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Abstract

We consider a moduli space of combinatorially equivalent family of arrangements of
hyperplanes (e.g., n distinct points in the complex line). A compactification of the
moduli space is obtained by adding a boundary divisor. On the moduli space we
study a Gauss-Manin connection and show that it has logarithmic poles along the
boudary divisor. When the moduli space is one-codimensional, an explicit formula
for the connection matrix is given.
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1 Introduction

Fix a pair (`, n) with ` ≥ 1 and n ≥ 0. Let An(C`) be the set of affine
arrangements of n distinct linearly ordered hyperplanes in C

`. In other words,
each element A of An(C`) is a collection {H1, . . . , Hn} where H1, . . . , Hn are

distinct affine hyperplanes in C
`. Two arrangements A(i) := {H(i)

1 , . . . , H(i)
n } ∈

An(C`) (i = 1, 2) are said to be combinatorially equivalent, denoted by
A(1) ∼ A(2), if

dimH
(1)
i1 ∩ · · · ∩H

(1)
ip = dimH

(2)
i1 ∩ · · · ∩H

(2)
ip
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for each (i1, . . . , ip), 1 ≤ i1 < . . . ip ≤ n. Here we agree that the dimension of
the empty set is equal to −1.

Fix A := {H1, . . . , Hn} ∈ An(C`). Let

BA = B := {B ∈ An(C`) | B ∼ A}.

In Section 2, we naturally identify B with a locally closed subset of ((CP
`)∗)n,

where (CP
`)∗ is the `-dimensional dual complex projective space. Let B be the

closure of B in ((CP
`)∗)n. Then, as we will see in Proposition 4, the boundary

D := B \ B is defined by a single equation on B. The hypersurface D, in
general, has several irreducible components. When A is of general position
(i.e., dimHi1 ∩ · · · ∩Hip = `− p if 1 ≤ i1 < · · · < ip ≤ n and 1 ≤ p ≤ ` + 1),

B is dense in ((CP
`)∗)n: B = ((CP

`)∗)n. In this case D has
(
n+1
`+1

)
irreducible

components. We can also describe the geometry of D when the codimension
of B in ((CP

`)∗)n is equal to one. In this case, D has
(
n+1
`+1

)
− `(n − ` − 1)

irreducible components (if ` ≥ 2) or n(n − 1)/2 irreducible components (if
` = 1). The study of D is naturally related to the theory of determinantal
ideals.

We assume that A is essential, i.e., there exist ` hyperplanes in A whose
intersection is a point. In particular, n = |A| ≥ `. We have a topological
fibration

π : M −→ B

such that π−1(t) = Mt = M(At) := C
` \ ⋃H∈At

H for each t ∈ B. Here At ∈
An(C`) is the arrangement corresponding to t ∈ B. Let λ = (λ1, . . . , λn) ∈ C

n.
We call λ a weight. Then λ defines a rank-one local system Lλ on Mt so that
Lλ has monodromy exp(−2π

√
−1λi) around Hi ∈ At (1 ≤ i ≤ n). Let L∨λ be

the dual local system which has monodromy exp(2π
√
−1λi) around Hi. Then,

for a sufficiently generic λ, there exists a local system H` → B of rank β whose
fiber at t ∈ B is equal to the local system homology H`(Mt,L∨λ) because π
is locally trivial. Here β is the absolute value of the Euler characteristic of
Mt, which is independent of choice of t ∈ B. We can also define, in the dual
manner, a local system H` → B of rank β whose fiber at t ∈ B is equal
to the local system cohomology H`(Mt,Lλ) so that H` is a globally trivial
local system with the βnbc global frame Ξ1, . . . ,Ξβ ∈ Γ(B,H`) [FT, 3.9]. Let
αi = 0 be a defining equation of Hi ∈ At and let Φλ = αλ1

1 . . . αλn
n . Then Φλ

is a multi-valued holomorphic function on Mt and gives a section of L∨λ . The
(hypergeometric) pairing

〈, 〉 : H` ×H` −→ OB
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is defined by the (hypergeometric) integral (in the sense of Aomoto-Gelfand)

〈σ, ω〉 =
∫
σ

Φλω,

where OB is the sheaf of germs of holomorphic functions on (the smooth part
of) B. Let σ be a flat local section on an open set U ⊆ B of the local system
H`. Then the section σ : U → H` is represented by the vector

σ̃(t) :=



〈σ(t),Ξ1(t)〉

..

..

〈σ(t),Ξβ(t)〉


for each t ∈ U . Thus the vector σ̃, which is a coordinate vector for the flat
section σ, satisfies a system

d′σ̃ = Ω ∧ σ̃,

of differential equations of the first order, where d′ is the exterior differential on
B and Ω is a β× β-matrix whose entry is a differential 1-form on (the smooth
part of) B. This matrix Ω is a Gauss-Manin connection matrix satisying d′Ω−
Ω∧Ω = 0. In Section 3, we will show that each entry of the connection matrix
Ω has at most logarithmic poles along D = B \ B. Since the geometry of D
is sufficiently understood when the codimension of B in ((CP

`)∗)n is one, we
have an explicit formula for Ω in this case in Section 4. It turns out that each
entry of Ω is a linear combination of logarithmic forms with poles along each
irreducible component of D with coefficients in

∑n
i=1 Zλi. It might be natural

to ask if it is in the case for any B of higer codimensions.

