

{αn;n ∈ Z} and U+(M) = {αn
+;n ∈ Z}, where 0 < α < 1, 0 < α+ < 1.

For instance, if ω = (3+
√

6)
2 , then α = α+ = 5 − 2

√
6, U(M) = U+(M).

If ω = (3+
√

5)
2 , then α = α2

+ = (−1+
√

5)
2 and α+ = (3−√

5)
2 , [U(M) : U+(M)] = 2.

3.2. Hyperbolic Inoue surfaces. Let V be a subgroup of U+(M) of finite index.
Then by imitating a description of a Hilbert modular surface near one of the cusps,
we can construct a new surface with b1 = 1 as follows. For the pair (M,V ), we
define a group G(M,V ) of transformations of H× C as follows:

G(M,V ) =
{(

ε m
0 1

)
∈ GL(2,R); ε ∈ V,m ∈ M

}
,

(
ε m
0 1

)
: (z1, z2) �→ (εz1 + m, ε′z2 + m′).

The quotient space Y ′(M,V ) = H × C/G(M,V ) is an open complex surface,
which is compactified into a compact complex surface Y (M,V ) by adding two cusps
∞,∞′. It is a normal surface, whose minimal resolution we denote by

π : S(M,V ) → Y (M,V ).

The surface S(M,V ) is called a hyperbolic Inoue surface. However if we define
the action (

ε m
0 1

)
: (z1, z2) �→ (ε′z1 + m′, εz2 + m),

then this produces another hyperbolic Inoue surface, the transposition tS(M,V ) of
S(M,V ) in the sense of Zaffran. It is quite recent through the discussion with Fujiki
that I got aware of this fact. We note that tS(M,V ) � S(M ′, V ′), which is a source
of the duality in Section 7. See also [N86].

This is notable because we have similar pairs S+
M and S−

M in the b2 = 0 cases.

Theorem 3.2.1. (Inoue 1977) Let V be a subgroup of U+(M) of finite index. Then
the surface S(M,V ) has the following properties:

1. b1 = 1,
2. the inverse images π−1(∞) and π−1(∞′) are respectively a cycle of rational

curves
3. b2 = n + m, where n and m are the numbers of (possibly singular) rational

curves of π−1(∞) ∪ π−1(∞′).

Theorem 3.2.2. (Nakamura 1984) Any VII0 surface with two cycles of rational
curves is isomorphic to a hyperbolic Inoue surface.
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3.3. Half Inoue surfaces. Assume [U(M) : U+(M)] = 2. Then we choose an
infinite cyclic subgroup V of U(M) of odd index. Then V 2 := {α2;α ∈ V } is a
subgroup of U+(M) and we have a hyperbolic Inoue surface S(M,V 2), on which the
group V/V 2 acts on S(M,V 2) as a fixed-point free involution ι. We call the quotient
S(M,V 2)/V/V 2 a half Inoue surface.

Theorem 3.3.1. (Inoue 1977) The quotient Ŝ(M,V ) = S(M,V 2)/{1, ι} is a VII0
surface, which has a unique cycle C of rational curves with

C2 = −b2(Ŝ(M,V )) = −b2(C).

Theorem 3.3.2. (Nakamura 1984) Let S be a VII0 surface with C a cycle of ra-
tional curves. Assume one of the following:

1. C2 = −b2(S), (which implies b2(S) > 0,)
2. b2(C) = b2(S) > 0,
3. [H1(S,Z),H1(C,Z)] ≥ 2.

Then S is isomorphic to a half Inoue surface.

3.4. Parabolic Inoue surfaces. See Section 4 below.

4. Enoki surfaces and the others

4.1. Enoki surfaces. Let X be a P1-bundle over an elliptic curve with an infinity
section C∞ (but possibly with no zero section) with C2∞ = −n. Then the complement
of C∞ in X can be it uniquely compactified into a VII0 surface S with b2(S) = n
by replacing C∞ by a cycle of n-rational curves. This is called an Enoki surface. If
X has also the zero section, then S has an elliptic curve too. In the second case we
call the surface a parabolic Inoue surface. Thus the Enoki surfaces have a cycle
of rational curves and at most an elliptic curve.

Theorem 4.1.1. (Enoki 1981) Suppose that a VII0 surface S has C a cycle rational
curve with C2 = 0. Then S is isomorphic to an Enoki surface, in other words, the
complement of C in S is an affine line bundle (in general with no zero section) over
an elliptic curve.

Theorem 4.1.2. (Nakamura 1984) Any VII0 surface with an elliptic curve E and
C a cycle of rational curves is isomorphic to a parabolic Inoue surface.

Corollary 4.1.3. (Nakamura 1984) Let S be a VII0 surface with an elliptic curve
E. Then S is either an elliptic VII0 surface, or a Hopf surface or a parabolic Inoue
surface.

