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of stable quasi-abelian schemes

and degenerations associated with the E8-lattice
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Abstract.

We study certain degenerate abelian schemes (Q0, L0) that are
GIT-stable in the sense that their SL-orbits are closed in the semistable
locus. We prove the vanishing of the cohomology groups Hq(Q0, L

n
0 ) =

0 for q, n > 0 for a naturally defined ample invertible sheaf L0 on Q0.
When n = 1, this implies that H0(Q0, L0), the space of global sec-
tions, is an irreducible module of the noncommutative Heisenberg
group of (Q0, L0).

§1. Introduction

In 1970’s Namikawa [Nw76] and Nakamura [Nr75] studied the prob-
lem of compactifying the moduli Ag of abelian varieties over C, and
their papers introduced a certain class of degenerate abelian varieties.
In 1990’s in their joint work [AN99] Alexeev and Nakamura again dis-
cussed the same problem of compactifying Ag over any field in an alge-
braic manner, and the objects they studied are nearly the same as those
studied by Namikawa and Nakamura in 1970’s.

After their joint work [AN99] Alexeev and Nakamura independently
constructed respectively reasonable compactifications, using almost the
same class of degenerate abelian varieties or schemes as above. Alex-
eev’s moduli Ag [A02] is a coarse moduli of a certain kind of principally
polarized reduced, possibly degenerate, abelian varieties with (contin-
uous) group action. On the other hand Nakamura’s moduli [Nr99] is
a fine moduli SQg,K of polarized, possibly nonreduced, possibly de-
generate, abelian schemes which are GIT-stable in the sense that their
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SL-orbits are closed in the semistable locus, though their stabilizer sub-
groups of SL could be of infinite order. The moduli SQg,K compactifies
the moduli scheme Ag,K of abelian varieties with certain noncommu-
tative level K-structures (to be more precise, of abelian varieties, each
with a very ample invertible sheaf linearized with regards to the Heisen-
berg group G(K)) where K is a certain symplectic, sufficiently large
finite abelian group. We note that both Ag and SQg,K are projective
over Z or Z[ζN , 1

N ] respectively where N =
√
|K|. Since SQg,K is a fine

moduli, there is a universal family over SQg,K of polarized generalized
abelian schemes of dimension g so that any fibre of the family over a geo-
metric point of SQg,K represents an isomorphism class corresponding to
the geometric point. We call any fibre of the family a projectively stable
quasi-abelian scheme, or simply a PSQAS. We note that a PSQAS is
singular if and only if the PSQAS lies over the boundary SQg,K \Ag,K .

The purpose of this article is first of all to prove the vanishing of
certain cohomology groups of PSQASes. This solves a conjecture raised
by [Nr99, section 9] in the affirmative. The second purpose of this arti-
cle is to study PSQASes associated with the E8 lattice. The structures
of some of PSQASes over the boundary of SQg,K are very complicated
when they are nonreduced. Any even unimodular definite lattice pro-
vides us with a nonreduced PSQAS. Since there are at least 8 · 107

inequivalent even unimodular definite lattice for g = 32, there could be
a lot of nonreduced PSQASes. The first nontrivial example of a nonre-
duced PSQAS is provided by E8 [AN99], which we will study in detail
in the second half of the article. As a matter of fact, this detailed study
of the E8-case removes the last psychological obstacle for our complete
computation of the cohomology groups of PSQASes in the general case.

The article is organized as follows. The first two sections 2 and 3
recall the basic facts about Delaunay decompositions and degenerating
families of abelian varieties. We construct a particular class of degen-
erating families (Q, L) of polarized abelian varieties over complete dis-
crete valuation rings, whose closed fibres (Q0, L0) are nothing but the
PSQASes mentioned above. The sections 4, 5 and 6 are devoted to
studying closed fibres (Q0, L0) of the families (Q, L), in particular, their
cohomology groups Hq(Q0, L

n
0 ) in the general case including the case

where Q0 is nonreduced. In the section 5, the following Theorem 1 is
proved, while in the section 4 an outline of the proof is explained. A key
result for proving Theorem 1 is proved in the section 6.

Theorem 1. Let (Q0, L0) be a PSQAS. Then Hq(Q0, L
n
0 ) = 0 for q > 0

and n > 0.

An important corollary to it is the following
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Theorem 2. Let K be a finite symplectic abelian group of order N2.
Let k be any field over Z[ζN , 1

N ]. Let G(K) be a noncommutative fi-
nite Heisenberg group, namely a central extension of K by the group
µN of N -th roots of unity. Let (Q0, L0) be a PSQAS over k with a
level G(K)-structure in the sense of [Nr99]. Then H0(Q0, L0) is an
irreducible G(K)-module of weight one.

Let L be the natural polarization of the universal family of PSQASes
over SQg,K . By Theorem 1 the 0-th direct images of Ln (n ≥ 1) are
locally free sheaves over SQg,K , whose determinant bundles are expected
to give rise to the most natural ample invertible sheaves of SQg,K .

The second half of the article starting from the section 7 is devoted
to studying a PSQAS Q0 associated with E8. Among other things the
nilradical of O0,Q0 is calculated completely in the section 11. This cal-
culation helps us to get convinced that nilpotent elements of O0,Q0 have
large support and that therefore the cohomology groups Hq(Q0, L

n
0 ) will

behave in the same manner as those of nonsingular abelian varieties.
This was psychologically a key step to the proof of Theorem 1.

We would like to thank Professor K. Shinoda for his many advices
on E8 during the preparation of the article.

§2. Basic facts about Delaunay decompositions

Let Z be the set of integers, Z0 the set of nonnegative integers, Q
the set of rational numbers, R the set of real numbers, and R0 the set
of nonnegative real numbers. Let X be a lattice of rank g, B an integral
positive definite symmetric bilinear form on X ×X . Let XQ = X ⊗Z Q
and XR = X ⊗Z R. The bilinear form B determines a distance ‖ ‖B on
XR by ‖x‖B :=

√
B(x, x) (x ∈ XR). For an arbitrary α ∈ XR we say

that a lattice element a ∈ X is α-nearest if

‖a − α‖B = min{‖b − α‖B; b ∈ X}

We define a (closed) B-Delaunay cell σ (or simply a Delaunay cell
if B is understood) to be the closed convex hull of all lattice elements
which are α-nearest for some α ∈ XR for a fixed α. Note that for a
given Delaunay cell σ, α ∈ σ is uniquely determined by σ, which we call
the hole of σ and denote by α(σ). All the B-Delaunay cells constitute a
locally finite decomposition of XR into infinitely many bounded convex
polyhedra, which we call the Delaunay decomposition DelB.

Definition 2.1. In what follows we fix the bilinear form B, so
we denote B(x, y) simply by (x, y), B(x, x) by x2 and the norm ‖x‖B

by ‖x‖ if no confusion is possible. Let Del := DelB be the Delaunay
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decomposition on XR defined by the distance ‖x‖ :=
√

B(x, x). For any
subset T of XR let Del(T ) be the set of all Delaunay cells containing
T , and Star (T ) the union of all σ ∈ Del(T ). In particular, for any
c ∈ X , Del(c) is the set of all the Delaunay cells containing c ∈ X and
Star (c) is the union of all σ ∈ Del(c). We note Del(c) = c + Del(0),
the translate of Del(0) by c. We denote by Del(k) the set of Delaunay
cells σ ∈ Del such that dim σ = k. Let Del(k)(T ) = Del(T )∩Del(k). For
a σ ∈ Del, we define Delσ to be the set of all faces of σ and Del(k)

σ :=
Del(k) ∩Delσ. For τ ∈ Del, we define Delσ(τ) := Delσ ∩Del(τ) and
Del(k)

σ (τ) := Del(k) ∩Delσ(τ).

Definition 2.2. Let D be a subset of XR. If D contains the origin
0, we define C(0, D) to be the cone over R0 generated by D, and define
Semi(0, D) to be the cone over Z0 generated by D ∩ X . For any subset
S of D we define X(S) to be the subgroup of X generated by s − t,
(∀s, t ∈ S). We denote X(S) ⊗ R by X(S)R. We also define

C(s, D) : = s + C(0, D − s) (for s ∈ D)

C(S, D) : =
⋃

a∈X(S),s∈S∩X

(a + C(s, D))

= X(S) + C(s0, D) (∀s0 ∈ S).

If S is a one-codimensional face of a g-dimensional convex polytope
D of XR, then S spans a hyperplane of XR, which we denote by H(S),
and C(S, D) is a closed half space of XR containing D bounded by H(S).

In order to make this article as self-contained as possible. we give
proofs for basic facts about Delaunay/Voronoi decompositions. See also
[Nr99].

Definition 2.3. The Voronoi cell V (0) at 0 is defined to be

V (0) = {α ∈ XR; ‖y − α‖ ≥ ‖α‖ for any y ∈ X}.

Lemma 2.4. For any x ∈ X the following are equivalent:
(i) x ∈ 2V (0) ∩ X, namely, (y, y) ≥ (x, y) for any y ∈ X,
(ii) x ∈ Star (0) ∩ X, namely, there is σ ∈ Del(0) such that x ∈

σ ∩ X.

Proof. Assume (i). Then ‖y − (x/2)‖ ≥ ‖x/2‖ for any y ∈ X ,
where the minimum of ‖y − (x/2)‖ is attained at y = 0 and x. Hence
(ii) follows.

Conversely if there is a Delaunay cell σ ∈ Del(0) such that x ∈ σ∩X ,
then there is an α ∈ XR such that ‖y−α‖2 ≥ ‖α‖2 and ‖x−α‖2 = ‖α‖2.
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Hence α ∈ V (0). By the first inequality we have ‖−y+x−α‖2 ≥ ‖α2‖ for
any y, from which it follows that ‖y‖2 ≥ 2(x−α, y), namely, x−α ∈ V (0).
Hence x = α + (x − α) ∈ 2V (0). This proves (i). This proves the
lemma. Q.E.D.

Lemma 2.5. Let ai ∈ Star (0) (1 ≤ i ≤ n). Assume that there is
z (�= 0) ∈ X such that a1 + · · ·+an = mz. Then n ≥ m, equality holding
if and only if (z, z) = (ai, z) for any i.

Proof. Since ai ∈ Star (0), we have y2 ≥ (ai, y) for any y ∈ X by
Lemma 2.4. In particular, z2 ≥ (ai, z). It follows that nz2 ≥ (a1 + · · ·+
an, z) = mz2. Hence n ≥ m. If n = m, then any inequality in the above
is equality. This proves the lemma. Q.E.D.

Definition 2.6. We say that x1, · · · , xm ∈ X (xi �= xj) are cell-
mates if there is a Delaunay cell σ ∈ Del that contains all of xi. We say
that x1, · · · , xm ∈ Star (0) are cellmates at 0 if there is a Delaunay cell
σ ∈ Del(0) that contains all of xi.

Lemma 2.7. Let σ be a Delaunay cell and z (�= 0) ∈ X. Then
(i) σ ∩ (mz + σ) = ∅ for m ≥ 2.
(ii) Star (0) ∩ (mz + Star (0)) = ∅ if m ≥ 3.

Proof. Suppose that c ∈ σ ∩ X and d = c + mz ∈ σ for some
nonzero z ∈ X . Since c and d are cellmates, we have c − d ∈ Star (0).
Hence mz ∈ Star (0). It follows from Lemma 2.5 that m = 1. This
proves (i).

Next we prove (ii). Suppose Star (0) ∩ (mz + Star (0)) �= ∅. Then
there are a, b and z ∈ X such that a− b = mz and a, b ∈ Star (0). Then
by Lemma 2.5 we have m ≤ 2. This proves the assertion. Q.E.D..

Lemma 2.8. (i) Let σ ∈ Del(0) and b ∈ C(0, σ) ∩ X. If
b /∈ σ ∩ X, then there is a ∈ σ ∩ X such that (b − a, a) > 0.

(ii) If x /∈ Star (0) ∩ X, then there exists a ∈ Star (0) ∩ X such
that ‖x‖2 > ‖x − a‖2 + ‖a‖2.

Proof. We prove (i). Let b ∈ C(0, σ) ∩ X and α(σ) the hole of σ.
We assume (b, a) ≤ (a, a) for any a ∈ σ ∩ X . Then we prove b ∈ σ ∩ X .
For this let b =

∑r
i=1 riai for ai ∈ σ ∩ X and some ri ≥ 0. We see

(b, b) =
r∑

i=1

ri(b, ai) ≤
r∑

i=1

ri(ai, ai) = 2
r∑

i=1

ri(α(σ), ai) = 2(α(σ), b)

whence (b, b) = 2(α(σ), b). It follows b ∈ σ ∩ X .
We shall prove (ii). Let x ∈ X . Since Star (0) contains an open

neighborhood of the origin in XR, there is σ ∈ Del(0) such that x ∈
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C(0, σ) ∩ X \ σ. By (i) there exists a ∈ σ ∩ X such that (x − a, a) > 0.
Hence ‖x‖2 > ‖x − a‖2 + ‖a‖2. Q.E.D.

Definition 2.9. We set

v(x) = min{1
2

m∑
i=1

(xi, xi) ; x = x1 + · · · + xm, xi ∈ X, m ≥ 1}

v(x, c) = v(x) + (x, c).

Lemma 2.10. Let σ ∈ Del(0) and α(σ) ∈ σ the hole of σ. Then
v(x) ≥ (x, α(σ)) for any x ∈ X, equality holding iff x ∈ Semi(0, σ).

Proof. Choose xi ∈ X such that x = x1 + · · · + xm and v(x) =
1
2

∑m
i=1(xi, xi). Then

m∑
i=1

(xi, xi) ≥ 2
m∑

i=1

(xi, α(σ)) = 2(x, α(σ)).

This proves v(x) ≥ (x, α(σ)). If v(x) = (x, α(σ)), then we have
(xi, xi) = 2(xi, α(σ)) for any i. The equality (xi, xi) = 2(xi, α(σ)) im-
plies that xi ∈ σ ∩ X . This proves x ∈ Semi(0, σ). Q.E.D.

§3. Degenerating families of abelian varieties — general case

Let R be a complete discrete valuation ring, q a uniformizing pa-
rameter of R, k(0) = R/qR and k(η) the fraction field of R, 0 the closed
point and η the generic point of Spec R. The purpose of this section is
to recall the (simplified) Mumford construction over R [AN99]. See also
[M72].

Let X be a free Z-module of rank g and a(x) ∈ k(η)× := k(η) \ {0}
for any x ∈ X .

Definition 3.1. Let b(x, y) := a(x + y)a(x)−1a(y)−1. If the follow-
ing conditions are satisfied, {a(x); x ∈ X} is called a (Faltings-Chai’s)
degeneration data :

(i) a(0) = 1,
(ii) b(x, y) is a (multiplicatively) bilinear form on X × X with

values in k(η)×,
(iii) B(x, y) := valq b(x, y), a positive definite symmetric bilinear

form of X × X .

Definition 3.2. Let {a(x); x ∈ X} be a degeneration data and
A(x) = valq a(x). Let ϑ be an indeterminate over R, R[ϑ][X ] the group
algebra over R[ϑ] of the additive group X (
 Zg). The algebra R[ϑ][X ]
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is regarded as a graded algebra by setting deg(ϑ) = 1 and deg(a) = 0
for any a ∈ R[X ].

We define a graded subalgebra R̃ of R[ϑ][X ] by

R̃ : = R[a(x)wxϑ; x ∈ X ] = R[ξxϑ; x ∈ X ], ξx := qA(x)wx.

Let Q̃ := Proj(R̃) Let Y be a sublattice of X of finite index. Then
Y acts on Q̃ by

S∗
y(a(x)wxϑ) = a(x + y)wx+yϑ for y ∈ Y.

The invertible sheaf O
eQ(1) is kept invariant by the action of Y .

Let Q̃for be the formal completion of Q̃ along Q̃0 := Proj(R̃/qR̃).
The induced action of Y on Q̃for, which we denote also by Sy, is free.
The invertible sheaf O

eQfor
(1) descends to an invertible sheaf Lfor on the

formal quotient Q̃for/Y . This turns out to be ample on Q̃for/Y . In fact,
it is very ample on Q̃for/nY for any n ≥ 3. See [Nr99, Theorem 6.2].

Hence by the algebrization theorem of Grothendieck we have

Theorem 3.3. There is a projective R-scheme Q with an ample
invertible sheaf L such that the formal completion of (Q, L) along the
closed fibre is isomorphic to the pair (Q̃for/Y, O

eQfor
(1)/Y ). The generic

fibre (Qη, Lη) is a polarized abelian scheme by enlarging k(η) if neces-
sary.

Proof. The last assertion about the generic fibre follows from [M72].
We omit the details because they are more or less well known. See also
[AN99, Remark 3.10]. Q.E.D.

Proposition 3.4. Let (Q̃, L̃) = (Proj R̃, OProj eR(1)). Then

(i) Q̃ is covered with open affine subschemes W (c) := Spec S(c)
where

S(c) := R[ξx,c ; x ∈ X ] (c ∈ X), ξx,c := ξx+c/ξc

(ii) The coordinate ring S(c) of W (c) is an R-algebra of finite
type generated by ξx,c (x ∈ Star (0) ∩ X). All the ring S(c)
are isomorphic to each other as R-algebras. The isomorphism
φc,d : S(d) → S(c) is given by φc,d(ξx+d/ξd) = ξx+c/ξc for
any x ∈ X.

Remark 3.5. For a given abelian scheme G over R with G0 a split
torus over k(0), we can construct a degeneration data {a(x); x ∈ X}



230 I. Nakamura and K. Sugawara

by taking a finite base change when necessary. Let Gfor be the formal
completion of G along the closed fibre G0. Then Gfor is proved to be
isomorphic to a formal split torus Gg

m,for over R. In that case, X is
the character group of Gfor while Y is the character group of the formal
completion of the dual abelian scheme of G. Letting A(x) = valq a(x), we
see A(x+y)−A(x)−A(y) = B(x, y). Hence A(x)− 1

2B(x, x) is linear in
x, which we can write as 1

2r for some r ∈ Hom(X,Z). By furthermore
taking pull back of the family by replacing R by R[s] with s2 = q if
necessary, we may assume B(x, x) and r(x) are even-integers for any
x ∈ X . Then by choosing ux = wxsr(x) instead of wx (the coordinates
of the formal torus Gg

m,for), we may assume A(x) = 1
2B(x, x) and it

is integer-valued on X . This assumption is harmless for our study of
the closed fibres (Q0, L0) because the closed fibres are unchanged by
the pull back and we study only cohomology groups of the closed fibres.
Therefore in what follows we assume

(i) B(x, x) is even for any x ∈ X
(ii) A(x) = 1

2B(x, x), r(x) = 0.

Definition 3.6. With the notation in Definition 2.9, we define

ξ(x, c) = qv(x,c)wx = qv(x)+(x,c)wx ∈ Γ(W (c), O
eQ),

ξ̄(x, c) := ξ(x, c) ⊗ k(0), ξ(x) := ξ(x, 0) ∈ Γ(W (0), O
eQ).

We define R(c) = S(c)⊗ k(0) and U(c) = W (c)⊗ k(0) = Spec R(c).
We also set ξ̄(x) := ξ(x) ⊗ k(0). It is clear that

Γ(U(c), OU(c)) = R(c) = ⊕x∈X k(0) · ξ̄(x, c).

With the above notation, φc,d(ξ(x, d)) = ξ(x, c) for any x ∈ X .

Lemma 3.7. Let ξ̄(x) := ξ(x) ⊗ k(0) ∈ S(0) ⊗ k(0) (x ∈ X).

(i) If x /∈ Star (0) ∩ X, then ξ̄(x) = 0.
(ii) If x1, · · · , xm ∈ Star (0) are not cellmates at 0, then the prod-

uct ξ̄(x1) · · · ξ̄(xm) is either zero or nilpotent.