Acknowledgment. The author would like to thank K. Kurano for providing
proof of Lemma 7. The author would also like to thank K. Aomoto, J. Kaneko,
P. Orlik and T. Terasoma for stimutating conversations on the subject.

2 Combinatorially equivalent family of arrangements

We compactify C
` by adding the infinite hyperplane H∞ to get complex pro-

jective space CP
`.

Definition 1 A multiset is a set which allows repetitions. A multiset M is
a projective multiarrangement if M is a finite multiset of projective hyper-
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planes of CP
`. Let

Mn(CP
`) = { projective multiarrangements of n+ 1 linearly ordered

hyperplanes of CP
` where H∞ is the last hyperplane}.

Each point of (CP
`)∗ corresponds to a hyperplane of CP

`. Thus we indentify
Mn(CP

`) with ((CP
`)∗)n :

Mn(CP
`) = ((CP

`)∗)n.

Then Mn(CP
`) is a compact complex manifold biholomorphic to (CP

`)n.

Let M∈Mn(CP
`). Write M = {H1, H2, . . . , Hn+1 = H∞}. We say that M

is essential if
⋂
H∈MH = ∅. Denote the set {1, 2, . . . , n+1} by [n+1]. Define((

[n+ 1]

`+ 1

))
= { subsets of [n+ 1] of cardinality `+ 1 }.

Let ℘ denote the power set. Let

J :Mn(CP
`) −→ ℘

((
[n+ 1]

`+ 1

))

be the map defined by

J (M) = {{i1, . . . , i`+1} ∈
((

[n+ 1]

`+ 1

))
| H i1 ∩ · · · ∩H i`+1

6= ∅}

= {{i1, . . . , i`+1} ∈
((

[n+ 1]

`+ 1

))
| {H i1 , . . . , H i`+1

} is not essential}.

Recall that An(C`) is the set of affine arrangements of n linearly ordered
distinct hyperplanes in C

`. When we want to emphasize that repetitions are
not allowed, we call an arrangement simple. Let A ∈ An(C`). The projective
closure A∞ of A is defined by

A∞ = {H | H ∈ A} ∪ {H∞},

where H is the closure of H in CP
`. The hyperplanes of A∞ are naturally

linearly ordered by regarding the infinite hyperplane H∞ as the last, or the
(n+ 1)st hyperplane. Thus A∞ ∈Mn(CP

`) and there is an injective map

An(C`) −→Mn(CP
`)

which sends A ∈ An(C`) to its projective closure A∞ ∈ Mn(CP
`). Through

this injection, we identify An(C`) with its image in Mn(CP
`). Then the sub-

set An(C`) is open dense inMn(CP
`) ' ((CP

`)∗)n with respect to the Zariski
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topology because it is characterizd by the open condition that no two hyper-
planes are equal.

Proposition 2 Let A ∈ An(C`). Then the following three conditions are
equivalent:

(i) A is essential, i.e., there exist ` hyperplanes in A whose intersection is a
point,

(ii) A∞ is essential, i.e., the intersection of all hyperplanes of A∞ is empty,

(iii) J (A∞) 6=


[n+ 1]

`+ 1


 .

PROOF. It is clear that conditions (ii) and (iii) are equivalent because⋂
H∈A∞ H = ∅ implies that there exist `+ 1 hyperplanes H i1 , . . . , H i`+1

∈ A∞
whose intersection is empty.

We also have: (iii) ⇐⇒ there exist `+1 hyperplanesH i1 , . . . , H i`+1
∈ A∞ such

that H i1∩· · ·∩H i`+1
= ∅ ⇐⇒ there exist ` hyperplanes Hi1 , . . . , Hi` ∈ A such

that H i1∩· · ·∩H i`∩H∞ = ∅ ⇐⇒ there exist ` hyperplanes Hi1 , . . . , Hi` ∈ A
such that Hi1 ∩ · · · ∩Hi` is a point ⇐⇒ (i). 2

Proposition 3 Let A(1),A(2) ∈ An(C`) be essential simple arrangements with
an order-preserving bijection ι : A(1) → A(2). Then the following two condi-
tions are equivalent:

(i) A(1) ∼ A(2), i.e., A(1) and A(2) are combinatorially equivalent,

(ii) J (A(1)
∞ ) = J (A(2)

∞ ).

PROOF. Let A(k) = {H(k)
1 , . . . , H(k)

n } (k = 1, 2).

(i) ⇒ (ii) : Suppose 1 ≤ i1 < · · · < i`+1 ≤ n+ 1.

Case 1) If i`+1 = n+ 1, then, for k = 1, 2, we have:

{i1, . . . , i`+1} 6∈ J (A(k)
∞ ) ⇐⇒ H

(k)
i1
∩ · · · ∩H(k)

i`
∩H∞ = ∅

⇐⇒ H
(k)
i1 ∩ · · · ∩H

(k)
i`

is a point ⇐⇒ dim(H
(k)
i1 ∩ · · · ∩H

(k)
i`

) = 0.