4.2. Surfaces with a cycle each. I quote one more general fact which appears to
be of some importance:

Theorem 4.2.1. (Nakamura 1990) Suppose that a VII0 surface S has a cycle of
rational curves. Then there is a smooth family π : X → D of VII0 surfaces over a
disc such that X0 = S and Xt is a blown-up primary Hopf surface for any t �= 0.

In particular, S is homeomorphic to the connected sum of S1×S3 and some copies
of (−P2) (namely, P2 with reversed orientation).
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Proof. Can show H2(S,TS(−logC)) = 0, which implies that C is deformed into a
smooth elliptic curve by deforming S. Then any general fiber of the family smoothing
C turns out to be a blown-up primary Hopf surface by using Theorem 4.1.3

Corollary 4.2.2. Suppose that a VII0 surface S has b2(S) (> 0) rational curves.
Then there is a smooth family π : X → D over a disc such that X0 = S and Xt is
a blown-up primary Hopf surface for any t �= 0.

5. Surfaces with a GSS each

5.1. Flat deformations. Let us consider a one-point blow-up Y of P2. The surface
Y has disjoint two rational curves C0 and C1, with C2

0 = 1 and C2
1 = −1. The curve

C0 is (the total transform of) a line of P2, and the curve C1 is the total transform
of the center of blow-up.

We identify the curves to get a singular surface Z with a double curve. This
surface can be deformed into a nonsingular surface. The flat family deforming Z
into a smooth one was constructed by Kodaira (Amer. J. Math. 1968).

Theorem 5.1.1. (Kodaira 1968, Oda 1978) There is a proper flat family π : X →
D over one dimensional disc D such that

1. X0 = Z, Xt (t �= 0) is nonsigular,
2. Xt (t �= 0) is a primary Hopf surface.

5.2. Kato’s surfaces with GSS. The construction due to Kodaira can be gener-
alized to produce quite a lot of new VII0 surfaces. This was done by Oda in some
of the toric cases, and later by Nakamura in the general cases.

Theorem 5.2.1. (Nakamura 1983) Suppose that Y is a rational surface having
disjoint two rational curves C0 and C1, with C2

0 = 1 and C2
1 = −1. Let Z be a

singular surface with a double curve obtained by identifying the curves Ci of Y .
Then there is a proper flat family π : X → D over one dimensional disc D such that

1. X0 = Z, Xt (t �= 0) is nonsigular,
2. Xt (t �= 0) is a VII0 surface, which turns out to be a surface with GSS.
Conversely any surface S with a GSS (which was discovered by Kato) is obtained

this way.

The Enoki surfaces in Section 4 are obtained in the way of Theorem 5.2.1. For
instance, when we choose a successive blow up of P2 having C0 with C2

0 = 1, and a
chain of rational curves C1, C2, · · · , Cn with C2

1 = C2 = · · · = C2
n−1 = −2, C2

n = −1,
then we have from one of the family of the above theorem a VII0 surface with an
elliptic curve and a cycle of rational curves. by identifying the rational curves C0

and Cn carefully. The surface thus constructed is a parabolic Inoue surface.
If we twist the family a little by choosing generic identification of two rational

curves C0 and Cn, we will still have a family from Theorem 5.2.1 with general fiber
an Enoki surface. It is a VII0 surface S with a cycle C of rational curves such that
S − C is an affine line bundle over an elliptic curve.

Theorem 5.2.2. (Kato,Nakamura,Dloussky)
1. Let S be a surface with a GSS. Then it has b2 rational curves, which is in

general positive, and can be arbitrarily large.
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2. Enoki surfaces, hyperbolic, half and parabolic Inoue surfaces have a GSS each.

Theorem 5.2.3. (Dloussky-Oeljeklaus-Toma 2003) Suppose that a VII0 surface S
has b2(S) rational curves. Then S has a GSS, in other words, it is isomorphic to a
general fiber of the family in Theorem 5.2.1.

curves classification

1 at least 3 elliptic elliptic VII0 surfaces
2 exactly 2 elliptic Hopf surfaces
3 elliptic + no cycle Hopf surfaces
4 elliptic + a cycle parabolic Inoue surfaces
5 2 cycles hyperbolic Inoue surfaces
6 a cycle C with C2 = 0 Enoki surfaces
7 a cycle C with C2 < 0

(7-1) b2(S) = b2(C) half Inoue surfaces
(7-2) b2(S) curves surfaces with GSS (D-O-T)