Proof. By Lemma 2.8 (ii) ξx is divisible by qξx−aξa in S(0), which
proves (i). Next we prove (ii). Let x = x1 + · · ·+xm. Choose σ ∈ Del(0)
such that x ∈ C(0, σ), and let α(σ) ∈ σ be the hole of σ. Then there
exist some positive integers n ∈ Z+, ni ∈ Z+ and ai ∈ σ ∩ X such that
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nx = n1a1 + · · · + nrar. We have

n
m∑

i=1

(xi, xi) ≥ 2n(α(σ),
m∑

i=1

xi) = 2(α(σ), nx)

= 2
r∑

i=1

ni(α(σ), ai) =
r∑

i=1

ni(ai, ai).

Since xi are not cellmates at 0, there is at least an xi such that
xi /∈ σ, hence (xi, xi) > 2(α(σ), xi). Therefore the above inequality is
strict. This proves (ii). Q.E.D.

Lemma 3.8. U(c0) ∩ U(c1) ∩ · · · ∩ U(cq) �= ∅ iff c0, c1, · · · , cq are
cellmates.

Proof. If c0, c1, · · · , cq are cellmates, then it is clear that U(c0) ∩
U(c1) ∩ · · · ∩ U(cq) �= ∅. We shall prove the converse. We suppose
that U(c0) ∩ U(c1) ∩ · · · ∩ U(cq) �= ∅ and that c0, c1, · · · , cq are not
cellmates to derive a contradiction. We may assume c0 = 0 without loss
of generality. We note any ξ̄ci is invertible on U(c0)∩U(c1)∩· · ·∩U(cq).
If there is some ci (i > 0) such that ci /∈ Star (0), then ξ̄ci = 0 by
Corollary 3.7, a contradiction. If ci ∈ Star (0) for any i > 0, the product
ξ̄c1 · · · ξ̄cq is zero or nilpotent by Corollary 3.7, which contradicts that
ξ̄ci is invertible on the nonempty set U(c0) ∩ U(c1) ∩ · · · ∩ U(cq). This
proves the lemma. Q.E.D.

From Lemma 2.7 (ii) and Lemma 3.8 we infer

Corollary 3.9. (i) U(c) (c ∈ X) is an affine covering of Q̃0.
(ii) If Y ⊂ mX for some m ≥ 3, then U(c) ∩ U(c + y) = ∅ for

nonzero y ∈ Y , and U(c) (c ∈ X/Y ) is an affine covering of
Q0.

Lemma 3.8 gives a direct proof of the following

Theorem 3.10. Let Gg
m := Spec k(0)[wx; x ∈ X ]. Then there is a

natural action of Gg
m on Q̃0. For any Delaunay cell σ we define

V (σ) : = Proj k(0)[ξ̄a ; a ∈ σ ∩ X ],

O(σ) : = Spec k(0)[ξ̄a/ξ̄b ; a, b ∈ σ ∩ X ].

Then
(i) O(σ) is the unique closed Gg

m-orbit in
⋂

c∈σ∩X U(c)red,
(ii) Q̃0,red =

⋃
σ∈Del O(σ) with O(σ) ∩ O(τ) = ∅ for σ �= τ and

σ, τ ∈ Del.
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(iii) V (σ) is naturally a closed reduced subscheme of Q̃0 of dim V (σ)
= dimσ, which is the closure of O(σ).

(iv) Let τ, σ ∈ Del. Then V (τ) ⊂ V (σ) iff τ ⊂ σ.

Proof. We may assume c0 = 0 ∈ σ ∩ X without loss of generality.
First we note Gg

m acts on Q̃0 by S∗
a(qAwx) = axqAwx for any T -valued

point a ∈ Gg
m(T ). By the definition

Γ(OO(σ)) = k(0)[ξ̄a/ξ̄b ; a, b ∈ σ ∩ X ].

By Lemma 3.8⋂
c∈σ∩X

U(c)red = Spec k(0)[ξ̄x/ξ̄b ; x ∈ X, b ∈ σ ∩ X ]/
√

(0)

= Spec Γ(OO(σ))[ξ̄x ; x ∈ Star (σ) ∩ X ]/
√

(0)

= Spec Γ(OO(σ))[ξ̄x ; x ∈ (Star (σ) \ σ) ∩ X ]/
√

(0).

Its unique closed orbit is given by the equations

ξ̄x = 0 (∀x ∈ (Star (σ) \ σ) ∩ X).

Thus the assertions (i) and (ii) are clear from the above description.
The assertion (iii) except its reducedness is clear from the definition of
Proj.

We prove that V (σ) is a reduced subscheme of Q̃0. Because the affine
coordinate ring Γ(OV (σ)∩U(0)) of V (σ) ∩ U(0) is k(0)[ξ̄x ; x ∈ σ ∩ X ].
Any nontrivial monomial of weight x ∈ X in it is a product of ξ̄xi

with cellmates xi ∈ σ ∩ X . By Corollary 3.7 it is q(x,α(σ))wx, whence
Γ(OV (σ)∩U(0)) has no nilpotent elements.

Next we prove (iv). Let {c0 = 0, c1, · · · , cq} = τ ∩ X . Let U(τ) :=⋂
c∈τ∩X U(c). Suppose τ ⊂ σ. First we note V (σ) ∩ U(τ) = V (σ)red ∩

U(τ) = V (σ)red ∩ U(τ)red. We also see

Γ(OU(τ)red) = Γ(OO(τ))[ξ̄x ; x ∈ (Star (τ) \ τ) ∩ X ]/
√

(0)

The closed subscheme V (σ) ∩ U(τ) of U(τ) is defined by the ideal
(ξ̄x ; x ∈ (Star (τ) \ σ) ∩ X), while O(τ) is defined by the ideal (ξ̄x ; x ∈
(Star (τ)\τ)∩X) By the assumption τ ⊂ σ, V (σ)∩U(τ) contains O(τ),
whence V (σ) ⊃ V (τ).

Next we assume τ �⊂ σ to prove V (τ) �⊂ V (σ). Then there is a ∈
τ ∩X such that a /∈ σ. Then V (τ)∩U(a) = Spec k(0)[ξ̄x/ξ̄a, x ∈ τ ∩X ].
Let pa be a closed point of U(a) defined by ξ̄x/ξ̄a = 0 for any x (�= a) ∈
X . Hence pa /∈ U(x) for any x �= a. Since V (σ) is covered with U(b)
(b ∈ σ∩X), this shows that pa /∈ V (σ). This implies V (τ) �⊂ V (σ). This
completes the proof of (iv), hence of the lemma. Q.E.D.
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§4. Outline of the proof of Theorem 1

The purpose of this section is not to give a proof of Theorem 1
(Theorem 5.17), but to explain the outline of it.

For simplicity we assume Y ⊂ mX for some m ≥ 3.
Under the assumption Sy(U(c)) ∩ U(c) = ∅ for any c ∈ X and

y ∈ Y \ {0} and U(c) (c ∈ X/Y ) is an affine covering of Q0 in view
of Corollary 3.9. Therefore the cohomology groups Hq(Q0, L

n
0 ) are

computed by using the Čech cohomology relative to the covering U(c)
(c ∈ X/Y ).

4.1. The particular case where Q0 is reduced
First we consider the particular case when k(0) ⊂ R and (Q̃, L̃) is

the pull back of a normal torus embedding locally of finite type over
k(0) by the inclusion of Spec R into Spec k(0)[q]. Then (Q, L) = (P, L)
with the notation of [Nr99]. We recall the proof of Hq(Q0, L

n
0 ) = 0 for

q, n > 0 from [Nr99].
First we have an exact sequence of OQ0 -modules

(1) 0 → OQ0 → ⊕OV (σg)
∂g→ · · · ∂2→ ⊕OV (σ1)

∂1→ ⊕OV (σ0) → 0

where σi ranges over the set of all i-dimensional Delaunay cells mod Y .
The homomorphism ∂i : ⊕OV (σi) → ⊕OV (σi−1) in the above is defined
by

∂i(
⊕

σ∈Del(i)

φσ) =
⊕

τ∈ Del(i−1)

∑
τ⊂σ

[σ : τ ]φσ ,

where the summation
∑

τ⊂σ runs over the set of all i-dimensional De-
launay cells σ containing a fixed τ as a face of codimension one, and any
Delaunay cell σ is oriented and [σ : τ ] (= ±1) is the incidence number
of σ relative to τ . Then by tensoring (1) with Ln

0 we have an exact
sequence

0 → Ln
0 ⊗ OP0 → ⊕Ln

0 ⊗ OV (σg)
∂g→ · · · ∂1→ ⊕Ln

0 ⊗ OV (σ0) → 0.

Now the proof of Hq(Q0, L
n
0 ) = 0 goes as follows.

(i) Since V (σ) is a normal torus embedding with L0 ample, we
have

Hq(V (σ), Ln
0 ) =

⎧⎨⎩
⊕

x
n∈σ∩X

n

k(0) · [x] if q = 0

0 if q > 0

where [x] is a certain monomial in R̃/qR̃ of weight x.
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(ii) By (i) H∗(P0, L
n
0 ) is the cohomology of the complex

0 → ⊕Γ(V (σg), Ln
0 )

H0(∂g)→ · · · H0(∂1)→ ⊕Γ(V (σ0), Ln
0 ) → 0.

(iii) By (i) and (ii)

Hq(Q0, L
n
0 ) 


⊕
x
n∈X

n mod Y

Hq(Star (
x

n
)0, k(0)) = 0 for q, n > 0

where Star (a) denotes the union of σ ∈ Del(a), and Star (a)0

denotes the relative interior of Star (a). The subset Star (a)0

of XR is connected and contractible.

4.2. The general case
In the case where Q0 is possibly nonreduced or (Q, L) may not

come from a torus embedding, we have no exact sequences like (1).
Nevertheless we can imitate the above proof of Hq(Q0, L

n
0 ) = 0.

We will construct a double complex (nC·, ∆·
n) for each positive in-

teger n such that

nC· =
⊕

nCp, nCp =
⊕

k+q=p

nF k,q, ∆p
n =

⊕
k+q=p

(∂k,q + (−1)qδk,q
n ),

nF k,q =
⊕

σ∈Del(g−k) mod Y

nF k,q
σ =

⊕
σ∈Del(g−k) mod Y

(⊕
x∈X

nF k,q
σ [x]

)

where nF k,q
σ [x] is the weight x-part of nF k,q

σ . We see

∆p+1
n · ∆p

n = 0, ∂k+1,q · ∂k,q = 0, δk,q+1
n · δk,q

n = 0.

Then our new proof goes as follows.
(a)

′′
Ek,q

2 =

{
Hq(Q0, L

n
0 ) if k = 0

0 if k > 0

(b)

Hq(nF k.·
σ , δk,·

n ) =

⎧⎨⎩
⊕

x
n∈σ∩X

n

k(0) · [x] if q = 0

0 if q > 0

where [x] is a certain monomial in R̃/qR̃ of weight x.
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(c) By (b)

′
Ek,q

1 = Hq(nF k,·, δk,·
n ) =

⊕
σ∈Del(g−k) mod Y

Hq(nF k.·
σ , δk,·

n )

=

⎧⎪⎨⎪⎩
⊕

σ∈Del(g−k) mod Y

( ⊕
x
n∈σ∩X

n

k(0) · [x]

)
if q = 0

0 if q > 0.

(d) By (c)

′
Ek,q

2 =

⎧⎨⎩
⊕

x
n∈X

n mod Y

Hk(Star ( x
n )0, k(0)) if q = 0

0 if q > 0.

(e) By (a) and (d)

Hq(Q0, L
n
0 ) =

′′
E0,q

2 = Hq(nC·, ∆·
n) =

′
Eq,0

2

=
⊕

x
n∈X

n mod Y

Hq(Star (
x

n
)0, k(0)) = 0 if q > 0.

The hardest in the above is the part (b), which is an alternative for
the part (i) in the first particular case. The assertion (b) is proved by
using Lemma 4.3 (or Theorem 5.15)

Hq(nF k,·
σ [x], δk,·

n ) = Hq(∆(σ), B∆(σ)(
x

n
)) =

{
k(0) if q = 0, x

n ∈ σ

0 otherwise

where nF k,q
σ [x] is the weight x-part of nF k,q

σ . See also Theorem 6.11.

Lemma 4.3. Let σ ∈ Del(g−k). Let ∆(σ) be the abstract simplex
with vertices σ∩X. Then there is a subset B∆(σ)( x

n )) of ∆(σ) such that

Hq(nF k,·
σ [x], δk,·

n ) = Hq(∆(σ), B∆(σ)(
x

n
)).

Moreover

(i) if B∆(σ)( x
n ) is nonempty, then it is connected and contractible.

(ii) B∆(σ)( x
n ) is empty iff x

n ∈ σ.

This lemma is obtained by combining Lemma 6.10 and Theorem 6.11.
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§5. Proof of Theorem 1

The purpose of this section is to prove Theorem 1 (Theorem 5.17).
For simplicity we first assume

Y ⊂ mX for some m ≥ 3.
In what follows we denote ξ̄(x, c) by ξ(x, c) if no confusion is possible.

Definition 5.1. Let c ∈ X . Let R(c) = S(c) ⊗ k(0) = Γ(OU(c)).
For a Delaunay cell σ containing c, we define k(0)-modules

Fσ(c) =
⊕

x∈C(0,σ−c)∩X

k(0) · ξ(x, c),

F k(c) =
⊕

σ∈Del(g−k)(c)

Fσ(c).

It should be mentioned that Fσ(c) is not an R(c)-module in general,
though F k(c) is an R(c)-module. Nevertheless we imitate the way of
computing Hq(P0, L

n
0 ) in [Nr99, Theorem 3.9] and construct, by replac-

ing OP0 -modules Ln
0 ⊗ OV (σ)∩U(c) [ibid.] by analogous k(0)-modules, a

double complex F k,q whose first row F k,0(c) at c is a resolution of R(c)
(c ∈ X).

Any φσ ∈ Fσ(c) is written

φσ =
∑

x∈C(0,σ−c)∩X

aσ(x, c)ξ(x, c), (aσ(x, c) ∈ k(0)).

Then we define

resσ
τ (φσ) =

∑
x∈C(0,τ−c)∩X

aσ(x, c)ξ(x, c).

We also define ∂k : F k(c) → F k+1(c) by

∂k(
⊕

σ∈Del(g−k)(c)

φσ) =
⊕

τ∈Del(g−k−1)(c)

∑
τ⊂σ

[σ : τ ] resσ
τ (φσ)

where φσ ∈ Fσ(c), and the summation in RHS ranges over the set of all
σ containing a fixed τ as a face of codimension one.

Lemma 5.2. There is an exact sequence of k(0)-modules

0 → R(c) → F 0(c) ∂0

→ F 1(c) ∂1

→ · · · ∂g−2

→ F g−1(c) ∂g−1

→ F g(c) → 0

where F g(c) = k(0) · ξ(0, c).
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Proof. Let f ∈ F 0(c). Then f is written as

f =
∑

σ∈Del(g)(c)

⎛⎝ ∑
x∈C(0,σ−c)∩X

aσ(x, c)ξ(x, c)

⎞⎠ .

Then we see that f ∈ Ker(∂0) if and only if aσ(x, c) = aσ′(x, c) for
any adjacent pair σ, σ′ ∈ Del(g)(c) and any x ∈ C(0, (σ ∩ σ′) − c) ∩ X .
It follows that R(c) = Ker(∂0). We denote R(c)x = k(0)ξ(x, c).

The exactness of the rest of the sequence is proved as follows. Now
we choose and fix any x ∈ X for all. For σ ∈ Del(g−k)(c) we define

Fσ(c)x :=

{
k(0) · ξ(x, c) if x ∈ C(0, σ − c) ∩ X

0 (otherwise)

and
F k(c)x :=

⊕
σ ∈ Del(g−k)(c)
x ∈ C(0, σ − c)

Fσ(c)x.

Note that ∂g−k(F k(c)x) ⊂ F k+1(c)x. Now we define the complex
(F ·(c)x, ∂·

|F ·(c)x
) by

F 0(c)x
∂0

→ F 1(c)x
∂1

→ · · · ∂g−2

→ F g−1(c)x
∂g−1

→ F g(c)x → 0.

It remains to prove the exactness of the complex (F ·(c)x, ∂·
|F ·(c)x

)
for each x ∈ X .

There is a Delaunay cell σ ∈ Del(c) such that the relative interior of
C(0, σ − c) contains x. The Delaunay cell σ is uniquely determined by
the given x, which we denote σmin(x, c). We note that for σ ∈ Del(c), x ∈
C(0, σ−c) if and only if σmin(x, c) ⊂ σ. Let Del(x, c) be the set of Delau-
nay cells σ ∈ Del(c) such that σmin(x) ⊂ σ, and Del(k)(x, c) = Del(x, c)∩
Del(k). Let Star (x, c) be the union of σ ∈ Del(x, c), σmin(x, c)⊥ the affine
linear subspace of XR passing through x, perpendicular to σmin(x, c).
Let Star⊥(x, c) be the intersection Star (x, c)∩σmin(x, c)⊥, ∂ Star⊥(x, c)
the boundary of Star⊥(x, c). We note Star (x, c) = Star (σmin(x, c)). Let
B be a closed ball of dimension g − dimσmin(x, c), ∂B its boundary.
Since (Star⊥(x, c), ∂ Star⊥(x, c)) is homeomorphic to (B, ∂B), we have
an isomorphism

Hq(Star⊥(x, c), ∂ Star⊥(x, c), k(0)) =

{
k(0) if q = g − dim σmin(x, c)
0 (otherwise)
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For the chosen and fixed x and c, we introduce a new complex (G·, δ·)
by

Gq :=
⊕

σ ∈ Del(q)(x, c)

k(0) · σ

δq

⎛⎝ ⊕
σ∈Del(q)(x,c)

aσσ

⎞⎠ =
⊕

τ∈Del(q−1)(x,c)

(∑
τ⊂σ

[σ : τ ]aσ

)
τ.

When σ ranges over Del(x, c), σ∩σmin(x, c)⊥ gives a cell decomposition
of Star⊥(x, c). Since (G·, δ·) is the relative chain complex of

(Star⊥(x, c), ∂ Star⊥(x, c))

with coefficients in k(0) whose degree is shifted by dimσmin(x, c), we
have an isomorphism

Hq(G·, δ·) 
 Hq−dim σmin(x,c)(Star⊥(x, c), ∂ Star⊥(x, c), k(0))

=

{
k(0) if q = g

0 (otherwise)

Suppose σ ∈ Del(q). By the definition of G·,

F g−q
σ (c)x = k(0)ξ(x, c) ⇐⇒ x ∈ C(0, σ − c) ∩ X

⇐⇒ σmin(x, c) ⊂ σ

⇐⇒ σ ∈ Del(q)(x, c) ⇐⇒ k(0) · σ ⊂ Gq

Hence (Gq , δq) = (F g−q(c)x, ∂g−q). It follows

Hq(F ·(c)x, ∂·) = Hg−q(G·, δ·) =

{
k(0) if q = 0
0 if q > 0.

This proves the exactness of (F ·(c)x, ∂·) except at q = 0, which
completes the proof of the lemma. We note H0(F ·(c)x, ∂·) = R(c)x :=
k(0)ξ(x, c). Q.E.D.

Definition 5.3. Let c = (c0, c1, · · · , cq) (ci �= cj) be an ordered set
of cellmates, and |c| = {c0, c1, · · · , cq} an unordered set of cellmates.
Then we define

U(c) = U(c0, c1, · · · , cq) := U(c0) ∩ U(c1) ∩ U(c2) ∩ · · · ∩ U(cq),

R(c) = R(c0, c1, · · · , cq) := Γ(U(c), OU(c))
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and
Cq :=

⊕
(c0, c1, · · · , cq)
cj : cellmates

R(c0, c1, · · · , cq).

We denote the set {c0, c1, · · · , cq} by |c|. Let X(c) := X(|c|) =
Z(c1 − c0) + · · · + Z(cq − c0) and we define

k(0)[X(c)] = k(0)[
(

ξ̄c1

ξ̄c0

)±1

, · · · ,

(
ξ̄cq

ξ̄c0

)±1

] (resp. 0)

if c0, c1, · · · , cq are cellmates (resp. if c0, c1, · · · , cq are not cellmates).