Therefore {i1, . . . , i`+1} ∈ J (A(1)
∞ ) if and only if {i1, . . . , i`+1} ∈ J (A(2)

∞ ).
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Case 2) If i`+1 < n + 1, then let B(k) = {H(k)
i1 , . . . , H

(k)
i`+1
} for k = 1, 2. Then

we have:

{i1, . . . , i`+1} 6∈ J (A(k)
∞ ) ⇐⇒ H

(k)

i1
∩ · · · ∩H(k)

i`+1
= ∅

⇐⇒ H
(k)
i1 ∩ · · · ∩H

(k)
i`+1

= ∅ and H
(k)
i1
∩ · · · ∩H(k)

i`+1
∩H∞ = ∅

⇐⇒ H
(k)
i1 ∩ · · · ∩H

(k)
i`+1

= ∅ and B(k)
∞ is essential

⇐⇒ H
(k)
i1 ∩ · · · ∩H

(k)
i`+1

= ∅ and B(k) is essential

⇐⇒ dim(H
(k)
i1 ∩ · · · ∩H

(k)
i`+1

) = −1 and there exist ` hyperplanes in B(k)

whose intersection is zero-dimensional.

Here the penultimate equivalence follows from Proposition 2. Therefore {i1, . . . , i`+1} ∈
J (A(1)

∞ ) if and only if {i1, . . . , i`+1} ∈ J (A(2)
∞ ).

(ii) ⇒ (i) : Let 1 ≤ i1 < · · · < ip ≤ n. Since A is essential, we have

dimH
(k)
i1 ∩ · · · ∩H

(k)
ip = p

⇐⇒ there exist 1 ≤ ip+1 < · · · < i` ≤ n such that dimH
(k)
i1 ∩ · · · ∩H

(k)
i`

= 0

⇐⇒ there exist 1 ≤ ip+1 < · · · < i` ≤ n such that H
(k)

i1
∩· · ·∩H(k)

i`
∩H∞ = ∅

⇐⇒ there exist 1 ≤ ip+1 < · · · < i` ≤ n such that

{i1, . . . i`, n+ 1} ∈ J (A(1)
∞ ) = J (A(2)

∞ )

for k = 1, 2. Therefore dimH
(1)
i1 ∩ · · · ∩H

(1)
ip = p if and only if dimH

(2)
i1 ∩ · · · ∩

H
(2)
ip = p. The condition (i) easily follows from this. 2

Let (u0 : · · · : u`) be the homogeneous coordinates for CP
` = C

` ∪H∞ so that
the equation u0 = 0 defines H∞. Let t denote the ordered (n + 1)-tuple of
homogeneous coordinates:

t =
(
(t

(0)
1 : · · · : t(`)1 ), (t

(0)
2 : · · · : t(`)2 ), . . . , (t(0)

n : · · · : t(`)n )
)
.

Use t as the homogeneous coordinates for ((CP
`)∗)n. The point t of ((CP

`)∗)n

corresponds to the projective multiarrangement Mt whose hyperplanes are
H i defined by αi :=

∑`
j=0 t

(j)
i uj = 0 (i = 1, . . . , n) and Hn+1 = H∞ defined

by αn+1 := u0 = 0. Define the (`+ 1)× (n+ 1)-matrix T by

T =



t
(0)
1 · · · t(0)

n 1

t
(1)
1 · · · t(1)

n 0
...

. . .
...

...

t
(`)
1 · · · t(`)n 0


.
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Note that the ith column of T gives the coefficients of αi (i = 1, . . . , n+ 1).

Let S ∈
((

[n+1]
`+1

))
. Denote by ∆S the (` + 1)-minor using the columns of T

corresponding to S. Then it is easy to see

J (Mt) = {S ∈
((

[n+ 1]

`+ 1

))
| ∆S(t) = 0}

by definition.

Let A ∈ An(C`). Define

BA := J −1(J (A∞)).

Let J ⊆
((

[n+1]
`+1

))
. Define

CJ = {t ∈ ((CP
`)∗)n | ∆S(t) = 0 for S ∈ J }.

Then CJ is Zariski closed in ((CP
`)∗)n and thus compact.

Proposition 4 Let A ∈ An(C`) be essential. Write B = BA. Then

(i) B = {B ∈ An(C`) | A ∼ B},

(ii) B = {t ∈ ((CP
`)∗)n | ∆S(t) vanishes exactly when S ∈ J (A∞)},

(iii) B is a locally closed subset of ((CP
`)∗)n,

(iv) Let B be the closure of B in ((CP
`)∗)n. Define DT = B ∩ C{T} for T ∈

J (A∞)c :=
((

[n+1]
`+1

))
\ J (A∞). Then

D := B \ B =
⋃

T∈J (A∞)c

DT

and each DT is a hypersurface in B.

PROOF. (i) Suppose A = {H1, . . . , Hn} and M = {K1, . . . , Kn+1} ∈ B.
Then J (M) = J (A∞). We will first show that M = B∞ for some B ∈
An(C`). If not, M has a hyperplane of multiplicity more than one. Suppose
Ki = Kj(i 6= j). Then S ∈ J (M) = J (A∞) whenever S contains i and j.
Since A is essential, this implies Hi = Hj ∈ A∞(i 6= j), which contradicts the
fact that A is simple. Thus there exists B ∈ An(C`) with M = B∞. Since A
is essential, so is B by Proposition 2. Then apply Proposition 3.
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(ii) One has

Mt ∈ B ⇐⇒ J (A∞) = J (Mt)

⇐⇒ J (A∞) = {S ∈
((

[n+ 1]

`+ 1

))
| ∆S(t) = 0}.

(iii) By (ii), one has

B = CJ (A∞) \
⋃

T∈J (A∞)c

C{T}.

Thus B is locally closed.

(iv) One has

D = B \ B = B ∩

 ⋃
T∈J (A∞)c

C{T}

 =
⋃

T∈J (A∞)c

DT .