8 Otherwise Teleman in progress

6. Surfaces with b2 = 1, 2

6.1. Surfaces with b2 = 1. Let me give some examples of VII0 surfaces with small
b2. If b2 = 1, then the examples are given as follows. First an Enoki surface with
n = 1 enjoys the property. It is a VII0 surface with a rational curve C with a node
with C2 = 0. This has a nontrivial two-dimensional moduli as Enoki surfaces , to
be more precise, one modulus parametrizing the affine bundle structures, and one
modulus of elliptic curves. It can have an elliptic curve E in addition, which is then
a parabolic Inoue surface. If we choose ω = (3+

√
5)

2 , and M = Z + Zω, then as we
saw in Section 3,

U(M) = {αn;n ∈ Z}, U+(M) = {αn
+;n ∈ Z}, [U(M) : U+(M)] = 2

where α = (−1+
√

5)
2 and α+ = (3−√

5)
2 . Let S = S(M,U(M)). Then S is a half

Inoue surface with b2(S) = 1 having a unique rational curve with a node. We see
C2 = −b2(S) = −1. Thus there are only

1. Enoki surfaces with n = 1,
2. a parabolic Inoue surface with b2 = 1,
3. a half Inoue surface Ŝ(M,U(M)) where M = Z + Z (3+

√
5)

2 .
In other words, let C be a cycle of rational curves on S with b1 = b2 = 1. Then

C is a rational curve with a node and C2 = 0, or C2 = −1. Moreover we can choose
a homology basis e of S with e2 = −1 so that

1. KS = e in any case,
2. either C = 0,
3. or C = −e.

where e comes from a (−1) curve on St in Theorem 4.2.1, whose reminiscent remains
in the formula KS = e.

This is the case Teleman is going to discuss. He proved
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Theorem 6.1.1. (Teleman 2005) Any VII0 surface with b2 = 1 has a rational curve
(with a node).

This completes the classification of VII0 surfaces with b2 = 1.

6.2. Surfaces with b2 = 2. In this case, there are Enoki surfaces with b2 = 2
and parabolic Inoue surfaces with b2 = 2. Moreover, a hyperbolic Inoue surface
S(M,U+(M)) has b2 = 2 where M = Z + Z (3+

√
5)

2 . Besides these surfaces there are
VII0 surfaces, each having a pair of curves C1, C2 with

C2
1 = −1, C2

2 = −2, C1C2 = 1

where C1 is a rational curve with a node and C2 a smooth rational curve.
In other words, we can choose a homology basis e1, e2 of S with e2

i = −1, eiej =
0(i �= j)such that

1. KS = e1 + e2 in any case,
2. either C1 = −e1 + e2, C2 = e2 − e1,C = C1 + C2 = 0,
3. or C1 = −e1, C2 = −e2,
4. or C1 = −e1, C2 = e1 − e2

This will appear in the discussion of Teleman for b2 = 2. He proved

Theorem 6.2.1. (Teleman 2007) Any VII0 surface with b2 = 2 has a cycle of
rational curves. Hence in particular, it can be deformed into a blown-up primary
Hopf surface.

7. Duality

7.1. Cusp singularity. Let us recall first that the hypersurface

Tp,q,r : xp + yq + zr − xyz = 0

has an isolated singularity at the origin. Its minimal resolution has a cycle of rational
curves as the exceptional set. It is as a germ the same as one of the cusps of a Hilbert
modular surface.

7.2. The pair T3,4,4 and T2,5,6. Let me take a pair of hypersurfaces

T3,4,4, T2,5,6.

We resolve the singularities to get cycles of rational curves

C1 + C2, D1 + D2 + D3

with
C2

1 = −3, C2
2 = −4, D2

1 = −2,D2
2 = −3,D2

3 = −3.

We note that C = C1 + C2 ad D1 + D2 + D3 are cycles of rational curves.
Blowing up at one of the intersection point of C1 and C2 we get a cycle of three

rational curves
C ′

0 + C ′
1 + C ′

2

with
(C ′

0)
2 = −1, (C ′

1)
2 = −4, (C ′

2)
2 = −5.

We have a pair of triples
(1, 4, 5), (2, 3, 3).
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Let us add (1, 1, 1) to each to get

(2, 5, 6), (3, 4, 4),

which turn out to be the same as the triples interchanged.
This is the strange duality of the cusp singularities I discovered in the course of

the study of hyperbolic Inoue surfaces. If we choose ω = (3+
√

6)
2 , M = Z + Zω, and

V = U+(M), then we have a hyperbolic Inoue surface S = S(M,U+(M)). It has
two cycles of rational curves, which are just C and D. They show the duality as
above, and moreover, for instance,

C2 = −3 = −b2(D),D2 = −2 = −b2(C)

and so on.

7.3. K3 surfaces. Let Z be the above hyperbolic Inoue surface S = S(M,U+(M))
with C and D contracted to one point each. This singular surface can be deformed
into a smooth surface, which is a K3 surface. See also [Loojenga, Ann. Math.]

7.4. Further details. See the references of the references below for more details of
all the topics of this survey.
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