Remark 5.4. We denote the set {c0, c1, · · · , cq} by |c|. Lemma 3.8
shows that U(c) �= ∅ iff c0, c1, · · · , cq are cellmates. Hence if cj are cell-
mates and if |c| = σ ∩X for some σ ∈ Del, then by Theorem 3.10, O(σ)
is the unique closed Gg

m-orbit in U(c)red with Γ(OO(σ)) = k(0)[X(c)]. If
c0, c1, · · · , cq are not cellmates, then the product f :=

∏q
j=1(ξ̄cj /ξ̄c0)

is nilpotent. This contradicts that f has the inverse in k(0)[X(c)].
This is why we define k(0)[X(c)] := 0 in the case. We also note that
dimσ ≥ rankX(c) if |c| ⊂ σ ∈ Del, where equality may not be true in
general.

Lemma 5.5. Let τ be a Delaunay cell and α(τ) ∈ τ the hole of τ .
Let c = (c0, c1, · · · , cq). Assume |c| ⊂ τ . Then

k(0)[X(c)] = k(0)[q(a,α(τ))wa ; a ∈ X(c)].

Proof. By the assumption, ‖c0−α(τ)‖ = ‖cj −α(τ)‖, whence c2
j −

2(cj , α(τ)) = c2
0−2(c0, α(τ)) for any j. Hence ξ̄cj /ξ̄c0 = q(cj−c0,α(τ))wcj−c0 .

Q.E.D.

Lemma 5.6. Let c = (c0, c1, · · · , cq) with ci cellmates, Star (c) :=
Star (|c|). Let σ ∈ Del and C(c0, σ)0 the relative interior of C(c0, σ).
For any class (xmod X(c))

(i) there is x′ ∈ C(0, Star (c)− c0)0 such that x′ ≡ x mod X(c).
(ii) If x′ + c0 ∈ C(c0, Star (c))0 and x′ ≡ x mod X(c), then there

is the unique Delaunay cell σ such that |c| ⊂ σ and x′ + c0 ∈
C(c0, σ)0.

(iii) The above Delaunay cell σ is uniquely determined by the given
class xmod X(c), independent of the choice of x′ with x′ +
c0 ∈ C(c0, σ)0.

We denote by σmin(x, c) the unique Delaunay cell satisfying the con-
dition (ii).
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Proof. We recall Star (cj) is the union of all the Delaunay cells
containing cj , which is bounded convex. Hence Star (c) =

⋂q
j=0 Star (cj)

is a bounded convex subset of XR. Therefore C(c0, Star (c)) is a convex
closed subset of XR given by finitely many (affine-)linear inequalities:

C(c0, Star (c)) = {x ∈ XR; Fj(x) ≥ 0 (j = 1, · · · , N)}

where Fj(c0) = 0, Fj(ck) ≥ 0 (∀j, k). We note Fj(ck) > 0 (∃ k ≥ 1) for
each j because Star (c) is bounded with dim Star (c) = g. Since Fj(x) is
linear in x − c0, Fj(x) = (Aj , x− c0) for some Aj ∈ XR. For x ∈ X , we
set

xN = x + N(c1 − c0) + N(c2 − c0) + · · · + N(cq − c0).

If N is large enough, then

Fj(xN + c0) = (Aj , xN ) = (Aj , x) + N · (Fj(c1) + · · · + Fj(cq)) > 0

This implies that xN +c0 ∈ C(c0, Star (c))0. It suffices to choose x′ = xN

for (i).
Next we prove (ii). Suppose x′ + c0 ∈ C(c0, Star (c))0 and x′ ≡ x

mod X(c). Since Star (c) is the union of all the Delaunay cells σ with
|c| ⊂ σ and since Del is a polyhedral decomposition of XR, there is
the minimal Delaunay cell σ such that |c| ⊂ σ and x′ + c0 ∈ C(c0, σ).
If x′ + c0 /∈ C(c0, σ)0, then x′ + c0 ∈ C(c0, τ) for a face τ of σ. Since
x′+c0 ∈ C(c0, Star (c))0, τ intersects Star (c)0, hence the relative interior
τ0 of τ intersects the interior of Star (c). Hence τ ⊂ Star (c), whence
|c| ⊂ τ . This contradicts that σ is minimal. This proves (ii).

Finally we prove (iii). Suppose x′ + c0 ∈ C(c0, σ
′)0 and x′′ +

c0 ∈ C(c0, σ
′′)0 and that x′ ≡ x′′ ≡ x mod X(c). Then x′ = x′′ +∑q

j=1 aj(cj −c0) for some aj ∈ Z. Since x′+c0+
∑q

j=1 N ′
j(cj −c0) (resp.

x′′ + c0 +
∑q

j=1 N ′′
j (cj − c0)) stays inside C(c0, σ

′)0 (resp. C(c0, σ
′′)0)

for any large N ′
j > 0 and N ′′

j > 0, C(c0, σ
′)0 and C(c0, σ

′′)0, two cones
at c0 of Delaunay cells, have common relative interior points. It follows
C(c0, σ

′) = C(c0, σ
′′) and dimσ′ = dimσ′′. Since c0 ∈ σ′ ⊂ C(c0, σ

′),
c0 ∈ σ′′ ⊂ C(c0, σ

′′), two Delaunay cells σ′ and σ′′ have common relative
interiors. Therefore σ′ = σ′′. It is clear that σ′ depends only on the class
(xmod X(c)), and is independent of the choice of x ∈ X . Q.E.D.

Definition 5.7. Let c = (c0, · · · , cq) with cj ∈ X cellmates. We re-
call |c| = {c0, · · · , cq}. We define Del(c) to be Del(|c|). Let Del(g−k)(c) =
Del(c) ∩ Del(g−k). We define C(c, σ) := C(|c|, σ), which is the union of
all the translates C(c0, σ) by a ∈ X(c). See Definition 2.2. This depends
only on the unordered set c, independent of the order of cj .
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Lemma 5.8. Let c0, c1, · · · , cq be cellmates, c = (c0, · · · , cq) ordered
cellmates, and |c| unordered cellmates. Let

R(c) :=
⊕
x∈X

k(0) · ξ(x, c)

for some nonzero monomials ξ(x, c). Then
(i) If there is some σ ∈ Del(c) such that x ∈ C(0, σ − c0) ∩ X,

then
ξ(x, c) = ξ(x, c0).

(ii) If there are a ∈ X(c) and σ ∈ Del(c) such that x − a ∈
C(0, σ − c0) ∩ X,

ξ(x, c) = q(a,α(σ))wa · ξ(x − a, c0).

(iii)

R(c) =
⊕

σ ∈ Del(c), x ∈ X/X(c)
x + c0 ∈ C(c, σ) ∩ X

k(0)[X(c)] · ξ(x, c0)

Proof. Suppose that some σ ∈ Del(c) such that x ∈ C(0, σ−c0)∩X .
The element ξ(x, c) is nonzero on U(c), hence it is nonzero on U(c0)
because U(c) ⊂ U(c0). Thus it restricts to a nonzero element of R(c0)
of weight x, which is ξ(x, c0). Hence ξ(x, c) = ξ(x, c0). This proves (i).

Next we prove (ii). We choose τ ∈ Del such that |c| ⊂ τ . It is clear
that

R(c) :=
⊕
x∈X

k(0) · ξ(x, c) =
⊕

x∈X/X(c)

k(0)[X(c)] · ξ(x, c)

for some nonzero element ξ(x, c) of weight x ∈ X . Suppose that a ∈
X(c), σ ∈ Del(c) and x − a ∈ C(0, σ − c0) ∩ X . Let ζ = q(a,α(σ))wa ∈
k(0)[X(c)]. Since ζ is a unit in k(0)[X(c)] by Lemma 5.5, we have
ξ(x, c) = ξ(x − a, c)ζ for any x ∈ X . It is equal to ξ(x − a, c0)ζ =
ξ(x − a, c0)q(a,α(σ))wa by (i). This proves (ii).

Next we prove (iii). We choose τ ∈ Del(c). We choose and fix any
x ∈ X and let x̄ ∈ X/X(c) be the class of x. We define

R(c)x̄ :=
⊕

z∈x+X(c)

k(0) · ξ(z, c) = k(0)[X(c)] · ξ(x, c).

If necessary, by multiplying ξ(x, c) by a product of ξcj /ξc0 , which
is of the form q(a,α(τ))wa for some a ∈ X(c), we can choose ξ(x, c) ·
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q(a,α(τ))wa ∈ R(c0) as a generator of k(0)[X(c)]-module k(0)[X(c)]ξ(x, c).
Hence we may assume ξ(x, c) ∈ R(c0) from the start. The element
ξ(x, c) is nonzero on U(c), hence ξ(x, c) = ξ(x, c0) by (i). Next for N
large enough we choose xN instead of x with the notation of Lemma 5.6.
Then by Lemma 5.6 there is σ ∈ Del such that xN ∈ C(0, σ − c0)0 ∩X ,
|c| ⊂ σ and

R(c)x̄ = k(0)[X(c)] · ξ(x, c0) = k(0)[X(c)] · ξ(xN , c0)

where

ξ(xN , c0) = ξ(x, c0) ·
q∏

j=1

(
ξcj

ξc0

)N .

Hence x + c0 = xN + c0 − N
∑q

j=1(cj − c0) ∈ C(c, σ) ∩ X . This proves
(iii). Q.E.D.

Definition 5.9. Let c = (c0, · · · , cq) with cj ∈ X cellmates. We
define �(c) = q. For a Delaunay cell σ ∈ Del(g−k)(c), we define

F k,q
σ (c) =

⊕
x + c0 ∈ C(c, σ) ∩ X

�(c) = q

k(0) · ξ(x, c),

F k,q(c) =
⊕

|c| ⊂ σ ∈ Del(g−k)

�(c) = q

F k,q
σ (c) =

⊕
σ ∈ Del(g−k)(c)

�(c) = q

F k,q
σ (c),

F k,q =
⊕

c : cellmates
�(c) = q

F k,q(c) =
⊕

c : cellmates
�(c) = q

⎛⎝ ⊕
σ ∈ Del(g−k)(c)

F k,q
σ (c)

⎞⎠ .

where F k,0(c) = F k(c) for c ∈ X .
The definition of F k,q

σ (c) is independent of the choice of c0 ∈ |c|. We
note that if c = (c0, c1, · · · , cq) are not cellmates or if c = (c0, c1, · · · , cq)
are cellmates but |c| �⊂ σ, then F k,q(c) = 0. For σ ∈ Del(g−k) we also
define

F k
σ =

⊕∞

q=0
F k,q

σ , F k,q
σ =

⊕
|c| ⊂ σ, �(c) = q

F k,q
σ (c)

Finally we define ∂k,q : F k,q(c) → F k+1,q(c) by

∂k,q(
⊕

σ∈Del(g−k)(c)

φσ) =
⊕

τ∈Del(g−k−1)(c)

∑
|c|⊂τ⊂σ

[σ : τ ] resσ
τ (φσ)
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where φσ ∈ F k,q
σ (c), and the summation in RHS ranges over the set

of all σ containing a fixed τ as a face of codimension one. We note
∂k+1,q · ∂k,q = 0.

Lemma 5.10. Suppose q ≥ 1 and that c0, · · · , cq−1, cq are cellmates.
Let c′ = (c0, · · · , cq−1), c = (c0, · · · , cq) and σ ∈ Del(g−k)(c). Let

F k,q−1
σ (c′) =

⊕
x + c0 ∈ C(c′, σ) ∩ X

k(0) · ξ(x, c′)

F k,q
σ (c) =

⊕
x + c0 ∈ C(c, σ) ∩ X

k(0) · ξ(x, c).

Then ξ(x, c′) = ξ(x, c).

Proof. It is clear from σ ∈ Del(c) that σ ∈ Del(c′). If x ∈ C(0, σ−
c0) ∩ X , then ξ(x, c′) = ξ(x, c) = ξ(x, c0) by Lemma 5.8. Otherwise we
choose a ∈ X(c′) such that x−a ∈ C(0, σ− c0)∩X . Then ξ(x−a, c′) =
ξ(x−a, c) = ξ(x−a, c0). Let ζ = q(a,α(σ))wa for the hole α(σ) ∈ σ. Since
ζ is a unit in both R(c′) and R(c), by the definition of generators ξ(x, c′)
and ξ(x, c) we have ξ(x, c′) = ξ(x− a, c′)ζ and ξ(x, c) = ξ(x− a, c)ζ. It
follows ξ(x, c′) = ξ(x, c). Q.E.D.

Lemma 5.11. Let c = (c0, · · · , cq) be cellmates with �(c) = q. Then
the following sequence of k(0)[X(c)]-modules is exact,

0 → R(c) → F 0,q(c) ∂0,q

→ F 1,q(c) → · · · → F g−1,q(c) ∂g−1,q

→ F g,q(c) → 0.

Proof. The proof is similar to that of Lemma 5.2. Imitating the
proof of Lemma 5.2, for each class x̄ ∈ X/X(c), we choose by Lemma 5.2
a Delaunay cell σmin(x, c) ∈ Del(c) such that x+ c0 ∈ C(c0, σmin(x, c))0

and x ∈ x̄ + X(c), which is uniquely determined by x̄. In what follows,
for each x̄ we choose and fix the pair (x, σmin(x, c)) such that x + c0 ∈
C(c0, σmin(x, c))0 and x ∈ x̄ + X(c). Let g − k = dim σmin(x, c). We
note σ ∈ Del(c) iff σmin(x, c) ⊂ σ. For any σ ∈ Del(c), we have x ∈
C(0, σ−c0) because x ∈ C(0, σmin(x, c)−c0). In what follow, for any σ ∈
Del(c) we choose the same ξ(x, c0) as a common generator of k(0)[X(c)]-
modules F k

σ (c)x and R(c).
For a fixed x ∈ X (or a fixed class x ∈ X/X(c)) we define

F k
σ (c)x :=

{
k(0)[X(c)] · ξ(x, c0) if x ∈ C(0, σ − c0) ∩ X

0 (otherwise)
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and
F k,q(c)x :=

⊕
σ ∈ Del(g−k)(c)

x + c0 ∈ C(c, σ) ∩ X

F k
σ (c)x.

We also denote R(c)x̄ by R(c)x. We define ∂k,q : F k,q(c)x →
F k+1,q(c)x by restriction of ∂k,q in Definition 5.9. Thus we have a
complex of k(0)[X(c)]-modules with coboundary operators ∂k,q

F 0,q(c)x
∂0,q

→ F 1,q(c)x
∂1,q

→ · · · ∂g−2,q

→ F g−1,q(c)x
∂g−1,q

→ F g,q(c)x → 0.

The exactness of the sequence as well as R(c) 
 Ker(∂0,q) is proved
in a manner entirely analogous to Lemma 5.2. Q.E.D.

Definition 5.12. Let θcd be the one cocycle associated with L0:

θcd = ξd/ξc

In order to compute Hq(Q0, L
n
0 ) we define a complex nR· by

nRq =
⊕

�(c) = q

R(c)

where f(c0, · · · , cq) ∈ R(c) and g(d0, · · · , dq) ∈ R(d) are identified iff

|c| = |d|, ξn
c0

f(c0, · · · , cq) = ξn
d0

g(d0, · · · , dq).

We define the twisted coboundary operator δq
n : nRq → nRq+1 by

ξn
c0

g(c0, c1, · · · , cq+1) = ξn
c1

f(c1, c2, · · · , cq+1)

+
q+1∑
j=1

(−1)jξn
c0

f(c0, · · · ,
∧
cj , · · · , cq+1).

where f =
∑

f(c0, c1, · · · , cq) ∈ nRq, g = δq
nf ∈ nRq+1.

Definition 5.13. Now we define nF k,q and the twisted coboundary
operator δk,q

n : nF k,q → nF k,q+1 so that the definitions of δk,q
n for nRq

and nF k,q are compatible. Let c = (c0, . . . , cq) be ordered cellmates,
nF k,q(c) = F k,q(c). We define

nF k,q =
⊕

�(c) = q

nF k,q(c)

where f(c0, · · · , cq) ∈ nF k,q(c) and g(d0, · · · , dq) ∈ nF k,q(d) are identi-
fied iff

|c| = |d|, ξn
c0

f(c0, · · · , cq) = ξn
d0

g(d0, · · · , dq).
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For f ∈ nF k,q, we define δk,q
n : nF k,q → nF k,q+1 as follows.

Let f =
⊕

f(c0, c1, · · · , cq) ∈ nF k,q and g = δk,q
n f ∈ nF k,q+1. Then

ξn
c0

g(c0, c1, · · · , cq+1) = ξn
c1

f(c1, c2, · · · , cq+1)

+
q+1∑
j=1

(−1)jξn
c0

f(c0, · · · ,
∧
cj , · · · , cq+1).

If c = (c0, c1, · · · , cq) are not cellmates, then we have nF k,q(c) = 0
and f(c0, c1, · · · , cq) = 0 by definition. We note δk,q

n · δk,q−1
n = 0. Since

we have δk,q
n (nF k,q

σ ) ⊂ nF k,q+1
σ , we have a complex

nF k,0
σ

δk,0
n→ nF k,1

σ

δk,1
n→ · · · δk,q−1

n→ nF k,q
σ

δk,q
n→ nF k,q+1

σ → · · · .

Definition 5.14. For each positive integer n, we define a double
complex (nC·, ∆·

n) by

nC· =
⊕

nCp, nCp =
⊕

k+q=p

nF k,q, ∆p
n =

⊕
k+q=p

(∂k,q + (−1)qδk,q
n ),

nF k,q =
⊕

σ∈Del(g−k) mod Y

nF k,q
σ =

⊕
σ∈Del(g−k) mod Y

(⊕
x∈X

nF k,q
σ [x]

)
,

nF k,q
σ [x] =

⊕
|c| ⊂ σ
�(c) = q

nF k,q
σ (c)[x]

where nF k,q
σ [x] is the weight x-part of nF k,q

σ , and ∂k,q on nF k,q
σ is defined

to be ∂k,q on F k,q
σ . We easily check

∆p+1
n · ∆p

n = 0,

∂k+1,q · ∂k,q = 0, δk,q+1
n · δk,q

n = 0,

δk+1,q
n · ∂k,q = ∂k,q+1 · δk,q

n ,

∂k,q(nF k,q) ⊂ nF k+1,q, δk,q
n (nF k,q) ⊂ nF k,q+1.

We also check that δk+1,q
n · resσ

τ = resσ
τ ·δk,q

n .
The following theorem will be proved in the section 6.

Theorem 5.15. For any σ ∈ Del(g−k), there is a natural isomor-
phism

Hq(nF k,·
σ , δk,·

n ) =

⎧⎨⎩
⊕

x
n∈σ∩X

n mod Y

k(0) · [x] if q = 0

0 if q > 0
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where [x] denotes the monomial generator ξn
c ξ(x − nc, c) of weight x,

which is independent of the choice of c ∈ σ ∩ X.

Remark 5.16. When Q0 is reduced, the cohomology group in The-
orem 5.15 coincides with Hq(V (σ), Ln

0 ⊗ OV (σ)). However there might
be no subscheme of Q0 which properly corresponds to σ when Q0 is
nonreduced.

Theorem 5.17. Let (Q0, L0) be a PSQAS with a level G(K)-structure,
the closed fibre of (Q, L). Then

(i) Hq(Q0, L
n
0 ) = 0 for q ≥ 1 and n ≥ 1.

(ii) dimH0(Q0, L
n
0 ) = ng

√
|K| for n ≥ 1.

Proof. We note that the assertion (i) is always true for any PSQASes.
We prove (i). First we consider the case where (Q0, L0) is to-

tally degenerate, in which case
√
|K| = |X/Y | by [Nr99, Lemma 5.12,

Lemma 7.11]. We use the complex (nC·, ∆·
n) to prove Hq(Q0, L

n
0 ) = 0.

First we compute the spectral sequences for the above complex. By
Theorem 5.15

′
Ek,q

1 =

⎧⎪⎨⎪⎩
⊕

σ∈Del(g−k) mod Y

( ⊕
x
n∈σ∩X

n

k(0) · [x]

)
if q = 0

0 if q > 0.