Note that DT (T ∈ J (A∞)c) is defined by a single equation in B. If DT is
not of codimension one in B, then there exists an irreducible component C0

of B which lies in DT . Thus C0 ∩ B = ∅. On the other hand, since B is dense
in B, B meets any irreducible component of B. This is a contradiction, which
proves (iv). 2

Let A ∈ An(C`) be essential in the rest of this section. In particular, ` ≤
n. Because of Propostion 4 (i), we can regard BA as a moduli space of the
affine arrangements which are combinatorially equivalent to A. When the
codimension of BA in ((CP

`)∗)n is less than two, we can explicitly describe the
geometry of BA and DA.

Codimension-zero case: The moduli space BA is zero-codimensional in ((CP
`)∗)n

if and only if |J (A∞)| = 0. We say that an affine arrangement A is of general
position if J (A∞) = ∅. Thus BA is a moduli space of affine arrangements of
general position. In this case BA is a dense open subset of ((CP

`)∗)n and

DA =
⋃
T

C{T},

where T runs over
((

[n+1]
`+1

))
. Since C{T} is defined by the single equation

∆T = 0 and the determinant function is an irreducible polynomial (a special
case of Theorem 6), each C{T} is an irreducible hypersurface. Therefore DA is

composed of
(
n+1
`+1

)
irreducible components. When ` = 1, BA = {(t1, . . . , tn) ∈

C
n | ti 6= tj(i 6= j)} is the pure braid space.
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Codimension-one case: The moduli space BA is one-codimensional in ((CP
`)∗)n

if and only if |J (A∞)| = 1.

Proposition 5 Suppose J (A∞) = {S}. Write B = BA, C = C{S} and D =
B \ B. Then

(i) B = C is irreducible,

(ii) B is smooth,

(iii) the irreducible components of D are:

type I C{S,S′} for S ′ ∈
((

[n+1]
`+1

))
with |S ∩ S ′| ≤ `− 1,

type II C〈S−p〉 for p ∈ S, where 〈S − p〉 := {S ′ ∈
((

[n+1]
`+1

))
| S ′ ⊇ S \ {p}},

and

type III C〈S+q〉 for q ∈ [n + 1] \ S, where 〈S + q〉 := {S ′ ∈
((

[n+1]
`+1

))
| S ′ ⊆

S ∪ {q}}.

In all, there exist
(
n+1
`+1

)
− `(n − ` − 1) irreducible components of D. When

` = 1, the type II does not appear and the number of irreducible components
of D is equal to n(n− 1)/2.

In order to prove this Proposition we need the following fundamental result
on determinantal ideals:

Theorem 6 (Hochter-Eagon[HE]) Let X = (Xij) be a matrix of indeter-
minates over an integral domain R of size m × n. Let It(X) be the ideal in
the polynomial ring R[Xij] generated by the t-minors of X. Then It(X) is a
prime ideal of height (m− t+ 1)(n− t+ 1). 2

Recall the (`+ 1)× (n+ 1)-matrix T:

T =



t
(0)
1 · · · t(0)

n 1

t
(1)
1 · · · t(1)

n 0
...

. . .
...

...

t
(`)
1 · · · t(`)n 0


.

Let C[T] be the polynomial ring over C with indeterminates {t(i)j }0≤i≤`,1≤j≤n.
For S ⊆ [n+ 1], define TS to be the submatrix of T consisting of the columns
corresponding to S. When |S| = `+ 1, ∆S = det(TS).

Lemma 7 Let S, S ′ ∈
((

[n+1]
`+1

))
and I := (∆S,∆S′)C[T]. Then
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(i)

I = I`(TS∩S′) ∩ I`+1(TS∪S′)

when |S ∩ S ′| = `. Here It is defined in the same manner as in Theorem 6.

(ii) I is a prime ideal of height two when |S ∩ S ′| ≤ `− 1.

PROOF. (i) Let A = TS∩S′ , B = TS∪S′ . Write B = (bij)0≤i≤`,0≤j≤`+1. Define

∆j = (−1)j det(Bj) (j = 0, . . . , `+ 1),

where Bj is obtained from B by deleting the jth column of B. We may assume
that ∆S = ∆0 and ∆S′ = ∆`+1. Let P1 := I`(A) and P2 := I`+1(B) =
(∆0, . . . ,∆`+1). We will show I = P1 ∩P2. If ` = 1 and S ∩S ′ = {n+ 1}, then
P1 = C[T]. In this case I = P2 and (i) holds true. In the other cases, both
P1 and P2 are prime ideals of height two by Theorem 6. By elementary linear
algebra, one has

`+1∑
j=0

bij∆j = 0 (i = 0, . . . , `).

Thus

∑̀
j=1

bij∆j ∈ I (i = 0, . . . , `).

By applying Cramer’s rule, one obtains P1P2 ⊆ I. Since I is generated by two
irreducible polynomials, every associated prime of I is of height two or less.
If P is an associated prime of I, then P1P2 ⊆ I ⊆ P . Thus either P1 ⊆ P or
P2 ⊆ P . So we have P ∈ {P1, P2}. Write a primary decomposition of I as

I = Q1 ∩Q2

with
√
Qi = Pi (i = 1, 2). Note that there is no inclusion relation between

P1 and P2. Since P1P2 ⊆ Qi, we have Pi = Qi (i = 1, 2).

(ii) (K. Kurano) Case 1): Suppose n+ 1 6∈ S ∩ S ′. Choose S ′′ ∈
((

[n+1]
`+1

))
such

that S ∩ S ′ ⊂ S ′′ ⊂ S ∪ S ′ and |S ∩ S ′′| = `. Let ∆ = ∆S, ∆′ = ∆S′ , and
∆′′ = ∆S′′ . By abuse of notation, let a matrix also denote the set of its entries.
So the ring R := C [TS′′ , (∆

′′)−1] stands for the subring of C(TS′′) generated
by (∆′′)−1 and the entries of TS′′ over C. Let Z := (TS′′)

−1. Then each entry of
Z lies in R. Let S ′′′ := (S ∪ S ′) \ S ′′. Since the entries of TS′′′ are algebraically
independent over C(TS′′), so are the entries of ZTS′′′ . Note that there exists
an entry of ZTS′′′ which is equal either to det(ZTS) or to − det(ZTS) and
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that there exists a minor of ZTS′′′ which is equal either to det(ZTS′) or to
− det(ZTS′). Thus the ideal

(∆,∆′)R [TS′′′ ] = (det(TS), det(TS′))R [TS′′′ ] = (det(ZTS), det(ZTS′))R [ZTS′′′ ]

is a prime ideal of

R [ZTS′′′ ] = R [TS′′′ ] = C

[
TS∪S′ , (∆

′′)−1
]

by Theorem 6. On the other hand, the associated primes of (∆,∆′)R [TS∪S′ ]
are I`(TS∩S′′) and I`+1(TS∪S′′). Since (S ∩S ′′) \S ′ 6= ∅ and |(S ∪S ′′) \S ′| ≥ 2,
one has ∆′ 6∈ I`(TS∩S′′) and ∆′ 6∈ I`+1(TS∪S′′). Therefore (∆,∆′′) : (∆′) =
(∆,∆′′). This implies (∆,∆′) : (∆′′) = (∆,∆′). Thus ∆′′ is a non-zero divisor
of C [TS∪S′ ] /(∆,∆

′). Because the factor ring C [TS∪S′ , (∆
′′)−1] /(∆,∆′) is a

domain, so is the factor ring C [TS∪S′ ] /(∆,∆
′). This shows (ii).

Case 2): Suppose n+ 1 ∈ S ∩ S ′. Then this case reduces into Case 1).

Case 3): Suppose n + 1 ∈ S \ S ′. Choose S ′′ ∈
((

[n+1]
`+1

))
such that S ∩ S ′ ⊂

S ′′ ⊂ S ∪S ′, |S ∩S ′′| = `, and n+ 1 ∈ S ′′. The rest of the proof is exactly the
same as Case 1). 2

Proof of Proposition 5 Since A is essential and not of general position, one
has `+ 1 ≤ n.

(i) By Theorem 6, ∆S is an irreducible polynomial. Thus C is irreducible and
B = C.

(ii) Let n + 1 6∈ S. Let J be the ideal generated by the partial derivatives
of ∆S. Because of the Laplace expansion formula for det(TS), J is generated
by the `-minors of TS. Thus any singular point t of B lies in C{S′} for any

S ′ ∈
((

[n+1]
`+1

))
with |S ∩ S ′| = `. Thus t 6∈ B. We can similarly prove the

assertion when n+ 1 ∈ S.

(iii) Let S ′ ∈
((

[n+1]
`+1

))
\ {S}. Note DS′ = C{S,S′}. If |S ∩ S ′| ≤ ` − 1, then

(∆S,∆S′) is a prime ideal by Lemma 7 (i). Thus DS′ = C{S,S′} is irreducible.
If |S ∩ S ′| = `, then (∆S,∆S′) = I`(TS∩S′) ∩ I`+1(TS∪S′) by Lemma 7 (ii). If
` ≥ 2, this is a primary decomposition of (∆S,∆S′). Let {p} = S \ S ′ and
{q} = S ′ \ S. Then

DS′ = C{S,S′} = C〈S−p〉 ∪ C〈S+q〉

is the decomposition of DS′ into irreducible components. The cardinality of
the set {S ′ ∈

((
[n+1]
`+1

))
| |S ∩S ′| ≤ `− 1} is equal to

(
n+1
`+1

)
− 1− (n− `)(`+ 1).

11



Thus the total number of irreducible components of D =
⋃
S′∈J (A∞)c DS′ is

equal to(
n+ 1

`+ 1

)
− 1− (n− `)(`+ 1) + (`+ 1) + (n− `) =

(
n+ 1

`+ 1

)
− `(n− `− 1).

If ` = 1 = |S ∩ S ′|, then the ideal I`(TS∩S′) does not define a subvariety of
((CP

`)∗)n. Thus DS′ = C〈S+q〉 where {q} = S ′ \ S. Therefore the total number
of irreducible components of D =

⋃
S′∈J (A∞)c DS′ is equal to(

n+ 1

2

)
− 1− 2(n− 1) + (n− 1) = n(n− 1)/2.2

3 Logarithmic Gauss-Manin connections

Let A ∈ An(C`) be essential. We fix A in the rest of this section and write
B = BA. Then, as we saw in the previous section, B may be considered a
moduli space of the family of essential simple affine `-arrangements which are
combinatorially equivalent to A. Let

t =
(
(t

(0)
1 : · · · : t(`)1 ), (t

(0)
2 : · · · : t(`)2 ), . . . , (t(0)

n : · · · : t(`)n )
)
.

be the homogeneous coordinates for ((CP
`)∗)n. Let u = (u1, . . . , u`) be the

standard coordinates for C
`. Define

M = {(u, t) ∈ C
` × ((CP

`)∗)n | t ∈ B, t
(0)
i +

∑̀
j=1

t
(j)
i uj 6= 0 (i = 1, . . . , n)}.