It follows
′
Ek,q

2 = 0 for q > 0.
In view of Lemma 5.2 and Lemma 5.11

′′
Ek,q

1 =

{
nRq if k = 0
0 if k > 0

Therefore we have

′′
Ek,q

2 =

{
Hq(nR·, δ·n) if k = 0

0 if k > 0

=

{
Hq(Q0, L

n
0 ) if k = 0

0 if k > 0

because U(c) is affine for any cellmates c.
Since the spectral sequences degenerate at E2-terms, we see

Hq(Q0, L
n
0 ) =

′′
E0,q

2 = Hq(nC·, ∆·
n) =

′
Eq,0

2 .

Since the coboundary operator of the complex (
′
E·,0

1 , δ·,0n ) is (re-
garded as) homogeneous (see the proof of Theorem 6.11), it suffices to
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compute the weight x-part of the cohomology
′
Eq,0

2 [x] of the complex.
Let Star ( x

n ) be the union of σ ∈ Del such that x
n ∈ σ and Star ( x

n )0

the relative interior of Star ( x
n ). We see H0(Star ( x

n )0, k(0)) = k(0) and
Hq(Star ( x

n )0, k(0)) = 0 for q > 0. It is also easy to see that the weight
x-part of the complex (

′
E·,0

1 , δ·,0n ) is isomorphic to the cochain complex
of Star ( x

n )0 indexed by Delaunay cells. Hence for q > 0

′
Eq,0

2 [x] = Hq(Star (
x

n
)0, k(0)) = 0 (∀x),

Hq(Q0, L
n
0 ) =

′′
E0,q

2 =
′
Eq,0

2 =
⊕

x
n∈X

n mod Y

′
Eq,0

2 [x] = 0.

Since Q is flat over R, we have dim H0(Q0, L
n
0 ) = dim H0(Qη, Ln

η ) =
ng|X/Y | where (Qη, Ln

η ) is the generic fibre of (Q, Ln). This completes
the proof in the totally-degenerate case when Y ⊂ mX for some m ≥ 3.

Next we consider the case where Y is not a subgroup of mX for
any m ≥ 3. We note that (Q0, L0) has an étale covering (Q′

0, L
′
0) =

(Q̃0, L̃0)/Y ′ where we choose Y ′ = 3Y . The second PSQAS (Q′
0, L

′
0)

satisfies the assumption Y ′ = 3Y ⊂ 3X , from which we infer that
dimHq(Q′

0, (L
′
0)

n) = 0 for any q > 0. Since Hq(Q0, L
n
0 ) is a direct

summand of Hq(Q′
0, (L

′
0)

n) = 0, we have Hq(Q0, L
n
0 ) = 0 for q > 0.

Once we prove Hq(Q0, L
n
0 ) = 0 for q > 0, then since Q is flat over R, we

have dim H0(Q0, L
n
0 ) = dimH0(Qη, Ln

η ) = ng|X/Y | = ng
√

|K|. Thus
we complete the proof of the theorem in the totally degenerate case.
The vanishing in the partially degenerate case follows easily from it by
the standard argument. See [Nr99, Theorem 4.10]. Q.E.D.

The following is a corollary to Theorem 5.17.

Theorem 5.18. Let k(0) be a field of characteristic prime to |K|,
and (Q0, L0) be a PSQAS over k(0) with a level G(K)-structure. Then

(i) dimH0(Q0, L0) =
√
|K|

(ii) H0(Q0, L0) is an irreducible G(K)-module of weight one.

Proof. Since Hq(Q0, L0) = 0 for q > 0 by Theorem 5.17, we see
H0(Q0, L0) = Γ(Q, L)⊗ k(0). Therefore Γ(Q, L)⊗ k(0) is an irreducible
G(K)-module of weight one in view of [Nr99, Lemma 5.12]. This proves
the theorem. Q.E.D.

Corollary 5.19. Let K be a finite symplectic abelian group and
π : (Q, L) → SQg,K the universal family of PSQASes over SQg,K .
Then π∗(Ln) is locally free for any n > 0.
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Proof. Since SQg,K is reduced by the definition of [Nr99, § 12],
π∗(Ln) is locally free by Theorem 5.17 and [M74, Corollary 2, p. 51].

Q.E.D.

§6. Proof of Theorem 5.15

Lemma 6.1. Let σ ∈ Del(g) and c = (c0, · · · , cq) cellmates such
that |c| ⊂ σ. Suppose 0 ∈ |c|. Let fj (1 ≤ j ≤ N) be linear functions
on XR such that C(0, σ) = {x ∈ XR; fj(x) ≥ 0 (1 ≤ j ≤ N)}, fj(ck) =
0 (∀j ≤ n, ∀k) and fj(ckj ) > 0 (∀j > n, ∃kj). Then we have

C(c, σ) = {x ∈ XR; fj(x) ≥ 0 (∀j ≤ n)}.

Proof. First we note that fj (1 ≤ j ≤ n) is the set of all fj whose
restriction to |c| is identically zero. Let S = {x ∈ XR; fj(x) ≥ 0 (∀j ≤
n)}. Let a ∈ X(c)R and x ∈ C(0, σ). Then since fj is linear, fj(x+a) =
fj(x) + fj(a) = fj(x) ≥ 0 for j ≤ n. Therefore C(c, σ) ⊂ S. We shall
prove the converse. Let 〈c〉 be the convex closure of |c|. By the choice of
fk (1 ≤ k ≤ N) there is an a ∈ 〈c〉 such that fj(a) > 0 for any j ≥ n+1.
Hence if x ∈ S, then fj(x+ Aa) = fj(x) +Afj(a) > 0 for a large A > 0.
Hence x + Aa ∈ C(0, σ). Since Aa = A(a − 0), a ∈ 〈c〉 and 0 ∈ |c|, we
see Aa ∈ X(c)R. This proves x ∈ X(c)R + C(0, σ) = C(c, σ). Q.E.D.

Lemma 6.2. Let σ ∈ Del(g), c = (c0, · · · , cq) cellmates such that
|c| ⊂ σ, and τ(c) the minimal Delaunay cell containing |c|. Then
C(c, σ) = C(τ(c), σ).

Proof. It should be cautioned that X(c) �= X(τ(c)) in general. We
may assume c0 = 0 without loss of generality. Then by Lemma 6.1
C(c, σ) = {x ∈ XR; fj(x) ≥ 0 (∀j ≤ n)}. Let H be a hyperplane of XR

defined by fj = 0 for some j (1 ≤ j ≤ n). Then H ∩ σ is a face of σ.
Since |c| ⊂ H ∩ σ, τ(c) ⊂ H ∩ σ by the definition of τ(c). Hence fj = 0
on τ(c), hence fj = 0 on X(τ(c)). It follows that X(τ(c)) ⊂ C(c, σ).
This proves the lemma. Q.E.D.

Lemma 6.3. Let σ ∈ Del(g) and τ and τ ′ faces of σ with τ ∩τ ′ �= ∅.
Then C(τ, σ) ∩ C(τ ′, σ) = C(τ ∩ τ ′, σ).

Proof. We may assume 0 ∈ τ ∩ τ ′ without loss of generality. It
suffices to prove C(τ, σ) ∩ C(τ ′, σ) ⊂ C(τ ∩ τ ′, σ). By the proof of
Lemma 6.1 we have linear functions fj (1 ≤ j ≤ N) such that

C(0, σ) = {x ∈ XR; fj(x) ≥ 0 (1 ≤ j ≤ N)},
C(0, τ) = {x ∈ C(0, σ); fj(x) = 0 (1 ≤ j ≤ n)},
C(0, τ ′) = {x ∈ C(0, σ); fj(x) = 0 (1 ≤ j ≤ k and n + 1 ≤ j ≤ m)}.
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It follows C(0, τ ∩ τ ′) = {x ∈ C(0, σ); fj(x) = 0 (∀j ≤ m)}. Hence

C(τ ∩ τ ′, σ) = {x ∈ XR; fj(x) ≥ 0 (∀j ≤ m)}.

By Lemma 6.1 we see

C(τ, σ) = {x ∈ XR; fj(x) ≥ 0 (1 ≤ j ≤ n)},
C(τ ′, σ) = {x ∈ XR; fj(x) ≥ 0 (1 ≤ j ≤ k and n + 1 ≤ j ≤ m)}.

It follows that

C(τ, σ) ∩ C(τ ′, σ) = {x ∈ XR; fj(x) ≥ 0 (1 ≤ j ≤ m)}.

This completes the proof. Q.E.D.

Example 6.4. Let g = 2 and B(x, x) = x2
1+x2

2 for x = x1e1+x2e2 ∈
X . Let σ = 〈0, e1, e1 + e2, e2〉, τ = {0} and τ ′ = {e1 + e2}. In this case,

C(τ, σ) = {x1e1 + x2e2 ; x1, x2 ≥ 0},
C(τ ′, σ) = {x1e1 + x2e2 ; x1, x2 ≤ 1}.

Hence C(τ, σ) ∩ C(τ ′, σ) = σ �= ∅, while τ ∩ τ ′ = ∅.
Next let ρ = 〈0, e1〉 and ρ′ = 〈e2, e1 + e2〉. We note ρ∩ρ′ = ∅. Then

C(ρ, σ) = {x1e1 + x2e2 ; x2 ≥ 0}, C(ρ′, σ) = {x1e1 + x2e2 ; x2 ≤ 1},
C(ρ, σ) ∩ C(ρ′, σ) = {x1e1 + x2e2 ; 0 ≤ x2 ≤ 1}.

Thus Lemma 6.3 is true only when τ ∩ τ ′ is nonempty.

Definition 6.5. We choose and fix σ ∈ Del(g). For each ρ ∈
Del(g−1)

σ , C(ρ, σ) is a closed half-space of XR. Let C(ρ, σ)c be the com-
plement of C(ρ, σ) in XR. Let H := H(σ) be the set of all hyperplanes
of XR of the form H(ρ) := ρ + X(ρ)R for some ρ ∈ Del(g−1)

σ . For any
subset H′ of H(σ) we define

D(H′) =

⎛⎝ ⋂
H(ρ)∈H\H′

C(ρ, σ)

⎞⎠ ⋂ ⎛⎝ ⋂
H(ρ)∈H′

C(ρ, σ)c

⎞⎠ .

We note that the expression in RHS could be redundant because the in-
tersection of some C(ρ, σ)’s could be a proper subset of another C(ρ′, σ).
Let D(H′) be the closure of D(H′) in XR and D(H′)0 the relative in-
terior of D(H′). Each D(H′)0 is an open connected domain of XR. If
H′ = ∅, then D(H′) = σ, while if H′ = H(σ), then D(H′) = ∅.

Let |H(σ)| be the union of all H(ρ) ∈ H(σ). The complement of
|H(σ)| in XR is the disjoint union of D(H′)0, while XR is the disjoint
union of D(H′).
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Lemma 6.6. Let σ ∈ Del(g) and x ∈ XR. Let Bσ(x) be the union
of all faces τ of σ such that x ∈ C(τ, σ)c. Then Bσ(x) is the union of
all (g − 1)-dimensional faces ρ of σ such that x ∈ C(ρ, σ)c.

Proof. Let τ∗ be a face of σ. Then we remark that by the definition
of Bσ(x), x ∈ C(τ∗, σ)c iff τ∗ ⊂ Bσ(x). Let τ be a face of σ. Then τ
is the intersection of all (g − 1)-dimensional faces of σ containing τ . By
Lemma 6.3

C(τ, σ) = ∩
ρ∈Del

(g−1)
σ (τ)

C(ρ, σ).

Hence x ∈ C(τ, σ)c iff x ∈ C(ρ, σ)c (∃ρ ∈ Del(g−1)
σ (τ)), and by the

above remark, iff τ ⊂ ρ ⊂ Bσ(x) (∃ρ ∈ Del(g−1)
σ ). This proves the

lemma. Q.E.D.

Lemma 6.7. Let σ ∈ Del(g). If x ∈ σ, then Bσ(x) = ∅.

Proof. If x ∈ σ, then x ∈ C(τ, σ) for any τ ∈ Delσ. It follows that
Bσ(x) = ∅. Q.E.D.

Lemma 6.8. Let σ ∈ Del(g) and x ∈ XR \ σ. Then Bσ(x) is
nonempty, connected and contractible.

This is a corollary to the following more general lemma.

Lemma 6.9. Let ∆ be a bounded convex polytope in XR = Rg, H
the set of one-codimensional faces of ∆. For a one-codimensional face
ρ of ∆ we define H(ρ) a hyperplane of XR spanned by ρ, C(ρ, ∆) the
closed half space of XR bounded by H(ρ) containing ∆, C(ρ, ∆)c the
complement of C(ρ, ∆) in XR. For any point x of XR \ ∆. Let B∆(x)
be the union of one-codimensional faces of ∆ with x ∈ C(ρ, ∆)c. Then
B∆(x) is connected and contractible.

Proof. To explain our idea let us first suppose that ∆ is a closed
ball of dimension g. Let ∂∆ be the boundary of ∆, and x a point outside
of ∆. Set a source of light at x and light the ball up from x. Let B∆(x)
be the part of ∂∆ illuminated by the light. It is clear that B∆(x) is
homeomorphic to a hemisphere, hence homeomorphic to a closed ball of
dimension g − 1.

Now we turn to the proof of our lemma. Let ∆ be a convex polytope
of dimension g, ∂∆ the boundary of it and x a point outside of ∆. Set
a source of light at x and light the polytope ∆ up from x. Then for
a one-codimensional face ρ of ∆, x ∈ C(ρ, ∆)c iff ρ is illuminated by
the light whose source is set at the point x. Here we regard that ρ is
not illuminated by the light if the source of the light is set at a point x
on the hyperplane H(ρ) spanned by ρ. Since ∆ is convex, the part of
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∂∆ illuminated by the light is the union of ρ with x ∈ C(ρ, ∆)c, that
is, B∆(x). This proves that B∆(x) is homeomorphic to a hemisphere,
hence it is a nonempty connected contractible subset of ∂∆. Q.E.D.

Lemma 6.10. Let σ ∈ Del(g) and x ∈ XR. Let �(σ∩X) = N+1 and
∆(σ) an abstract N -dimensional simplex with vertices σ ∩ X. For any
subset S of σ∩X, we define ∆(S) to be the subsimplex of ∆(σ) spanned
by S, and B∆(σ)(x) be the union of all ∆(S) such that x ∈ C(S, σ)c and
S ⊂ σ ∩ X. Then

(i) B∆(σ)(x) is the union of ∆(ρ∩X) for all (g−1)-dimensional
faces ρ of σ such that x ∈ C(ρ, σ)c.

(ii) B∆(σ)(x) is nonempty, connected and contractible.

Proof. Let c be cellmates and τ(c) the minimal face of σ such that
|c| ⊂ τ(c). Let S = |c|. By Lemma 6.2, C(S, σ) = C(c, σ) = C(τ(c), σ).
Hence by Lemma 6.6

∆(S) ⊂ B∆(σ)(x) ⇐⇒ x ∈ C(S, σ)c

⇐⇒ x ∈ C(τ(c), σ)c

⇐⇒ τ(c) ⊂ Bσ(x)

⇐⇒ τ(c) ⊂ ρ ⊂ Bσ(x) (∃ρ ∈ Del(g−1)
σ )

⇐⇒ S ⊂ ρ ⊂ Bσ(x) (∃ρ ∈ Del(g−1)
σ )

⇐⇒ ∆(S) ⊂ ∆(ρ ∩ X) ⊂ B∆(σ)(x) (∃ρ ∈ Del(g−1)
σ ).

This proves (i). Next we prove (ii). By (i) B∆(σ)(x) is the union of
∆(ρ ∩ X) such that ρ ⊂ Bσ(x). For simplicity we denote ∆(ρ ∩ X) by
∆(ρ).

Let ρ ∈ Del(g−1)
σ such that ρ ⊂ Bσ(x). Since ∆(ρ) is an abstract

simplex with vertices ρ ∩ X , we have a natural map πρ from ∆(ρ) onto
ρ. Thus for any vertex P of ρ, we have a vertex of ∆(ρ) mapped to P ,
which we denote by ∆(P ). Let ρ∩X = {P0, · · · , Pr}. Then the natural
map πρ from ∆(ρ) onto ρ is given by

∆(ρ) � t0∆(P0) + · · · + tr∆(Pr) �→ t0P0 + · · · + trPr ∈ σ

where t0+ · · ·+tr = 1. When ρ ranges over the set of the faces contained
in Bσ(x), the natural maps πρ glue together to give rise to a natural
surjective continuous polytope map π : B∆(σ)(x) → Bσ(x). We prove
that any fibre of π is connected and contractible. Let ρ be the above
Delaunay cell and P any point of ρ. Then the inverse image π−1(P ) is
the intersection of ∆(ρ) with an affine linear subspace HP : t0P0+t1P1+
· · · + trPr = P , (t0 + · · · + tr = 1) in the (t0, · · · , tr)-space Rr+1. The
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simplex ∆(ρ) is just the subset of Rr+1 defined by t0 + · · ·+ tr = 1 and
0 ≤ tj ≤ 1 for any j = 0, 1, · · · , r. Since ∆(ρ) is convex, the intersection
HP ∩ ∆(ρ) = π−1(P ) is connected and contractible. Since Bσ(x) is
connected and contractible, so is B∆(σ)(x). This proves (ii). Q.E.D.

Theorem 6.11. Let x ∈ X, σ ∈ Del(g−k) and let nF k,·
σ be the

complex defined in Definition 5.13. Let ∆(σ) be the abstract simplex
with vertices σ ∩ X. Then

Hq(nF k,·
σ [x], δk,·

n ) 
 Hq(C·(∆(σ), B∆(σ)(
x

n
)))

=

{
k(0) if q = 0 and x

n ∈ σ

0 otherwise

Proof. Since the coboundary operator δk,q
n of the complex nF k,·

is (regarded as) homogeneous in the sense we are going to explain, it
suffices to compute the cohomology of the complex for a fixed weight
x ∈ X .

Let f ∈ nF k,q and g = δk,q
n (f). Then by the definition of the

coboundary operator δk,q
n we have the equality as

ξn
c0

g(c0, c1, · · · , cq+1) = ξn
c1

f(c1, c2, · · · , cq+1)

+
q+1∑
j=1

(−1)jξn
c0

f(c0, · · · ,
∧
cj , · · · , cq+1),

which is homogeneous with regard to the weights X .
Let σ ∈ Del(g−k). Let nF k,q

σ (c)[x] be the weight x-part of nF k,q
σ (c)

in the above sense. For brevity we first consider the case x
n ∈ σ ∩ X

n .
Let c = (c0, · · · , cq) be cellmates with |c| ⊂ σ. Then ξ(x−nc0, c) =

ξ(x − nc0, c0) by Lemma 5.10. We see that

x

n
∈ σ ∩ X

n
⇐⇒ x

n
∈ C(c, σ) ∩ X

n
(∀c ∈ σ ∩ X)

⇐⇒ x

n
− c ∈ C(0, σ − c) ∩ X

n
(∀c ∈ σ ∩ X)

⇐⇒ x − nc ∈ C(0, σ − c) ∩ X (∀c ∈ σ ∩ X)

⇐⇒ (x − nc) + c ∈ C(c, σ) ∩ X (∀c ∈ σ ∩ X).

If x
n ∈ σ ∩ X

n , then (x−nc) + c ∈ C(c, σ)∩X ⊂ C(c, σ)∩X . Hence

nF k,q
σ (c)[x] = k(0) · ξ(x − nc0, c) = k(0) · ξ(x − nc0, c0)
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by Definition 5.9. Hence we have

nF k,q
σ [x] =

⊕
|c| ⊂ σ
�(c) = q

nF k,q
σ (c)[x] =

⊕
|c| ⊂ σ
�(c) = q

k(0)∆(c)∗

where ∆(c)∗ is the dual cochain of an abstract q-simplex ∆(c) with
vertices |c| and �(c) = q. Thus we see that the complex (F k,·

σ [x], δk,·)
is isomorphic to the standard cochain complex over k(0) of an abstract
N -simplex ∆(σ) with vertices σ ∩ X .

Let N = �(σ ∩ X) − 1. We note that N could be different from the
real dimension of σ. Since the N -simplex ∆(σ) is contractible to one
point, we have

Hq(nF k,·
σ [x], δk,·) =

{
k(0) · [x] if q = 0
0 if q > 0.

where [x] denotes the (unique) monomial generator ξn
c ξ(x − nc, c) of

weight x, independent of the choice of c (c ∈ σ ∩ X). This proves the
theorem when x

n ∈ σ ∩ X
n .