Let

π : M −→ B

be the projection defined by π(u, t) = t. Then the fiber Mt := π−1(t) is the
complement of the affine arrangement At whose hyperplanes are defined by
the equations αi := t

(0)
i +

∑`
j=1 t

(j)
i uj = 0 (i = 1, . . . , n). Thus π : M −→ B

is the complete family of essential simple affine arrangements in C
` which are

combinatorially equivalent to A. A result of Randell [Ra] implies that π is a
fiber bundle over (the smooth part of) B.

We assume that d is the exterior differential operator with respect to the
coordinates u = (u1, . . . , u`) of C

` of the fiber and that ωi := d logαi = dαi/αi
for 1 ≤ i ≤ n and

ωλ :=
n∑
i=1

λiωi, ∇λ : Ωp
M → Ωp+1

M , ∇λη := dη + ωλ ∧ η.
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In this section we will compute covariant derivatives of differential forms in
the fiber along the direction of the base.

Definition 8 Let d′ be the exterior differential operator with respect to the ho-
mogeneous coordinates t of ((CP

`)∗)n. For 1 ≤ i ≤ n define ω′i := d′ log(αi/t
(0)
i ) =

(d′αi/αi)− (d′t
(0)
i /t

(0)
i ) and

ω′λ :=
n∑
i=1

λiω
′
i, ∇′λ : Ωp

M → Ωp+1
M , ∇′λη := d′η + ω′λ ∧ η.

Our next aim is to compute the operator ∇′λ explicitly. For S = (j1, . . . , jm),
j1 < · · · < jm, write Sk = (j1, . . . , jk−1, jk+1, . . . , jm)(1 ≤ k ≤ m) and (S, j) =
(j1, . . . , jm, j) for j ∈ [n+ 1] \ S.

Definition 9 Let T = (i1, . . . , i`), with ik ∈ [n] (1 ≤ k ≤ `). Write

ωT := ωi1 ∧ · · · ∧ ωi` , ζT :=
∑̀
k=1

(−1)k+1ω′ik ∧ ωTk
.

The following computation was suggested by a method employed in [AK].

Proposition 10

∇′λωT = −∇λζT +
∑

j∈[n]\T
λj

`+1∑
k=1

(−1)k+1ω(T,j)k
∧ d′ log

(
∆(T,j)

∆((T,j)k,n+1)

)
.

This Proposition is an immediate consequence of the following two lemmas.

Lemma 11

∇′λωT +∇λζT =
∑

j∈[n]\T
λj

`+1∑
k=1

(−1)k+1ω(T,j)k
∧ ω′ik .

PROOF. Since d and d′ operate in different variables, dd′ + d′d = 0. This
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gives d′ωT + dζT = 0 used in the calculation below.

∇′λωT +∇λζT
=d′ωT + ω′λ ∧ ωT + dζT + ωλ ∧ ζT

=
∑̀
k=1

(−1)k+1(d′ωik) ∧ ωTk
+ ω′λ ∧ ωT +

∑̀
k=1

(−1)k+1(dω′ik) ∧ ωTk

−
∑̀
k=1

λikω
′
ik
∧ ωT +

∑
j∈[n]\T

λj
∑̀
k=1

(−1)`+k+1ω′ik ∧ ω(Tk,j)

=

 ∑
j∈[n]\T

λjω
′
j

 ∧ ωT +
∑

j∈[n]\T
λj
∑̀
k=1

(−1)`+k+1ω′ik ∧ ω(Tk,j)

=
∑

j∈[n]\T
λj

`+1∑
k=1

(−1)k+1ω(T,j)k
∧ ω′ik .2

Lemma 12 For S ∈
((

[n+1]
`+1

))
, we have

`+1∑
k=1

(−1)k+1ωSk
∧ ω′jk =

`+1∑
k=1

(−1)k+1ωSk
∧ d′ log

(
∆S

∆(Sk,n+1)

)
.

PROOF. Note that

∆S =
`+1∑
k=1

(−1)k+1t
(0)
jk

∆(Sk,n+1) =
`+1∑
k=1

(−1)k+1αjk∆(Sk,n+1)

by the Laplace expansion. Let

αS := αj1 ∧ · · · ∧ αj`+1
, du := du1 ∧ · · · ∧ du`.

We compute

`+1∑
k=1

(−1)k+1ωSk
∧ (d′ log ∆S)

=
1

αS

`+1∑
k=1

(−1)k+1αik∆(Sk,n+1)(du) ∧ (d′ log ∆S)

=
1

αS
∆S(du) ∧ (d′ log ∆S) =

1

αS
(du) ∧ (d′∆S)

=
1

αS
(du) ∧ d′

(
`+1∑
k=1

(−1)k+1αjk∆(Sk,n+1)

)
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=
1

αS
(du) ∧

[
`+1∑
k=1

(−1)k+1
{

(d′αjk)∆(Sk,n+1) + αjk
(
d′∆(Sk,n+1)

)} ]

=
`+1∑
k=1

(−1)k+1
{
ωSk
∧ ω′jk + ωSk

∧
(
d′ log ∆(Sk,n+1)

)}
.