Now we consider the general case. For σ ∈ Del(g−k) we define
H(σ) := σ + X(σ) ⊗R. Note that dimH(σ) = g − k = dimσ. First we
prove that for any x ∈ H(σ) ∩ X

nF k,q
σ (c)[x] =

{
k(0) · ξ(x − nc0, c) if x

n ∈ C(c, σ)
0 otherwise

where c = (c0, · · · , cq). In fact, nF k,q
σ (c)[x] = k(0) · ξ(x − nc0, c) iff

x − nc0 + c0 ∈ C(c, σ) by the definition of nF k,q
σ . We also see

x − nc0 + c0 ∈ C(c, σ) ⇐⇒ x − nc0 ∈ C(0, σ − c0) + X(c)R

⇐⇒ x

n
− c0 ∈ C(0, σ − c0) + X(c)R

⇐⇒ x

n
∈ C(c, σ).

Therefore nF k,q
σ (c)[x] 
 k(0) iff x

n ∈ C(c, σ).
We recall the modified generator ξn

c0
ξ(x−nc0, c) = ξn

c0
ξ(x−nc0, c0)

is independent of the choice of both c0 ∈ c and c, and it depends only
on σ (Lemma 5.10) because ξn

c0
ξ(x − nc0, c0) and ξn

c1
ξ(x − nc1, c1) are

identified in nF k,q by Definition 5.13.
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Let σ ∈ Del(g−k) and cellmates c such that |c| ⊂ σ. Then by
Lemma 6.2 we see

nF k,q
σ (c)[x] = 0 ⇐⇒ x

n
∈ C(c, σ)c ⇐⇒ x

n
∈ C(τ(c), σ)c

⇐⇒ τ(c) ⊂ Bσ(
x

n
) ⇐⇒ |c| ⊂ Bσ(

x

n
)

where q = �(c), τ(c) is the minimal face of σ such that |c| ⊂ τ . It follows
that

nF k,q
σ (c)[x] 
 k(0) ⇐⇒ |c| �⊂ Bσ(

x

n
).

Thus there is an isomorphism of k(0)-modules

nF k,q
σ [x] :=

⊕
�(c) = q
|c| ⊂ σ

nF k,q
σ (c)[x] 
 Cq(∆(σ), B∆(σ)(

x

n
))

It is easy to see that this induces an isomorphism between the com-
plex nF k,·

σ [x] and the relative cochain complex C·(∆(σ), B∆(σ)( x
n )). By

Lemma 6.10 if B∆(σ)( x
n ) is nonempty, then Hq(∆(σ), B∆(σ)( x

n )) = 0 for
any q. If B∆(σ)( x

n ) is empty (⇐⇒ x
n ∈ σ), then Hq(∆(σ), B∆(σ)( x

n )) =
k(0) (resp. 0) for q = 0 (resp. q > 0). It follows that

Hq(nF k,·
σ [x]) = Hq(C·(∆(σ), B∆(σ)(

x

n
)))

=

{
k(0) if q = 0 and x

n ∈ σ

0 otherwise .

This completes the proof of Theorem 6.11, hence of Theorem 5.15.
Q.E.D.

Example 6.12. Here is an example. Let k = k(0), g = 2, X =
Ze1 + Ze2 and B(x, x) = 2(x2

1 − x1x2 + x2
2) for x = x1e1 + x2e2 ∈ X .

Let

e1 = (1, 0), e2 = (0, 1), c0 = 0, c1 = e1, c2 = e1 + e2,

c3 = e2, c4 = −e1, c5 = −e1 − e2, c6 = −e2.

Let σ (resp. σ′) be the convex closure 〈c0, c1, c2〉 (resp. 〈c0, c2, c3〉).
Any Delaunay two-cell is a translate by X of either σ or σ′. Star (0) is
the convex closure of cj (j = 1, · · · , 6), which is a hexagon with the six
vertices cj .

There are essentially different three cases
(i) x ∈ σ,
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(ii) x ∈ C(c0, σ) \ σ,
(iii) x ∈ C(c0, c1, σ) \

⋃
i=0,1 C(ci, σ).

In the case (i) Bσ(x) = ∅. In the case (ii) Bσ(x) = 〈c1, c2〉. In the
case (iii) Bσ(x) = 〈c0, c2〉 ∪ 〈c1, c2〉. In the cases (ii) and (iii) Bσ(x) is
connected and contractible.

§7. The E8 lattice

In this section we recall the notation for E8 [Bourbaki, pp. 268-
270]. Let Z8 be the lattice of rank 8 with the standard inner product, ej

(1 ≤ j ≤ 8) an orthogonal basis of it, and (1
2Z)8 the overlattice spanned

by 1
2ej (1 ≤ j ≤ 8) with inner product induced naturally from that of

Z8. Then the sublattice X of (1
2Z)8 is defined to be

{
8∑

i=1

xiei ; 2xi ∈ Z, xi + xj ∈ Z,

8∑
i=1

xi ∈ 2Z}

with bilinear form inherited from (1
2Z)8. This is the lattice E8.

Let {αj , j = 1, · · · , 8} be a positive root system

α1 =
1
2
(e1 + e8 − (e2 + · · · + e7)),

α2 = e1 + e2, αj = ej−1 − ej−2 (3 ≤ j ≤ 8)

The maximal root α0 of the root system is given by

α0 = e7 + e8 = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8 (= ω8).

We define mj (1 ≤ j ≤ 8) to be the multiplicity of αj in α0. Thus
for instance, m1 = 2, m2 = 3 and m3 = 4. The root diagram of αj

(1 ≤ j ≤ 8) is E8, while the root diagram of αj (0 ≤ j ≤ 8) is the
extended Dynkin diagram Ẽ8 given below

Ẽ8
� � �

�

� � � � ��

α1 α3

α2

α4 α5 α6 α7 α8 −α0
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We also define the dual roots ωk ∈ X by (αj , ωk) = δjk. Hence we
have

ω1 = 2e8, ω2 =
1
2
(e1 + e2 + · · · + e7 + 5e8),

ω3 =
1
2
(−e1 + e2 + · · · + e7 + 7e8), ω4 = e3 + e4 + · · · + e7 + 5e8,

ω5 = e4 + · · · + e7 + 4e8, ω6 = e5 + · · · + e7 + 3e8,

ω7 = e6 + e7 + 2e8, ω8 = e7 + e8.

For any α ∈ X (�= 0) we define a hyperplane Hα of X ⊗ R to be
Hα = {x ∈ XR; α(x) = 0} and the linear transformation rα of X ⊗ R
to be the reflection with regards to Hα:

rα(x) = x − 2(α, x)
(α, α)

α.

If α is a root of E8, then rα(x) = x − (α, x)α. We also define r0 to
be

r0(x) = x + (1 − (α0, x))α0.

Then r0 is a reflection of XR with regards to the hyperplane H0 :=
{x ∈ XR; (α0, x) = 1}. The seven reflections rαj (1 ≤ j ≤ 7) generate
the Weyl group W (E8), while the eight reflections r0 and rαj (1 ≤ j ≤ 7)
generate the affine Weyl group W (Ẽ8). The order of W (E8) equals
214 · 35 · 52 · 7, while W (Ẽ8) is of infinite order. We note that rαj keeps
ωk (k �= j) invariant because (αj , ωk) = 0.

E8
� � �

�

� � � �

α1 α3

α2

α4 α5 α6 α7 α8

D7
� �

�

� � � �

α3

α2

α4 α5 α6 α7 α8

A7
� � � � � � �

α1 α3 α4 α5 α6 α7 α8
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The diagram D7 is a subdiagram of E8 obtained by deleting α1.
Therefore W (D7) is a subgroup of W (E8) naturally. Similarly since A7

is E8 with α2 deleted, W (A7) is a subgroup of W (E8). For a group
W acting on X , let StabW (ω) (resp. StabW (ω, ω′)) be the stabilizer
subgroup of W of ω ∈ X (resp. of both ω and ω′ ∈ X). Then
StabW (E8)(ω1

2 ) = W (D7) where D7 = E8 \ {α1} because by [Bourbaki,
Ch. 5, Prop. 2. p. 75] it is generated by the reflections rα with roots
α orthogonal to ω1. Similarly we see StabW (E8)(ω2

3 ) = W (A7) where
A7 = E8 \ {α2} .

§8. Elements of the lattice E8

Let X be the lattice E8, a, b ∈ X , (a, b) the bilinear form of E8 and
a2 = (a, a). We call

√
a2 the length of a, which we denote ‖a‖. An

element a ∈ X is called a root (of E8) if a2 = 2, equivalently, the length
of a equals

√
2.

Lemma 8.1. Any element a ∈ X with a2 = 2 is one of 240 roots:
(i) ±ei ± ej (1 ≤ i < j ≤ 8),
(ii) 1

2 (
∑8

j=1(−1)ν(j)ej) with
∑

j ν(j) even.
Any of them is W (E8)-equivalent.

Proof. Any root α ∈ X with α2 = 2 is one of (i) and (ii). The
number of these elements totals 112 + 128 = 240, as is seen easily. Let
α0 = e7 + e8 be the maximal root. Then StabW (E8)(α0) = W (E7) by
[Bourbaki, p. 75], whence the number of roots is equal to |W (E8)/W (E7)|
(= 214 ·35 ·52 ·7/210 ·34 ·5 ·7 = 240). Hence the set of roots is transitive
under W (E8). Q.E.D.

Lemma 8.2. Any element a ∈ X with a2 = 4 is one of the following
(i) ±2ek (1 ≤ k ≤ 8),
(ii) ±ei ± ej ± ek ± e
 (1 ≤ i < j < k < � ≤ 8),
(iii) ± 1

2 (3ei +
∑

j 	=i(−1)ν(j)ej) with
∑

j 	=i ν(j) odd.
Any of them is W (E8)-equivalent.

Proof. Let a0 = 2e8. By [Bourbaki, p. 75] StabW (E8)(a0) = W (D7),
the subgroup of W (E8) generated by rαj (j ≥ 2) because (a0, αj) = 0
for j �= 1. Hence the orbit W (E8) · a0 consists of 2160 elements where
2160 = |W (E8)/W (D7)|. Meanwhile the number of the elements of type
(i), (ii) and (iii) are respectively 16, 1120 = 24 ·

(
8
4

)
and 1024 = 27 ·

(
8
1

)
which totals 2160. This shows that the above 2160 elements are in the
single W (E8)-orbit of a0. Q.E.D.

Lemma 8.3. Any element a ∈ X with a2 = 6 is one of the following
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(i) ±ei ± ej ± 2ek for i, j, k all distinct
(ii)

∑6
k=1 ±eik

(1 ≤ ik ≤ 8) for ik all distinct
(iii) ± 1

2 (3ei + 3ej +
∑

k 	=i,j(−1)ν(k)ek) with
∑

k 	=i,j ν(k) even.

Any of them is W (E8)-equivalent.

Proof. Let a0 = e6+e7+2e8. By [Bourbaki, p. 75] StabW (E8)(a0) =
W (A1×E6), where the subgroup of W (E6) is generated by rαj (1 ≤ j ≤
6) and W (A1) is generated by rα8 because (a0, αj) = 0 for j �= 7. Hence
the orbit W (E8) · a0 consists of |W (E8)/W (A1)||W (E6)| = 214 · 35 · 52 ·
7/28 · 34 · 5 = 6720 elements. Meanwhile the number of the elements of
type (i), (ii) and (iii) are respectively 1344 = 23 ·

(
8
1

)
·
(
7
2

)
, 1792 = 26 ·

(
8
6

)
and 3584 = 27 ·

(
8
2

)
which totals 6720. This shows that the above 6720

elements are in the single W (E8)-orbit of a. Q.E.D.

Lemma 8.4. Any pair of a, b ∈ X with a2 = b2 = 2 and (a, b) = 0
is W (E8)-equivalent.

Proof. We may assume a = e7 + e8 (= α0). Then b ∈ X satisfying
the conditions b2 = 2 and (a, b) = 0 are one of the following

(i) ±ei ± ej for i, j ∈ {1, 2, 3, 4, 5, 6} and i < j,
(ii) ±(e7 − e8),
(iii) 1

2 (
∑8

j=1(−1)νj ej) with
∑

j νj even, ν7 + ν8 = 1.

One counts the number of elements of (i), (ii) and (iii) respectively as
60, 2 and 64. These total 126. Meanwhile let β = −e7 + e8. Then β is a
root with (α0, β) = 0 and StabW (E8)(α0) = W (E7), StabW (E8)(α0, β) =
StabW (E7)(β) = W (D6) by [Bourbaki, p. 75] because the subspace of X
orthogonal to α0 and β is spanned by αj (2 ≤ j ≤ 7). Let F be the
subset of roots b of E8 with (a, b) = 0. We want to prove that there is σ ∈
W (E8) such that a = σ(α0) and b = σ(β). Since a is in the W (E8)-orbit
of α0 by Lemma 8.1, we may assume a = α0. We see | StabW (E8)(α0) ·
β| = | StabW (E8)(α0)/ StabW (E8)(α0, β)| = |W (E7)/W (D6)| = 210 · 34 ·
5 · 7/25 · 6! = 2 · 32 · 7 = 126. It follows that the orbit StabW (E8)(α0) · β
consists of 126 elements. Hence StabW (E8)(α0) acts transitively on the
set F . This completes the proof. Q.E.D.

Lemma 8.5. Any pair of a, b ∈ X with a2 = 4, b2 = 2 and (a, b) = 0
is W (E8)-equivalent to a = 2e8 and b = −e6 + e7.

Proof. We may assume a = 2e8 by Lemma 8.2. Let F be the set
of all b with b2 = 2 and (a, b) = 0. It is the set of all roots of D7,
F = {±ei ± ej ; 1 ≤ i < j ≤ 7} where D7 = E8 \ {α1}. It follows
StabW (E8)(2e8) = W (D7). Since W (D7) acts on F transitively, so acts
StabW (E8)(2e8) on F . This proves the lemma. Q.E.D.
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Lemma 8.6. Any pair of a, b ∈ X with a2 = 4, b2 = 2 and (a, b) = 1
is W (E8)-equivalent to a = 2e8 and b = 1

2 (
∑8

j=1 ej).

Proof. We may assume a = 2e8 by Lemma 8.2. Let F be the set
of all b ∈ X with b2 = 2 and (a, b) = 1. Then F = { 1

2 (
∑7

j=1(−1)νj ej +
e8) ;

∑7
j=1 νj even}. We see |F | = 64. Let b = 1

2 (e1 + e2 + · · · + e8).
Then we see StabW (E8)(a) = W (D7) and StabW (E8)(a, b) = W (A6)
where A6 = D7 \ {α2} because the subspace of X orthogonal to a and b
is spanned by αj (3 ≤ j ≤ 8). It follows that the orbit StabW (E8)(a) · b
consists of | StabW (E8)(a)/ StabW (E8)(a, b)| = |W (D7)/W (A6)| = 26 ·
7!/7! = 64 elements. This implies that the action of StabW (E8)(a) on F
is transitive. Q.E.D.

Corollary 8.7. Any pair of a, b ∈ X with a2 = 4, b2 = 2 and
(a, b) = 1 is W (E8)-equivalent to a = e5 + e6 + e7 + e8 and b = e4 + e8.

Lemma 8.8. Any pair of a, b ∈ X with a2 = 4, b2 = 2 and (a, b) = 2
is W (E8)-equivalent to a = 2e8 and b = e7 + e8.

Proof. We may assume a = 2e8 by Lemma 8.2. Let F be the set of
all b ∈ X with b2 = 2 and (a, b) = 2. Then F = {±ej + e8 ; 1 ≤ j ≤ 7}
and |F | = 14. Let b = e7 + e8. Then b ∈ F and StabW (E8)(a) =
W (D7), StabW (E8)(a, b) = W (D6) where D6 = D7\{α8}. It follows that
the orbit StabW (E8)(a) · b consists of | StabW (E8)(a)/ StabW (E8)(a, b)| =
|W (D7)/W (D6)| = 26 · 7!/25 · 6! = 14 elements. This implies that the
action of StabW (E8)(a) on F is transitive. Q.E.D.

Lemma 8.9. Let {ak, ak+1, · · · , a7} (1 ≤ k ≤ 7) be a set of roots
such that (ai, aj) = 1 for any i �= j. Up to W (E8),

(i) if k ≥ 2, it is equivalent to the set {ek +e8, ek+1 +e8, · · · , e7 +
e8}.

(ii) if k = 1, then it is equivalent to either {e1+e8, e2+e8, · · · , e7+
e8} or {−e1 + e8, e2 + e8, · · · , e7 + e8}.

Proof. We prove the lemma by the descending induction on k. The
case k = 7 follows from Lemma 8.2. Let βj = ej + e8 (1 ≤ j ≤ 7). Next
we consider the case k = 6. We may assume a7 = β7 by Lemma 8.2. Let
F be the set of all a with (a, a) = 2 and (a, a7) = 1. Then |F | = 56. Then
β6 ∈ F . Since StabW (E8)(β7) = W (E7) and StabW (E7)(β6) = W (E6)
where E6 = E8 \ {α6, α7}, we see W (E7) · β6 = |W (E7)/W (E6)| =
210 · 34 · 5 · 7/27 · 34 · 5 = 56. This shows that W (E7) acts transitively
on F . This proves the lemma for k = 6.

Next we consider the case k = 5. We may assume a6 = β6 and
a7 = β7 by the induction hypothesis. There are exactly 27 roots a
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with (a, β6) = (a, β7) = 1. Meanwhile StabW (E6)(β5) = W (D5) and
|W (E6)/W (D5)| = 27 · 34 · 5/24 · 5! = 27 where D5 = {αj ; 1 ≤ j ≤ 5}.
This proves the case k = 5.

There are exactly 16 roots a with (a, βj) = 1 (j = 5, 6, 7). Mean-
while StabW (D5)(β4) = W (A4) and |W ((D5)/W (A4)| = 24 · 5!/5! = 16
where A4 = {αj ; 1 ≤ j ≤ 4}. This proves the case k = 4. Sim-
ilarly there are exactly 10 roots a with (a, βj) = 1 for 4 ≤ j ≤ 7,
while StabW (A4)(β3) = W (A2 × A1) and |W (A4)/W (A2 × A1)| = 10
where A2 × A1 = {α1, α2, α3}. This proves the case k = 3. When
k = 2, there are exactly 6 roots a with (a, βj) = 1 for 3 ≤ j ≤ 7,
and StabW (A2×A1)(β2) = W (A1) and |W (A2 × A1)/W (A1)| = 6 where
A1 = {α1}. Hence the case of k = 2 is proved.

If k = 1, we may suppose aj = βj for 2 ≤ j ≤ 7 by the induction
hypothesis. Then there are three choices a1 = ±e1 + e8 and 1

2 (e1 + · · ·+
e8). Since A1 = {α1}, W (A1) is generated by rα1 and rα1(−e1 + e8) =
−e1 + e8, rα1(e1 + e8) = 1

2 (e1 + · · ·+ e8). This shows that there are two
W (A1)-orbits. This completes the proof of the lemma. Q.E.D.

Corollary 8.10. Any sublattice A8−k of E8 is W (E8)-equivalent
to the sublattice {αk, · · · , α8,−α0} if k ≥ 2. If k = 1 and if there
is no root orthogonal to the sublattice, then it is W (E8)-equivalent to
{α3, α4, · · · , α8,−α0}. If k = 1 and if there is a root orthogonal to the
sublattice, then it is W (E8)-equivalent to {α2, α4, · · · , α8,−α0}.

Proof. Let Xk be the sublattice of X = E8 isomorphic (as a lat-
tice) to A8−k. Hence there is a basis bj of Xk (k ≤ j ≤ 7) such
that (bj, bj+1) = −1, (bj , bj) = 2 and (bi, bj) = 0 (otherwise). Let
γ7 = −b7 and γj = −

∑7

=j b
 (k ≤ j ≤ 7). We note that b7 = −γ7 and

bj = γj+1 − γj (k ≤ j ≤ 6). Then we see (γi, γi) = 2 and (γi, γj) = 1
for any i �= j. Hence if k ≥ 2, the ordered set {γj ; k ≤ j ≤ 7} is
W (E8)-equivalent to {ek + e8, ek+1 + e8, · · · , e7 + e8} by Lemma 8.9.
It follows that the ordered set {bj ; k ≤ j ≤ 7} is W (E8)-equivalent to
{αk+2, αk+3, · · · , α8,−α0}. When k = 1, then the ordered set {γj ; k ≤
j ≤ 7} is W (E8)-equivalent to either {e1 + e8, e2 + e8, · · · , e7 + e8} or
{−e1+e8, e2+e8, · · · , e7+e8} by Lemma 8.9. It follows that the ordered
set {bj ; 1 ≤ j ≤ 7} is W (E8)-equivalent to either {α3, α4, · · · , α8,−α0}
or {α2, α4, · · · , α8,−α0}. This proves the corollary. Q.E.D.

Lemma 8.11. For a given set {a1, a2, · · · , a7} as in Lemma 8.9
there are at most two elements ω ∈ X such that ω2 = 4 and (ω, aj) = 2
for any j ≤ 7. If aj = ej+e8 (1 ≤ j ≤ 7), then ω = 2e8. If a1 = −e1+e8

and aj = ej+e8 (2 ≤ j ≤ 7), then ω = 2e8 or ω = 1
2 (−e1+e2+· · ·+3e8).
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Proof. It suffices to prove the lemma up to W (E8)-equivalence.
Hence by Lemma 8.9 we may assume a1 = ±e1 + e8 and aj = ej + e8

(j ≥ 2). In either case ω = 2e8 satisfies the conditions. If a1 = −e1 + e8

and aj = ej+e8 (j ≥ 2), then ω = 1
2 (−e1+e2+· · ·+3e8) also satisfies the

conditions. Suppose ω satisfies the conditions. Let s = ω−a1. It follows
from (ω, ω) = 4 that (s, s) = 2. Moreover (s, aj) = 1 for any j ≤ 7, which
implies s = ±e1 + e8 or s = 1

2 (e1 + · · · + e8). Hence if a1 = e1 + e8,
then s = −e1 + e8 and ω = 2e8. If a1 = −e1 + e8, then s = e1 + e8 or
s = 1

2 (e1+· · ·+e8). Therefore ω = 2e8 or 1
2 (−e1+e2+· · ·+3e8). Q.E.D.

We note that if we let sj := ω − aj (1 ≤ j ≤ 7) in Lemma 8.11,
then sj satisfies (sj , sk) = 1 + δjk and (sj , ak) = 1− δjk. We call a ∈ X
primitive if a is not an integral multiple of any element of X .

Lemma 8.12. There are 17280 primitive elements a ∈ X with
a2 = 8. Any element a ∈ X with a2 = 8 is one of the following

(i)
∑4

k=1(−1)ν(ik)eik
+ (−1)ν(m)2em (ik, m all distinct),

(ii)
∑8

i=1(−1)ν(i)ei with
∑8

i=1 ν(i) odd,
(iii) ± 1

2 (
∑

i	=k(−1)ν(i)ei + 5ek) with
∑

i	=k ν(i) even,
(iv) 1

2 (
∑

i	=j,k,
(−1)ν(i)ei) + 3
2 (

∑
i=j,k,
(−1)ν(i)ei) with

∑8
i=1 ν(i)

odd.

Any of them is W (E8)-equivalent.

Proof. Let StabW (E8)(ω2) be the stabilizer subgroup of ω2. By
[Bourbaki, p. 75] it is the subgroup of W (E8) generated by rα (α ∈ X)
with α2 = 2 and (ω2, α) = 0. The roots orthogonal to ω2 is the root
system A7 spanned by αj for j �= 2. Thus StabW (E8)(ω2) is W (A7).
Hence the orbit W (E8) · ω2 consists of |W (E8)/W (A7)| = 17280 ele-
ments. Meanwhile if a2 = 8 and a ∈ X , then either a = 2b for some root
b ∈ X or a is primitive. If b is a root and it is not in the lattice Z8, then
b equals 1

2 (
∑8

i=1(−1)ν(i)ei) with
∑8

i=1 ν(i) even. Hence if a is primitive
and a2 = 8, then it is one of the elements of type (i)-(iv). The number
of elements of type (i), (ii), (iii) and (iv) are respectively 8960, 128, 1024
and 7168, which totals 17280. This shows that the above 17280 elements
are in the single W (E8)-orbit of ω2. Q.E.D.

Lemma 8.13. Any pair of a, b ∈ X with a2 = b2 = 4 and (a, b) = 3
is W (E8)-equivalent.

Proof. We may assume a = 2e8 by Lemma 8.2. Let F be the set
of all b with b2 = 4 and (2e8, b) = 3. Then F = { 1

2 (
∑7

j=1(−1)ν(j)ej +
3e8) ;

∑7
j=1 ν(j) even} and |F | = 64. Let b0 = 1

2 (
∑7

j=1 ej + 3e8). Then
we see W (D7) = StabW (E8)(2e8) and W (A6) = StabW (E8)(2e8, b0).
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Thus the orbit W (D7) · b0 consists of |W (D7)/W (A6)| = 26 · 7!/7! = 64
elements. This proves that W (D7) acts transitively on F . Q.E.D.

Lemma 8.14. Any pair of a, b ∈ X with a2 = 4, b2 = 8 and
(a, b) = 5 is W (E8)-equivalent.

Proof. We may assume a = 2e8 by Lemma 8.2. Let F be the set
of all b with b2 = 8 and (2e8, b) = 5. Then F = { 1

2 (
∑7

j=1(−1)ν(j)ej +
35e8) ;

∑7
j=1 ν(j) even} and |F | = 64. Let b0 = 1

2 (
∑7

j=1 ej +5e8). Then
we see W (D7) = StabW (E8)(2e8) and W (A6) = StabW (E8)(2e8, b0).
Thus the orbit W (D7) · b0 consists of |W (D7)/W (A6)| = 26 · 7!/7! = 64
elements. This proves that W (D7) acts transitively on F . Q.E.D.

Table 1. The elements of E8

a2 W (E8) number

a2 = 2 (root) transitive 240

a2 = 4 transitive 2160

a2 = 6 transitive 6720

a2 = 8 (prim. ) transitive 17280

a2 = 8 (not prim. ) transitive 240

Table 2. The pairs of E8 elements

a, b W (E8)

a2 = b2 = 2, ab = 0 transitive

a2 = 4, b2 = 2, ab = k (k = 0, 1, 2) transitive

a2 = 4, b2 = 4, ab = 3 transitive

a2 = 4, b2 = 8, ab = 5 transitive

Ak ⊂ E8 (2 ≤ k ≤ 6) transitive

Example 8.15. Examples of the pairs in Table 2 are given as fol-
lows. The pair a = e1 + e2, b = e3 + e4 resp. a = e1 + e2 + e3 +
e4, b = e4−k + e5−k satisfies satisfies a2 = b2 = 2 and ab = 0, resp.
a 2 = 4, b2 = 2 and ab = k (k = 0, 1, 2).
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The pair a = e1+e2+e3+e4, b = e2+e3+e4+e5 satisfies a2 = b2 = 4
and ab = 3, while the pair a = e1+e2+e3+e4, b = 2e1+e2+e3+e4+e5

satisfies a2 = 4, b2 = 8 and ab = 5. Similarly an example of Ak for
2 ≤ k ≤ 6 is given by the sublattice of E8 spanned by αj (9−k ≤ j ≤ 8).

However we note that for k = 7 there are two W (E8)-orbits of
sublattices spanned either by (1) αj (3 ≤ j ≤ 8 and j = 0) or by (2) αj

(4 ≤ j ≤ 8 and j = 0, 2). See Lemma 10.3.

§9. Decorated diagrams and the Wythoff construction

The purpose of this section is to recall the notions of decorated
diagrams of a Dynkin diagram from [MP92], and then the Wythoff con-
struction, due to Coxeter, of Delaunay cells associated with decorated
diagrams.

Definition 9.1. A decorated diagram ∆ of Ẽ8 is by definition a
decomposition of Ẽ8 into two subdiagrams ∆Vor and ∆Del such that

(i) |Ẽ8| = |∆| = |∆Vor| ∪ |∆Del|,
(ii) ∆Vor is a subdiagram of Ẽ8 with square nodes �, crossed

unless the square node is connected to ∆Del by an edge,
(iii) ∆Del is a connected subdiagram of Ẽ8 with circle nodes con-

taining the node �
where |∆A| is the support of ∆A, that is, the set of nodes and edges.

Definition 9.2. We define the Voronoi cell V (q) by

V (q) = {α ∈ XR; ‖y − α‖ ≥ ‖q − α‖ for any y ∈ X}

for q ∈ X . A Voronoi cell V is defined to be a face of V (q) for some
q ∈ X .

Let H0 be the reflection hyperplane of r0 (see section two), that is,
the hyperplane of XR defined by H0 = {x ∈ XR ; (α0, x) = 1}. Define
F to be the closed domain

F = {x ∈ XR ; (αj , x) ≥ 0 (1 ≤ j ≤ 8), (α0, x) ≤ 1}

and define F0 to be the intersection of F and H0.

We quote a few basic facts from [MP92, pp. 5095 and section 4].

Lemma 9.3. (i) F is the convex closure of the origin 0 and
ωi

mi
(1 ≤ i ≤ 8).

(ii) F is a fundamental domain for W (Ẽ8) in the sense that
(a) XR is the union of wF (w ∈ W (Ẽ8)),
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∆1
0 = � � �

�

� � � � ��

∆2
0 = � � �

�
� � � � ��

∆1
1 = � � �

�
� � � � ��

∆2
1 = �× � �

�

� � � � ��

∆2 = �× � �

�
� � � � ��

∆3 = �× �×

�×

� � � � � ��

∆4 = �× �× �×

�×

� � � � ��

∆5 = �× �× �×

�×

�× � � � ��

∆6 = �× �× �×

�×

�× �× � � ��

∆7 = �× �× �×

�×

�× �× �× � ��

Fig. 1. Decorated diagrams

(b) if x ∈ F and w ∈ W (Ẽ8), then wx ∈ F ⇐⇒ wx = x,
(c) if x ∈ F , then StabW ( eE8)(x) is generated by the reflec-

tions with regards to the walls (=one-codimensional faces)
of F containing x.

(iii) The Voronoi cell V (0) is the union of wF (w ∈ W (E8)).
(iv) Any Voronoi cell V is the intersection of all V (q) which con-

tains V .
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The Wythoff construction of Delaunay cells due to Coxeter is de-
scribed as follows: Let ∆ be a decorated diagram of Ẽ8. Let S∆ (resp.
S∗

∆) be the set of nodes of E8 contained in ∆Vor (resp. ∆Del \ {−α0}).
Let Wa,∆ be the reflection subgroup of W (Ẽ8) generated by r0 and rα

(α ∈ S∗
∆). Then V 0

∆ is defined to be the convex closure of ωi

mi
(αi ∈ S∆)

and V∆ the minimal face of V (0) containing V 0
∆. Hence V∆ is the inter-

section of all V (q) such that V 0
∆ ⊂ V (q), while V 0

∆ = V∆ ∩F0. We define
D∆ to be the convex closure of Wa,∆(0). Since any Delaunay cell is the
convex closure of some points of X , this implies that the Delaunay cell
D∆ is the convex closure of all q with q ∈ Wa,∆(0) ∩ X .

For instance, let ∆ = ∆2. Then ∆Vor is the disjoint union of A2 and
A1 with square nodes, crossed or uncrossed, while ∆Del is A6 with the
extreme node �. Thus S∆ = {α1, α2, α3} and S∗

∆ = {α4, α5, α6, α7, α8}.

The following theorem is a summary for the Wythoff construction.
See [MP92, Lemma 3-Lemma 5 and (4.29)-(4.31), pp. 5108-5111].

Theorem 9.4. Let ∆ be a decorated diagram of Ẽ8. Then

(i) V∆ is a Voronoi cell of E8, while D∆ is a Delaunay cell of E8

dual to V∆ in the sense that D∆ is the convex closure of all
a ∈ X such that ‖a− y‖ = minb∈X ‖b − y‖ for any y ∈ V∆.

(ii) V∆ is the intersection of all V (q) with q ∈ Wa,∆(0), while D∆

is the convex closure of all q with q ∈ Wa,∆(0).
(iii) If ∆ = ∆k or ∆


k, then dim V∆ = k and dimD∆ = 8 − k.
(iv) Any Delaunay cell σ of E8 is a W (Ẽ8)-transform of D∆ for a

decorated diagram ∆ of Ẽ8. If σ contains the origin, then it
is a W (E8)-transform of D∆.

(v) For a subset A of XR, we define

StabW ( eE8)(A) = {w ∈ W (Ẽ8); wA ⊂ A},
StabW (E8)(A) = {w ∈ W (E8); wA ⊂ A}.

Let W 1
∆ (resp. W 2

∆) be the subgroup of W (Ẽ8) generated
by rαj with αj ∈ S∗

∆ (resp. by rαj with αj orthogonal to both
S∗

∆ and α0). Then

StabW ( eE8)(D∆) = Wa,∆ × W 2
∆, StabW (E8)(D∆) = W 1

∆ × W 2
∆.
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9.5. Wythoff construction for E8

In this subsection we give examples of the Wythoff construction for
E8. Let h0 = 2e8, hj = ej + e8 and h15−j = −ej + e8 (1 ≤ j ≤ 7). We
recall ω1 = 2e8 and ω2 = 1

2 (e1 + e2 + · · · + e7 + 5e8).
9.5.1. D∆1

0
= D(ω1

2 ). Let ∆ = ∆1
0. Then we see ∆Vor = � and

V∆ = {ω1
2 }. First we note r0(ω1

2 ) = ω1
2 , hence r0 ∈ StabW ( eE8)(

ω1
2 ).

The stabilizer subgroup StabW ( eE8)(
ω1
2 ) is the reflection subgroup of

W (Ẽ8) generated by r0 and rα with (α, ω1) = 0, hence it is gener-
ated by r0 and rαj (j = 2, · · · , 8). We note Wa,∆1

0
= StabW ( eE8)(

ω1
2 )

and StabW (E8)(
ω1
2 ) = W (D7) where D7 = E8 \ {α1} because it is

generated by rα with roots α orthogonal to ω1, hence it is generated
by rαj (j = 2, · · · , 8). Since (α0, hj) = 1 for any 1 ≤ j ≤ 14 and
j �= 7, 8, we have r0(hj) = hj , while r0(h7) = 0, r0(h8) = h0. Let
S = {0, h0, hj, h15−j ; 1 ≤ j ≤ 7}. Then r0(S) = S.

As is well known, W (D7) is a semi-direct product of (Z/2Z)6 and
S7. There is a natural surjection π : W (D7) → S7. Let σ ∈ W (D7).
Then π(σ) ∈ S7. Let hj = ej + e8 (1 ≤ j ≤ 7). For σ ∈ W (D7),
σ(e8) = e8, σ(ej) = (−1)ν(π(σ)(j))eπ(σ)(j) with

∑7
j=1 ν(π(σ)(j)) even.

For instance, for 3 ≤ k ≤ 8 we have rαk
(ek−1) = ek−2, rαk

(ek−2) = ek−1

and rαk
(ej) = ej (otherwise). Therefore rαk

(S) = S for any 2 ≤ k ≤ 8.
It follows that W (D7)(S) = S. Hence D(ω1

2 ) is the convex closure of
W (D7)(S) = S. This can be shown directly as we see in Lemma 10.2.

� � �

�

� � � �

D7

9.5.2. D∆2
0

= D(ω2
3 ). Let ∆ = ∆2

0. Then we see ∆Vor = � and
V∆ = {ω2

3 }. The stabilizer group StabW (E8)(
ω2
3 ) = W (A7) because

it is generated by rα with (α, ω2) = 0, hence it is generated by rαj

(j = 1, 3, · · · , 8). We also see Wa,∆ = StabW ( eE8)
(ω2

3 ) is generated by r0

and StabW (E8)(ω2
3 ). Let g0 = 1

2 (e1+e2+· · ·+e8) and S = {0, g0, hj (1 ≤
j ≤ 7)}. Then r0(g0) = rαk

(g0) = g0 (3 ≤ k ≤ 8). We also see
rα1(h1) = g0, rα1(g0) = h1 and rα1(hj) = hj (otherwise). Though
{αk (3 ≤ k ≤ 8)} = A6, W (A6) = S7 acts on the set {hj (1 ≤ j ≤ 7)}
as standard permutations. It follows that D(ω2

3 ) is the convex closure
of 0, hj (1 ≤ j ≤ 7) and g0. See Lemma 10.8.

9.5.3. D∆k
1
. For ∆ = ∆1

1, Wa,∆ is generated by r0 and rαj (3 ≤
j ≤ 8). Hence D∆ is the convex closure of 0 and hj (1 ≤ j ≤ 7). For
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∆ = ∆2
1, Wa,∆ is generated by r0 and rαj (j = 2, 4, 5, · · · , 8). Hence D∆

is the convex closure of 0, h14 and hj (2 ≤ j ≤ 7).
9.5.4. D∆k

. For a fixed k we let ∆ = ∆k (2 ≤ k ≤ 7). Then Wa,∆

is generated by r0 and rαj (j = k + 2, · · · , 8). Hence D∆ is the convex
closure of 0 and hj (k ≤ j ≤ 7).

§10. Delaunay cells

By Theorem 9.4 any 8-dimensional Delaunay cell is either D(ω1
2 ) or

D(ω2
3 ) up to W (Ẽ8) where ω1

2 = e8 and ω2
3 = 1

6 (e1 + e2 + · · ·+ e7 +5e8).
We recall

StabW (E8)(D(
ω1

2
)) = W (D7), StabW (E8)(D(

ω2

3
)) = W (A7).

10.1. The Delaunay cell D(ω1
2 )

Lemma 10.2. The Delaunay cell D(ω1
2 ) = D(e8) is the convex

closure of the origin 0, ±ej + e8 (1 ≤ j ≤ 7) and 2e8. For 0 < ε < 1,
D( εω1

2 ) consists of 0 only.

The polytope D(ω1
2 ) is called a 8-cross polytope.

Proof. The cell D(ω1
2 ) = D(e8) is the convex closure of a ∈ X

with ‖a − e8‖ = 1. If a (�= 0) ∈ X and ‖a − e8‖ = 1, then writing
a =

∑8
i=1 xiei we have

∑7
i=1 x2

i +(x8 − 1)2 = 1. If x8 /∈ Z, then x8 = 1
2 ,

or 3
2 and there are exactly three xi’s such that xi = 1

2 and otherwise
xj = 0 for j ≤ 8. But in either case there is a pair xi + xj /∈ Z, which is
absurd. If x8 ∈ Z, then x8 = 1 or 2. If x8 = 1, then xi = 1 for a unique
i and xj = 0 for the other j. The rest is clear. Q.E.D.

Lemma 10.3. Let h0 = 2e8, hj = ej + e8 and h15−j = −ej + e8

(1 ≤ j ≤ 7). Let σ0 (resp. σ1, τ0, τ1, τ2) be the convex closure

σ0 = 〈0, h1, h2, · · · , h7, h0〉, σ1 = 〈0, h1, h2, · · · , h6, h8, h0〉,
τ0 = 〈0, h1, h2, · · · , h7〉, τ1 = 〈0, h1, h2, · · · , h6, h8〉,

τ2 = 〈h0, h1, h2, · · · , h6, h7〉.

Then
(i) σ0 and σ1 are 8-dimensional. They are not Delaunay cells.

The Delaunay cell D(ω1
2 ) is the union of 26 W (D7)-transforms

of σ0 and σ1.
(ii) Let k ≤ 7. Any k-dimensional face of D(ω1

2 ) is a W (D7)-
transform of a face of σ0. No k-dimensional face of D(ω1

2 )
contains both the origin and h0. There are exactly 2k+1 ·

(
8

k+1

)
k-dimensional faces of D(ω1

2 ).
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(iii) Any k-dimensional face of D(ω1
2 ) is W (Ẽ8)-equivalent to D∆k

for 1 ≤ k ≤ 6.
(iv) Any 7-dimensional face of D(ω1

2 ) is W (Ẽ8)-equivalent to ei-
ther D∆1

1
or D∆2

1
. τ1 (resp. τ0) is a Delaunay cell and it is

a face of D(ω1
2 ), W (Ẽ8)-equivalent to D∆1

1
(resp. D∆2

1
) and

τ2 = r0(τ1).