This shows the lemma.2

For λ = (λ1, . . . , λn) and t ∈ B, recall the rank-one local system Lλ on Mt =
π−1(t) so that Lλ has monodromy exp(−2π

√
−1λi) around Hi = {αi = 0}(i =

1, . . . , n).

Theorem 13 ([ESV] [STV]) For a “generic” λ ∈ C
n,

(1) Hp(Mt,Lt) = 0(p 6= `) and dimH`(Mt,Lt) is equal to β = |χ(Mt)|, where
χ stands for the Euler Poincaré characteristic,

(2) there exisits a natural (twisted) de Rham isomorphism

A`/ωλ ∧ A`−1 ∼→ H`(Mt,Lt),

where A· = ⊕`q=0A
q is the Orlik-Solomon algebra [OSo] [OT, 3.45] of At. 2

For explicit conditions for the “genericity,” see [ESV] and [STV]. In the rest
of the paper, we assume that λ is generic in the sense of [STV, 4.3 (Mon)∗∗ ].

Since ∇λ ◦ ∇′λ +∇′λ ◦ ∇λ = 0 and

H`(Mt,Lt) ' A`/ωλ ∧ A`−1 = A`/∇λA
`−1,

the operator ∇′λ induces a C-minear map

∇′λ : H`(Mt,Lt)→ H`(Mt,Lt)⊗ Ω1(log D)

by Proposition 10. Here Ω1(log D) is the space of meromorphic 1-forms on (the
smooth part of) B with logarithmic poles along D = B \ B. Let

D =
t⋃

s=1

Ds

be the irreducible decomposition. For each irreducible component Ds and S ′ ∈
J (A∞)c, define

mult(S ′,Ds) := the order of zeros of ∆S′|B along Ds

and
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Γ(Ds) : = {S ′ ∈ J (A∞)c | mult(S ′,Ds) ≥ 1}
= {S ′ ∈ J (A∞)c | ∆S′|B vanishes on Ds}.

We denote the logarithmic 1-form on B with simple logarithmic pole along Ds

by d′ log Ds by abuse of notation. It can be locally expressed as d log f where
f = 0 is a local defining equation for Ds. For ω ∈ A`, let [ω] ∈ H`(Mt,Lt) be its
(twisted) de Rham cohomology class. Then, by Proposition 10, we immediately
have

Theorem 14 We have

∇′λ =
t∑

s=1

∇′λ,s ⊗ d′ log Ds,

where ∇′λ,s ∈ End(H`(Mt,Lt)) and, for T ∈
((

[n+1]
`+1

))
,

∇′λ,s[ωT ] =
∑

(T,j)∈Γ(Ds)

mult((T, j),Ds)λj
`+1∑
k=1

(−1)k+1[ω(T,j)k
]

−
∑

((T,j)k,n+1)∈Γ(Ds)

mult(((T, j)k, n+ 1),Ds)(−1)k+1λj[ω(T,j)k
].2

Although Theorem 14 determines ∇′λ and ∇′λ,s completely, it is desirable to
express each ∇′λ,s explicitly in terms of a basis for H`(Mt,Lt). We propose
to use the βnbc basis for this purpose. The βnbc basis is a combinatorially
constructed basis for H`(Mt,Lt) in [FT, 3.9]. When A is of general position,
the set

{[ηT ] ∈ H`(Mt,Lt) | T = (i1, . . . , i`), 2 ≤ i1 < · · · < i` ≤ n}

is the βnbc basis, where

ηT := λi1 · · ·λi`ωT .

In this case the expression of each ∇′λ,s in terms of the βnbc basis is obtained
in [AK, Ch. 3 §8]. When B is one-codimensional in ((CP

`)∗)n, the explicit
formula is given in the next section. In general, it is not difficult to see from
[FT, 3.9] that [ωT ] ∈ H`(Mt,Lt) is uniquely expresed as a linear combina-
tion of the βnbc basis [Ξ1], . . . , [Ξβ] ∈ H`(Mt,Lt) with coefficients lying in

Q̃[λ] := Q[λ1, . . . , λn, {λ−1
X }], where λ−1

X = 1/(
∑
X⊆Hj

λj) runs over the set
{X | X is a dense edge }. Recall that H` is the rank β local system coming
from the topological fibration π : M→ B. Then we have

Theorem 15 The β × β-matrix Ω, which satisfies the system of differential

16



quations

d′



∫
σ ΦλΞ1

..

..∫
σ ΦλΞβ


= Ω ∧



∫
σ ΦλΞ1

..

..∫
σ ΦλΞβ


for any (local) section σ of H`, the βnbc basis [Ξ1], . . . , [Ξβ] ∈ H`(Mt,Lt) and

Φλ = αλ1
1 . . . αλn

n , has logarithmic poles along D with coefficients lying in Q̃[λ].

PROOF. The integral
∫
σ ΦλΞ depends only upon the cohomology class [Ξ] ∈

H`(Mt,Lt). By Proposition 10, there exists a unique β×β-matrix Ω such that



∇′λ,s[Ξ1]

..

..

∇′λ,s[Ξβ]


= Ω ∧



[Ξ1]

..

..

[Ξβ]


.