Proof. W (D7) (= StabW (E8)(ω1
2 )) is a semi-direct product of (Z/2Z)6

and the symmetry group S7, where S7 keeps both σ0 and σ1 respectively
invariant. Let π : W (D7) → S7 be the natural surjection. If π(w) is
the identity, then w(hj) = hj or h15−j (1 ≤ j ≤ 7) according as ν(j)
even or odd. Thus if π(w) is the identity, we define w(j) := j or 15 − j
according as ν(j) even or odd. Then we have

w · 〈0, h1, · · · , h7, h0〉 = 〈0, hw(1), · · · , hw(7), h0〉.

For w ∈ W (D7), we have w(e8) = e8, w(ej) = (−1)ν(π(w)(j))eπ(w)(j)

with
∑7

j=1 ν(π(w)(j)) even. See Subsection 9.5. Then we have

w · 〈0, h1, · · · , h7, h0〉 = 〈0, hk1 , · · · , hk7 , h0〉

where kj = π(w)(j) or 15 − π(w)(j) according as ν(π(w)(j)) = 0 or 1.
Note that

∑7
j=1 ν(π(w)(j)) is even. Hence there are exactly 26 W (D7)-

transforms of σ0. Similarly there are exactly 26 W (D7)-transforms of
σ1. Thus the convex closure 〈0, hi1 , · · · , hi7 , h0〉 is a W (D7)-transform
of either σ0 or σ1 for any ik ∈ {k, 15 − k},.

Next let z ∈ D(ω1
2 ). Since D(ω1

2 ) is the convex closure of 0, h0 and
hj (1 ≤ j ≤ 14), we write z = x0h0+

∑14
j=1 xihi where x0+

∑14
j=1 xi ≤ 1

and xj ≥ 0 (0 ≤ j ≤ 14). Then we have

z =
∑

xi≥x15−i

(xi − x15−i)hi +
∑

xi<x15−i

(xi − x15−i)h15−i

+ (x0 +
7∑

i=1

min(xi, x15−i))h0.

The sum of the coefficients of hi is equal to

∑
xi≥x15−i

(xi − x15−i) +
∑

xi<x15−i

(xi − x15−i) + x0 +
7∑

i=1

min(xi, x15−i))

which is equal to x0 +
∑7

i=1 max(xi, x15−i)). By our assumption on xi

it is not greater than 1. This implies z ∈ 〈0, h0, hi1 , · · · , hi7〉 for some
ik ∈ {k, 15 − k} (1 ≤ k ≤ 7). This proves (i).
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Next we prove that the convex closure 〈0, h0〉 of 0 and h0 = 2e8

intersects the interior of D(ω1
2 ). To see this it suffices to prove e8 := h0

2
is in the interior of D(ω1

2 ). In fact, we choose xj > 0 (0 ≤ j ≤ 7) such
that z :=

∑7
j=0 xj = 1

2 . Then we have

e8 =
1
2
· 0 +

1
2

7∑
j=1

xj(hj + h15−j) + x0h0.

Since 0 < xj < 1 for any j and 0 < z < 1, e8 is in the interior of D(ω1
2 ).

It follows that the line segment 〈0, h0〉 intersects the interior of D(ω1
2 ).

In particular, 〈0, h0〉 is not a Delaunay cell.
If any lower dimensional face of σ0 contains both the origin and

h0, then it is contained in the interior of D(ω1
2 ), which is impossible.

Therefore no lower dimensional face of σ0 contains both the origin and
h0. Hence any lower dimensional face of D(ω1

2 ) is a face of the simplex
either w · 〈0, h1, · · · , h7〉 or w · 〈h0, h1, · · · , h7〉 for some w ∈ W (D7).
Hence any lower dimensional face of D(ω1

2 ) is a W (D7)-transform of
a face of τ0 or τ2. If any k-dimensional face of D(ω1

2 ) contains the
origin, it is 〈0, hi1 , · · · , hik

〉 where ij + i
 �= 15 and ij �= 0. There are
these 2k

(
7
k

)
faces in total. If it contains h0, then it is 〈h0, hi1 , · · · , hik

〉
where ij + i
 �= 15 and ij �= 0. There are these 2k

(
7
k

)
faces in total.

If it contain neither the origin nor h0, then it is 〈hi1 , · · · , hik+1〉 where
ij + i
 �= 15 and ij �= 0. These total 2k+1

(
7

k+1

)
. Thus we see that there

are 2k+1
(

8
k+1

)
= 2k+1

(
7
k

)
+2k+1

(
7

k+1

)
k-dimensional faces of D(ω1

2 ). This
proves (ii).

Since τ2 = r0(τ1), τ2 is a W (Ẽ8)-transform of τ1. By (ii) any k-
dimensional face of D(ω1

2 ) is a W (D7)-transform of a face of τ0 or τ2

for k ≤ 7. Therefore it is a W (Ẽ8)-transform of a face of τ0 or τ1. We
note that there are exactly the same number of lower-dimensional faces
of D(ω1

2 ) containing h0 as those containing the origin. The assertions
(iii) and (iv) follow from Subsection 9.5 and the proof of Lemma 8.9 or
Corollary 8.10. Q.E.D.

Lemma 10.4. There are exactly 2160 W (E8)-transforms of D(ω1
2 )

containing the origin. Each W (E8)-transform is of the form D(a
2 ) for

some a ∈ X with a2 = 4 and vice versa.

Proof. Any W (E8)-transform of D(ω1
2 ) is of the form D(w · ω1

2 )
(w ∈ W (E8)). Hence the number of W (E8)-transforms of D(ω1

2 ) is
equal to |W (E8)/W (D7)|(= 2160), which is the number of a ∈ X with
a2 = 4 by Lemma 8.2. Q.E.D.
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Proposition 10.5. There are exactly 135 W (E8)-transforms of
D(ω1

2 ) up to translation by X.

Proof. Those 2160 copies of D(ω1
2 ) are of the form D(a

2 ) with a ∈ X

and a2 = 4 by Lemma 10.4. Since D(a
2 ) has 16 vertices, there are 16

translates-by-X of D(a
2 ) containing the origin. Hence there are exactly

135 (= 2160/16) W (E8)-transforms of D(ω1
2 ) up to translation by X .

Q.E.D.

Remark 10.6. D(a′

2 ) is a translate of D(a
2 ) by X if and only if

a − a′ = 2x for some root x. By Lemma 8.2, we assume a = 2e8. By
Lemma 8.2 we see readily a′ = ±2ek. It follows that there are precisely
16 translates D(a′

2 ) by X of D(2e8
2 ).

10.7. The Delaunay cell D(ω2
3 )

Lemma 10.8. The Delaunay cell D(ω2
3 ) is the convex closure of

the origin 0, hj = ej + e8 (1 ≤ j ≤ 7) and g0 := 1
2 (e1 + e2 + · · · + e8).

Proof. D(ω2
3 ) is the convex closure of a ∈ X with ‖a − ω2

3 ‖2 =
‖ω2

3 ‖2 = 8
9 . Let a =

∑8
j=1 xjej and suppose ‖a − ω2

3 ‖2 = 8
9 . If x8 ∈ Z,

then x8 = 0 or 1. If x8 = 0, then a = 0. If x8 = 1, then a = ej + e8

for some j ≤ 7. If x8 is not an integer, then x8 = 1
2 or 3

2 and xj = 1
2

for 1 ≤ 7. If x8 = 1
2 , then a = g0. If x8 = 3

2 , then no a ∈ X is
possible. Q.E.D.

Corollary 10.9. There are exactly
(
8
k

)
k-dimensional faces of D(ω2

3 ).

Proof. Clear because the 8-dimensional cell D(ω2
3 ) has only nine

vertices. Q.E.D.

We call a ∈ X primitive if a is not an integral multiple of any element
of X .

Lemma 10.10. There are exactly 17280 W (E8)-transforms of D(ω2
3 )

containing the origin. Each W (E8)-transform is of the form D(a
3 ) for

some primitive a ∈ X with a2 = 8 and vice versa.

Proof. Any W (E8)-transform of D(ω1
2 ) is of the form D(w · ω2

3 )
(w ∈ W (E8)), hence of the form D(a

3 ) with a primitive and a2 =
8. Therefore the number of W (E8)-transforms of D(ω2

3 ) is equal to
|W (E8)/W (A7)| = 17280, the number of a ∈ X with a2 = 8 by
Lemma 8.12. Q.E.D.

Proposition 10.11. There are exactly 1920 W (E8)-transforms of
D(ω2

3 ) up to translation by X.
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Proof. Those 17280 copies are of the form D(a
3 ) with a ∈ X and

a2 = 8. Each copy has 9 vertices, hence there are exactly 1920 (=
17280/9) W (E8)-transforms of D(ω2

3 ) up to translation by X . Q.E.D.

Remark 10.12. Since any vertex of D(ω2
3 ) other than 0 is a root,

D(a′

3 ) is a translate of D(a
3 ) by X if and only if a−a′ = 3x for some root

x ∈ X or x = 0. If a−a′ = 3x �= 0, then 2aa′ = −9x2 +a2 +(a′)2 = −2.
Hence aa′ = −1. Therefore x is a root with ax = 3. Conversely if x is a
root with ax = 3, then a′ = a− 3x gives a translate D(a′

3 ) of D(a
3 ). By

Lemma 8.12, we may assume a = e1 + e2 + e3 + e4 + 2e8. Suppose x is
a root with ax = 3. Then by Lemma 8.12, x = ek + e8 (1 ≤ k ≤ 4) or
x = 1

2 (e1 + e2 + e3 + e4 ± e5 ± e6 ± e7 + e8). Hence there are precisely 9
(= 1 + 4 + 4) X-translates D(a′

3 ) of D(a
3 ).

Thus we see the following table by applying Lemma 10.3 and Corol-
lary 10.9.

Table 3. The number of faces of 8-dim Delaunay cells

d 7 6 5 4 3 2 1 0

D(ω1
2 ) 256 1024 1792 1792 1120 448 112 16

D(ω2
3 ) 9 36 84 126 126 84 36 9

10.13. Adjacency of 8-dimensional Delaunay cells
Lemma 10.14. No pair of a, b ∈ X with a2 = 4, b2 = 2 and

(a, b) = 0 belong to the same 8-dimensional Delaunay cells.

Proof. By Lemma 8.5 they are equivalent to a = 2e8 and b =
−e6 + e7. They could belong to one of the Delaunay cells D(a

2 ) with
a2 = 4. Since h0 is the unique vertex of D(ω1

2 ) with h2
0 = 4, there

are no vertex z (�= 0) of D(ω1
2 ) with (h0, z) = 0. This proves the

lemma. Q.E.D.

Proposition 10.15. Let a, a′, b and b′ ∈ X with a2 = (a′)2 = 4 and
b2 = (b′)2 = 8.

(i) D(a
2 ) and D(a′

2 ) are adjacent iff (a, a′) = 3.
(ii) D(a

2 ) and D( b
3 ) are adjacent iff (a, b) = 5.

(iii) D( b
3 ) and D( b′

3 ) are not adjacent.

Proof. By Theorem 9.4 there are precisely two W (Ẽ8) equivalence
classes of 7-dimensional Delaunay cells. By Lemma 10.3, each class is
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represented by either 〈0, h1, · · · , h7〉 or 〈0, h1, · · · , h6, h8〉. In the first
case, the face 〈0, h1, · · · , h7〉 is a common face of D(ω1

2 ) and D(ω2
3 ) by

Lemma 10.2 and Lemma 10.8. We have ω1ω2 = 5. Any pair a and b with
a2 = 4, b2 = 8 and (a, b) = 5 is unique up to W (E8) by Lemma 8.14.
This proves (ii).

In the second case let α = 1
2 (e7 + e8 − (e1 + · · · + e6)). Then

since (α, hj) = (α, h8) = 0 (1 ≤ j ≤ 6), rα keeps the face τ1 =
〈0, h1, · · · , h6, h8〉 invariant. Therefore τ1 is a common face of D(ω1

2 )
and rαD(ω1

2 ) = D(ω
2 ) where ω = rα(ω1) = 1

2 (e1 + · · · + e6 − e7 + 3e8).
We have ω1ω = 3. Any pair a and b with a2 = b2 = 4 and ab = 3 is
unique up to W (E8) by Lemma 8.14. This proves (i).

There are 17280 copies of D(ω2
3 ). Hence there are 8 ·17280 = 138240

7-dimensional faces of copies of D(ω2
3 ). Meanwhile there are 2160 copies

of D(ω1
2 ), hence there are 128 · 2160 = 276480 7-dimensional faces of

copies of D(ω2
3 ), the half of which are faces of copies of D(ω1

2 ) and the
other half of which are faces of copies of D(ω2

3 ). It follows that there are
no common faces of D( b

3 ) and D( b′

3 ). This proves (iii). Q.E.D.

Corollary 10.16. (i) Any 8-dimensional cell adjacent to D(ω1
2 )

is either D(wrα1
ω1
2 ) or D(wω2

3 ) (w ∈ StabW (E8)(ω1) = W (D7)).
There are exactly 128 copies of D(ω1

2 ) adjacent to D(ω1
2 ) and

exactly 128 copies of D(ω2
3 ) adjacent to D(ω1

2 ).
(ii) Any 8-dimensional cell adjacent to D(ω2

3 ) is D(wω1
2 ) where

w ∈ StabW (E8)(ω2) = W (A7). There are exactly 8 copies of
D(ω1

2 ) adjacent to D(ω2
3 ).

Proof. By Lemma 10.15, D(ω1
2 ) is adjacent to D(ω

2 ) and D(ω2
3 )

where ω = 1
2 (e1 + · · · + e6 − e7 + 3e8) = rα(ω1). Therefore any 8-

dimensional Delaunay cell adjacent to D(ω1
2 ) is either D(w · ω

2 ) or D(w ·
ω2
3 ) for any w ∈ StabW (E8)(ω1) = W (D7). We note

α =
1
2
(e7 + e8 − (e1 + · · · + e6)) = rα8rα7 · · · rα3(α1).

Let w0 = rα8rα7 · · · rα3 ∈ W (D7). Then rα = w0 · rα1 · w0. Hence

D(
ω

2
) = w0 · rα1 · w0(D(

ω1

2
)) = w0 · rα1(D(

ω1

2
))

Hence any 8-dimensional Delaunay cell adjacent to D(ω1
2 ) is either

D(w · rα1
ω1
2 ) or D(wω2

3 ) for any w ∈ StabW (E8)(ω1) = W (D7). The
number of D(w · rα1

ω1
2 ) adjacent to D(ω1

2 ) is equal to the number of
7-dimensional Delaunay faces of D(ω1

2 ), W (E8)-equivalent to τ1 by the
proof of Proposition 10.15, hence it is equal to 28 ·

(
8
7

)
/8 = 128 where 8
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in the denominator is the number of vertices of τ1. Similarly the number
of D(wω2

3 ) adjacent to D(ω1
2 ) is equal to 28 ·

(
8
7

)
/8 = 128. The assertion

(ii) is clear. Q.E.D.

10.17. Inclusion relation of Delaunay cells
Proposition 10.18. Let a, b ∈ X with a2 = 4, b2 = 8 and let

{ak, ak+1, · · · , a7} (1 ≤ k ≤ 7) be a set of roots such that a2
i = 2 and

(ai, aj) = 1 for any i �= j. Let D be the convex closure of the origin and
ak, · · · , a7. Then D is a Delaunay cell and

(i) D ⊂ D(a
2 ) iff (ai, a) = 2 for any i.

(ii) D ⊂ D( b
3 ) iff (ai, b) = 3 for any i.

Proof. Since D is the convex closure of 0 and ai, D ⊂ D(a
2 ) iff 0

and ai are closest to the hole a
2 . Hence ‖a

2‖ = ‖ai − a
2‖. This proves (i).

The proof of (ii) is similar. Q.E.D.

Corollary 10.19. Let D be the convex closure of the origin and
ak, · · · , a7 as in Proposition 10.18. Then D is the intersection of D(a

2 )
and D( b

3 ) for all a and b such that a2 = 4 and (ai, a) = 2 for any i, or
b2 = 6 and (ai, b) = 3 for any i respectively.

Proof. Since any Delaunay cell is the intersection of all maximal
dimensional Delaunay cells containing it, Corollary follows from Propo-
sition 10.18. Q.E.D.

Corollary 10.20. For a Delaunay cell D of dimension 8−k given in
10.18, there are exactly the following number given in Table 4 of D(a

2 )’s
and D( b

3 )’s containing D:

Table 4. The number of 8-dim. cells containing a fixed De-
launay cell

k 7 6 5 4 3 2 ∆1
1 ∆2

1

D(a
2 ) 126 27 10 5 3 2 1 2

D( b
3 ) 576 72 16 5 2 1 1 0

total 702 99 26 10 5 3 2 2

Proof. Suppose k ≥ 2. Then by Lemma 8.9 we may assume ai =
ei+e8 (k ≤ i ≤ 7). Let D(k) be the convex closure of ai = ei+e8 (k ≤ i ≤
7). In view of Lemma 10.18 D(k) ⊂ D(a

2 ) iff (ai, a) = 2 for any i. Sup-
pose k = 7. Then D(7) ⊂ D(2e8

2 ). We see StabW (E8)(e7 + e8) = W (E7)
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and StabW (E8)(e7 + e8, 2e8) = W (D6). Thus in view of Lemma 8.8 the
number of D(a

2 ) with D(7) ⊂ D(a
2 ) is equal to |W (E7)|/|W (D6)| =

210 · 3 · 5 · 7/29 · 32 · 5 = 126. Similarly If k = 6, then D(6) ⊂ D(a
2 ) iff

a = 2e8, ±ei+e6+e7+e8, or 1
2 (

∑5
j=1 ±ej+e6+e7+3e8). Hence there are

exactly 1 + 10 + 24 = 27 cells D(a
2 ) which contain D(6). This is checked

by computing |W (E6)|/|W (D5)| = 27. If k = 5, then D(5) ⊂ D(a
2 ) iff

a = 2e8, e5+e6+e7+e8, or 1
2 (

∑4
j=1 ±ej +e5+e6+e7+3e8). Hence there

are exactly 1+1+8 = 10 cells D(a
2 ) which contain D(5). This is checked

by computing |W (D5)|/|W (D4)| = 10. If 2 ≤ k ≤ 4, then D(k) ⊂ D(a
2 )

iff a = 2e8 or 1
2 (

∑k−1
j=1 ±ej +ek + · · ·+e7 +3e8). Hence there are exactly

1 + 2k−2 cells D(a
2 ) which contain D(k). This is checked by computing

|W (A4)|/|W (A3)| = 5, |W (A1) × W (A2)|/|W (A1) × W (A1)| = 3 and
|W (A1))| = 2. If k = 1, then there is a unique D(a

2 ) which contain D.
Next we consider D( b

3 ). Let G(k) = StabW (E8)(ek + e8, · · · , e7 + e8)
and H(k) = StabW (E8)(ω2)∩G(k). Then though it is nontrivial, by ex-
plicit computation we see the number of D( b

3 ) containing D(k) is equal to
|G(k)|/|H(k)|. We see G(k) = W (E7), W (E6), W (D5), W (A4), W (A1 ×
A2) and W (A1), while H(k) = W (Ak−1) for any k. Hence the number
of D( b

3 ) containing D(k) is equal to 576, 72, 16, 5, 2 and 1 respectively.
The case k = 1 is clear from Proposition 10.15. Q.E.D.

§11. A PSQAS associated with E8

Now we return to the situation in the section three. Let B(x, y) be
the bilinear form on the lattice X in Definition 3.1. We assume that
(X, B) is the E8-lattice. Let (Q, L) be the flat projective R-scheme in
Theorem 3.3, (Q0, L0) the closed fibre of it. Let R(c) be the coordinate
ring of an affine chart U(c) (c ∈ X/Y ) of Q0 in Definition 3.6. The
purpose of this section is to show that there are actually nilpotent ele-
ments in R(0). For this purpose we determine the function v on X in
Definition 2.9 explicitly.

Let D be a convex polytope containing the origin, C(0, D) the cone
over R0 generated by D∩X , and Semi(0, D) the cone over Z0 of D∩X .

Recall (and define)

h0 = 2e8, hj = ej + e8, h15−j = −ej + e8 (1 ≤ j ≤ 7)

g0 =
1
2
(e1 + e2 + · · · + e8), g∞ = g0 + h0 =

1
2
(

7∑
j=1

ej + 5e8),

σ0 = 〈0, h1, h2, · · · , h7, h0〉, σ1 = 〈0, h1, h2, · · · , h6, h8, h0〉.
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Lemma 11.1. Let h(σ0) = 1
2 (

∑7
j=0 hj) and h(σ1) = 1

2 (
∑6

j=1 hj +
h8). Then

(i) we have

Semi(0, σ0) = Z0h1 + · · · + Z0h6 + Z0h7 + Z0h0,

Semi(0, σ1) = Z0h1 + · · · + Z0h6 + Z0h8 + Z0h0.

(ii) h(σk) ∈ C(0, σk) ∩ X but h(σk) �∈ Semi(0, σk) (k = 0, 1).
(iii) C(0, D(ω1

2 ))∩X is the union of all C(0, w·σ0)∩X and C(0, w·
σ1) ∩ X where w ranges over W (D7).

(iv) C(0, σ0) ∩ X is generated by Semi(0, σ0) and h(σ0). It is the
disjoint union of Semi(0, σ0) and h(σ0) + Semi(0, σ0):

C(0, σ0) ∩ X = Semi(0, σ0) � (h(σ0) + Semi(0, σ0)).

(v) C(0, σ1) ∩ X is generated by Semi(0, σ1) and h(σ1). It is the
disjoint union of Semi(0, σ1) and h(σ1) + Semi(0, σ1):

C(0, σ1) ∩ X = Semi(0, σ1) � (h(σ1) + Semi(0, σ1)).

(vi) C(0, w · σk) ∩ X = w · (C(0, σk) ∩ X) where k = 0, 1 and
w ∈ W (D7).

Proof. By Lemma 10.2, σ0∩X ⊂ D(ω1
2 )∩X = {0, hj (0 ≤ j ≤ 14)}

and σ1∩X ⊂ D(ω1
2 )∩X , which implies (i). Since h(σ0) = g0 +2h0 ∈ X ,

(ii) is clear for σ0 because hj (0 ≤ j ≤ 7) are linearly independent and
σ0 ∩ X = {0, hj (0 ≤ j ≤ 7)}. Since h(σ1) = g0 + h0 + h8 ∈ X (ii) is
also clear for σ1. (iii) follows from the fact that D(ω1

2 ) is the union of
w ·σ0 and w ·σ1 (w ∈ W (D7)). See Lemma 10.3 (i). Next we prove (iii).
Let x ∈ C(0, σ0) ∩ X . Then we write x =

∑7
j=0 ajhj with aj ≥ 0. If

aj = 0 for any j ≥ 1, then x = a0h0, a0 ∈ Z+. Hence x ∈ Semi(0, σ0).
So we may assume a1 > 0 (by transforming x by S7 if necessary). If
a1 ∈ Z+, then x ∈ Semi(0, σ0). So we assume a1 is not an integer, hence
a1 ≡ 1

2 mod Z. Hence aj ≡ 1
2 mod Z for any j ≥ 2. Since x ∈ X ,∑7

j=0 aj is integral, hence a0 ≡ 1
2 mod Z. Hence aj ≥ 1

2 for any j ≥ 0.
Let z = x − h(σ0). Since h(σ0) ∈ X , we have z ∈ C(0, σ0) ∩ X and
z =

∑7
j=0 bjhj for some bj ∈ Z0, namely, z ∈ Semi(0, σ0). This proves

(iv).
Next we prove (v). Let x ∈ C(0, σ0) ∩ X . Then we write x =∑6

j=0 ajhj + a8h8 with aj ≥ 0. If aj = 0 for any j ≥ 1, then x =
a0h0, a0 ∈ Z+. Hence x ∈ Semi(0, σ0). So we may assume a1 > 0
(by transforming x by StabW (D7)(σ1) if necessary). If a1 ∈ Z+, then
x ∈ Semi(0, σ0). So we assume a1 is not an integer, hence a1 ≡ 1

2
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mod Z. Hence aj ≡ 1
2 mod Z for any j ≥ 2. Since x ∈ X ,

∑6
j=0 aj

is integral, hence a0 is integral. Let z = x − h(σ1). Since h(σ1) ∈ X ,
we have z ∈ C(0, σ1) ∩ X and z = a0h0 +

∑6
j=1 bjhj + b8h8 for some

bj ∈ Z0. Since a0 ∈ Z0, we have z ∈ Semi(0, σ0). This proves (v). The
remaining assertions are clear. Q.E.D.

Lemma 11.2. Let g∞ = g0 + h0 = 1
2 (

∑7
j=1 ej + 5e8). Then

C(0, D(ω2
3 )) ∩ X is generated by h1, h2, · · · , h7, g0 and g∞. It is

the disjoint union of Semi(0, D(ω2
3 )), g∞ + Semi(0, D(ω2

3 )) and 2g∞ +
Semi(0, D(ω2

3 )):

C(0, D(
ω2

3
)) ∩ X = �k=0,1,2(kg∞ + Semi(0, D(

ω2

3
))

where we note that g∞ does not belong to D(ω2
3 ) ∩ X.

Proof. First we note that 3g∞ = h1 + h2 + · · ·+ h7 + g0 and hence
g∞ ∈ C(0, D(ω2

3 )) ∩ X . Let C0 = Z0h1 + · · · + Z0h7 + Z0g0. Then
C0 = Semi(0, D(ω2

3 )). Suppose x ∈ C(0, D(ω2
3 )) ∩ X . Then we write

x =
7∑

j=1

xjhj + x0g0 =
7∑

j=1

(xj +
x0

2
)ej + (

7∑
j=1

xj +
x0

2
)e8

where xj ≥ 0, xj − xj ∈ Z, 2x1 + x0 ∈ Z and 7x1 + 2x0 ∈ Z. It follows
that 3x0 ∈ Z and xk ≡ x0 mod Z for any 1 ≤ k ≤ 7. Suppose x0 ∈ Z.
Then any xj ∈ Z and x ∈ C0. Suppose next x0 ≡ 1

3 mod Z. Then let
zj = xj − 1

3 and z = x − g∞. Since xj ≥ 0 and xj ≡ 1
3 mod Z, we

have zj ∈ Z0. It follows z ∈ C0. Suppose finally x0 ≡ 2
3 mod Z. Then

z = x − 2g∞ ∈ C0. This proves the lemma. Q.E.D.

Lemma 11.3. Let D = D(ω1
2 ) and let α(D) = ω1

2 = e8 be the hole
of D. Then

v(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(x, α(D)) if x ∈ Semi(0, D)
(x − h(σ0), α(D)) + 5 if x ∈ h(σ0) + Semi(0, σ0)
(x − h(σ1), α(D)) + 4 if x ∈ h(σ1) + Semi(0, σ1)
(x − w · h(σ0), α(D)) + 5 if x ∈ w · h(σ0) + Semi(0, w · σ0)
(x − w · h(σ1), α(D)) + 4 if x ∈ w · h(σ1) + Semi(0, w · σ1)

where w ∈ W (D7) = StabW (E8)(
ω1
2 ).

Proof. If x ∈ Semi(0, D), then v(x) = (x, α(D)) by Lemma 2.10.
Next suppose x = h(σ0). Then h(σ0) = g0 + h0 + h0 where g0 =
1
2 (

∑8
j=1 ej). Therefore v(h(σ0)) ≤ 1

2 (g2
0 + 2h2

0) = 5.
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Meanwhile (2h(σ0), α(D)) = (
∑7

j=0 hj , e8) = 9, whence v(h(σ0)) ≥
5 by Lemma 2.10 and Lemma 11.1. This proves v(h(σ0)) = 5. This also
proves the second equality for x = h(σ0). Next suppose x = h(σ0) + z
for some z ∈ Semi(0, σ0). Then v(x) ≤ v(h(σ0)) + v(z) = v(z) + 5.
Meanwhile v(x) ≥ (h(σ0))+z, α(D)) = 9

2 +v(z). This proves the second
equality for x = h(σ0) + z, z ∈ Semi(0, σ0).

We see h(σ1) = g0 + h0 + h8 and v(h(σ1)) ≤ 4. On the other hand
(2h(σ1), α(D)) = (

∑6
j=1 hj+h8, α(D)) = (

∑6
j=1 hj+h8, e8) = 7, whence

v(h(σ1)) ≥ 4 by Lemma 2.10 and Lemma 11.1. This proves v(h(σ1)) = 4.
This also proves the third equality for x ∈ h(σ1) + Semi(0, σ1). The
remaining assertions are clear. Q.E.D.

Lemma 11.4. Let D = D(ω2
3 ) and α(D) = ω2

3 the hole of D. Then
v(x + kg∞) = (x, α(D)) + 3k for k = 0, 1, 2 and x ∈ Semi(0, D).

Proof. Let a∞ = 1
2 (e1 + e2 + e3 + e4 − e5 − e6 + e7 + e8). Then

g∞ = h5 + h6 + a∞ and v(g∞) ≤ 3. Since (3g∞, α(D)) = 8, we have
v(g∞) ≥ (g∞, α(D)) = 8

3 . This proves v(g∞) = 3. This also proves the
lemma in the case k = 1. Similarly we see v(g∞) ≤ 6 while v(2g∞) ≥
(2g∞, α(D)) = 16

3 . Since v(2g∞) is an integer, we have v(2g∞) = 6.
This also proves the lemma in the case k = 2. Q.E.D.

Theorem 11.5. Let D ∈ Del(0) and α(D) its hole. For x ∈
C(0, D) ∩ X we have

v(x) = �(x, α(D))� := −[−(x, α(D))], the round-up of (x, α(D)).

In particular, x ∈ Semi(0, D) iff (x, α(D)) ∈ Z.

Proof. We may assume D is 8-dimensional. If D = D(ω1
2 ), then

v(x) =

{
(x, α(D)) if x ∈ Semi(0, D)
(x, α(D)) + 1

2 (otherwise).

This also proves the corollary when D ∈ Del(0) is an 8-dimensional
Delaunay cell W (E8)-equivalent to D = D(ω1

2 ). If D = D(ω2
3 ), then

v(x) =

⎧⎪⎨⎪⎩
(x, α(D)) if x ∈ Semi(0, D)
(x, α(D)) + 1

3 if x ∈ g∞ + Semi(0, D)
(x, α(D)) + 2

3 if x ∈ 2g∞ + Semi(0, D).

This also proves the corollary when D ∈ Del(0) is an 8-dimensional
Delaunay cell W (E8)-equivalent to D = D(ω2

3 ). The above proof also
proves the second assertion of the corollary. This completes the proof.

Q.E.D.
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Theorem 11.6. Let Q0 be the closed fibre of Q and rad(O0,Q0) the
radical of the algebra O0,Q0 . Then rad(O0,Q0 ) is generated over k(0)
by the monomials ξ̄(x) with v(x) > (x, α(D)) and x ∈ C(0, D) ∩ X for
some D ∈ Del(0). It is also generated by ξ̄(x) with x ∈ C(0, D)∩X and
(x, α(D)) not integral.

Proof. Let z ∈ O0,Q0 . We write z as a k(0)-linear irredundant
combination of ξ̄(x), (x ∈ X). Then if z ∈ O0,Q0 is nilpotent, each
monomial component ξ̄(x) of z is also nilpotent because the algebra
O0,Q0 is X-graded. The monomial ξ̄(x) = qv(x)wx ∈ rad(O0,Q0) iff
qnv(x)wnx = 0 for some positive n, iff q6nv(x)w6nx = 0 for some positive
n. We see by Lemma 2.10 that q6nv(x)w6nx = 0 iff 6nv(x) > v(6nx). Let
D ∈ Del(0) such that x ∈ C(0, D)∩X . In the E8-case, 6x ∈ Semi(0, D)
iff x ∈ C(0, D) ∩ X because 2x ∈ Semi(0, D1) iff x ∈ C(0, D1) ∩ X ,
while 3x ∈ Semi(0, D2) iff x ∈ C(0, D2) ∩ X . It follows that 6nv(x) >
v(6nx) iff 6nv(x) > (6nx, α(D)). Thus ξ̄(x) = qv(x)wx ∈ rad(O0,Q0)
iff v(x) > (x, α(D)). This proves the first part of the theorem. By
Theorem 11.5 v(x) = �(x, α(D))�. Hence v(x) > (x, α(D)) iff (x, α(D))
is not an integer. This proves the second part of the theorem. Q.E.D.

Corollary 11.7. Oc,Q0 is nonreduced for any c ∈ X.

Corollary 11.8. Let f = ξ̄(a) and g = ξ̄(b) ∈ O0,Q0 . Assume that
a, b ∈ C(0, D) for the same Delaunay cell D ∈ Del(0). If b ∈ Semi(0, D),
then fg �= 0 in O0,Q0 .

Proof. By Theorem 11.5, v(a) = �(a, α(D))�, while v(b) = (b, α(D))
is an integer. Hence v(a+b) = �(a+b, α(D))� = �(a, α(D))�+(b, α(D)) =
v(a)+v(b). It follows from Theorem 11.5 that fg �= 0 in Oc,Q0 . Q.E.D.

Example 11.9. We give examples of nilpotent elements of O0,Q0 .
Let D1 = D(ω1

2 ) and D2 = D(ω2
3 ). Consider ξ(h(σ0)). Then h(σ0) ∈

C(0, D1) ∩ X , (h(σ0), α(D1)) = 9
2 and v(h(σ0)) = � 9

2� = 5. Consider
next ξ(h(σ1)). Then we see h(σ1) ∈ C(0, D1) ∩ X , (h(σ1), α(D1)) = 7

2

and v(h(σ1)) = � 7
2� = 4. Finally consider ξ(g∞). Then we see g∞ ∈

C(0, D2) ∩ X , (g∞, α(D2)) = 8
3 and v(g∞) = � 8

3� = 3. It follows from
these that

ξ(h(σ0))2 = ξ(h(σ1))2 = ξ(g∞))3 = 0.

To be more precise, since

h(σ0) = g0 + 2h0, h(σ1) = g0 + h0 + h8, g∞ = g0 + h0,

ξ(h(σ0)) = ξg0ξ
2
h0

, ξ(h(σ1)) = ξg0ξh0ξh8 , ξ(g∞) = ξg0ξh0 .
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we see

ξ(h(σ0))2 = q · ξh0

7∏
j=1

ξhj , ξ(h(σ1))2 = q · ξh8

6∏
j=1

ξhj ,

ξ(g∞)3 = q · ξg0

7∏
j=1

ξhj .

We note that h(σ0) ∈ C(0, D1) and h0 ∈ D1, while g0 �∈ D1 by
Proposition 10.18 (i) because (g0, ω1) = 1 �= 2. Let a0 = 1

2 (3e8 −
e6 +

∑
k 	=6,8 ek). Then a2

0 = 4, (a0, ω1) = 3 and (a0, g0) = 2, which
implies that D(a0

2 ) is adjacent to D1 = D(ω1
2 ) and g0 ∈ D(a0

2 ) by
Proposition 10.15 (i) and Proposition 10.18 (i). In other words, though
g0 �∈ D1, g0 belongs to D(a0

2 ) adjacent to D1. We also note g0 ∈ D2,
which is adjacent to D1.

Similarly h(σ1) ∈ C(0, D1) and h0, h8 ∈ D1, while g0 �∈ D1 and
g0 ∈ D(a0

2 ) ∩ D2 as we saw above. We see h0 �∈ D2 because D2 is a
convex closure of 0, g0 and hj (1 ≤ j ≤ 7), and g2

0 = h2
j = 2, but h2

0 = 4.
Since h0 ∈ D1, h0 belongs to a Delaunay cell D1 adjacent to D2. See
Proposition 10.15 (ii). Finally we note that g∞ ∈ C(0, D2), g0 ∈ D2,
while h0 �∈ D2 but h0 ∈ D1, which is adjacent to D2.

Corollary 11.10. The (reduced) support of ξ(h(σk)) (resp. ξ(g∞))
contains one of the irreducible components of Q0, V (D(ω1

2 ))∩U(0) (resp.
V (D(ω2

3 ) ∩ U(0)).

Proof. Let Z = V (D(ω1
2 ))∩U(0). Then Z is reduced by definition,

whose coordinate ring Γ(OZ) is k(0)[Semi(0, D(ω1
2 ))], the ring generated

by the semi-group Semi(0, D(ω1
2 )). No element of this ring except 0

annihilates ξ(h(σk)) in R(0) by Theorem 11.5. Similarly the coordinate
ring of V (D(ω2

3 )∩U(0)) is k(0)[Semi(0, D(ω2
3 ))], none of whose elements

except 0 annihilate ξ(g∞). This proves the corollary. Q.E.D.

11.11. Degrees of irreducible components of Q0

Let D1 = D(ω1
2 ) or D2 = D(ω2

3 ). Let V (Dk) be the closure of
G8

m-orbit O(Dk) with reduced structure. By Lemma 11.1 and Theo-
rem 11.2, at a generic point of V (σ), we have rankk(V (D1)) nF 0,0

D1
= 2 and

rankk(V (D2)) nF 0,0
D1

= 3. Thus by Proposition 10.5 and Proposition 10.11
we have an equivalence

Q0 = 2 · 135[X : Y ]V (D1) + 3 · 1920[X : Y ]V (D2).
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modulo identification of the irreducible components of Q0 of the same
type. By Theorem 5.15 we have

dimH0(nF 0,·
σ , δ0,·

n ) = �

(
σ ∩ X

n

)
=

vol(σ)
8!

· n8 + O(n7),

dimH0(nF 0,·
D1

, δ0,·
n ) =

27 · 2
8!

· n8 + O(n7),

dimH0(nF 0,·
D2

, δ0,·
n ) =

3
8!

· n8 + O(n7).

Since Hq(nF k,·
σ , δk,·

n ) = 0 (q > 0), we have 2 · (L8
V (D1)) = vol(D1) =

28, and 3 · (L8
V (D2)

) = vol(D2) = 3. Thus we have

L8
Q0

= (L8Q0)(Q,∂Q)

= L8 (2 · 135[X : Y ]V (D1) + 3 · 1920[X : Y ]V (D2))(Q,∂Q)

= [X : Y ]
(
135 · 2 · (L8

V (D1)) + 1920 · 3 · (L8
V (D2)

)
)

= [X : Y ](135 · 28 + 1920 · 3) = 8! · [X : Y ]

which is compatible with L8
Q0

= L8
Qη

= 8! · [X : Y ].
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ating abelian varieties, Tôhoku Math. J., 51 (1999), 399–420.

[Bourbaki] Bourbaki, Groupes et algebres de Lie, Chap. 4, 5 et 6 (1981).
[MP92] R. V. Moody and J. Patera, Voronoi and Delaunay cells of root lat-

tices: classification of their faces and faces by Coxeter-Dynkin dia-
grams, J. Physics A: Math., 25 (1992), 5089–5134.

[M72] D. Mumford, An analytic construction of degenerating abelian varieties
over complete rings, Compositio Math., 24 (1972), 239–272.

[M74] D. Mumford, Abelian Varieties, Tata Institute of Fundamental Re-
search, Bombay and Oxford University Press, 1974.

[Nr75] I. Nakamura, On moduli of stable quasi abelian varieties, Nagoya Math.
J., 58 (1975), 149–214.

[Nr99] I. Nakamura, Stability of degenerate abelian varieties, Invent. Math.,
136 (1999), 659–715.

[Nw76] Y. Namikawa, A new compactification of the Siegel space and degen-
erations of abelian varieties, I, II, Math. Ann., 221 (1976), 97–141,
201–241.



Stable quasi-abelian schemes 281

[V09] G. Voronoi, Nouvelles applications des paramètres continues à la théorie
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