Then Ω satisfies the desired properties. 2

Thus the connection d′−Ω∧ on OβB is a logarithmic Gauss-Manin connection
and its flat sections are given by

{



∫
σ ΦλΞ1

..

..∫
σ ΦλΞβ


| σ is a local section of H`}.

4 The codimension one case

Suppose that the codimension of BA in ((CP
`)∗)n is one in this section. Then

J (A∞) = {S} for some S ∈
((

[n+1]
`+1

))
. There are two cases : n+ 1 6∈ S (Case

A) or n+ 1 ∈ S (Case B). By permuting the hyperplanes if necessary, one can
assume that S = (1, 2, . . . , `+1) (Case A) or S = (n−`+1, n−`+2, . . . , n+1)
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(Case B). It is easy to see that the βnbc basis for H`(Mt,Lt) is given by
{[ηT ] ∈ H`(Mt,Lt) | T ∈ βnbc}, where

βnbc = {(j1, . . . , j`) | 2 ≤ j1 < · · · < j` 6= `+ 1} (Case A)

or

βnbc = {(j1, . . . , j`) | 2 ≤ j1 < · · · < j`, j1 6= n− `+ 1} (Case B).

We will express ∇′λ,s[ηT ], T ∈ βnbc, as a linear combination of {[ηT ′ ] ∈
H`(Mt,Lt) | T ′ ∈ βnbc} with coefficients in Q̃[λ]. (It will turn out that
all the coefficients lie in

∑n
i=1 Zλi.) In the following formulas for ∇′λ,s[ηT ] we

use the notation

ε(T, T ′) = (−1)p+q

if T, T ′ ⊆ [n], |T | = |T ′| = `, |T ∩ T ′| = ` − 1, U = T ∪ T ′, T = Up and
T ′ = Uq. Define ε(T, T ′) = 1 if T = T ′. For example, ε(23, 35) = 1 because
U = 235, T = 23 = U3, T

′ = 35 = U1.

Case A.: Let S = (1, 2, . . . , `+ 1).

Type A.I.: Let Ds = C{S,S′} for S ′ ∈
((

[n+1]
`+1

))
with |S ∩ S ′| ≤ `− 1 (Propo-

sition 5 (iii)). In this case, Γ(Ds) = {S, S ′} and mult(S ′,Ds) = 1 because the
ideal (∆S,∆S′) is prime by Lemma 7 (ii).

Case A.I.1.: Suppose S ′ ∩ {1, n+ 1} = ∅.

• If S ′ ⊃ T ∈ βnbc, then

∇′λ,s[ηT ] =
`+1∑
k=1

ε(T, S ′k)λS′\S′k [ηS′
k
],

where S ′k = (i1, . . . , ik−1, ik+1, . . . , i`+1) and λS′\S′
k

= λik if S ′ = (i1, . . . , i`+1).
• Otherwise ∇′λ,s[ηT ] = 0.

Case A.I.2.: Suppose S ′ ∩ {1, n+ 1} = {n+ 1}.

• If S ′ ⊃ T ∈ βnbc, then T = S ′`+1 = S ′ \ {n+ 1} and

∇′λ,s[ηT ] = −

 ∑
j∈[n]\T

λj

 [ηT ].

• If T ∈ βnbc with |T ∩ S ′| = `− 1, then

∇′λ,s[ηT ] = −ε(T, S ′`+1)λT\S′ [ηS′
`+1

].

18



• Otherwise ∇′λ,s[ηT ] = 0.

Case A.I.3.: Suppose S ′ ∩ {1, n+ 1} = {1}.

• If S ′ ⊃ T ∈ βnbc, then T = S ′1 = S ′ \ {1} and

∇′λ,s[ηT ] =

∑
j∈S′

λj

 [ηT ]−
∑

T ′∈βnbc
|T∩T ′|=`−1

ε(T, T ′)λT\T ′ [ηT ′ ].

• Otherwise ∇′λ,s[ηT ] = 0.

Case A.I.4.: Suppose S ′ ∩ {1, n+ 1} = {1, n+ 1}.

• If T ∈ βnbc with |T ∩ S ′| = `− 1, then S ′ \ {1, n+ 1} ⊂ T and

∇′λ,s[ηT ] = −λT\S′
∑

T ′∈βnbc
T ′⊃T∩S′

[ηT ′ ].

• Otherwise ∇′λ,s[ηT ] = 0.

Type A.II.: Suppose ` ≥ 2. Let Ds = C〈S−p〉 where p ∈ S = (1, 2, . . . , `+ 1),

S − p := S \ {p}, and 〈S − p〉 = {S ′ ∈
((

[n+1]
`+1

))
| S ′ ⊃ S − p}. In this case,

Γ(Ds) = 〈S − p〉 and mult(S ′,Ds) = 1 for S ′ ∈ 〈S − p〉, S ′ 6= S, because the
ideal (∆S,∆S′) is a radical ideal by Lemma 7 (i).

Case A.II.1.: Suppose p 6= 1.

• If T ∈ βnbc with |T ∩ (S − p)| = `− 1, then

∇′λ,s[ηT ] =

 ∑
j∈S−p

λj

 [ηT ]−
∑

T ′∈βnbc
|T∩T ′|=`−1
|T ′∩(S−p)|=`−2

ε(T, T ′)λT\T ′ [ηT ′ ].

• Otherwise ∇′λ,s[ηT ] = 0.

Case A.II.2.: Suppose p = 1.

• If T ∈ βnbc with |T ∩ (S − 1)| = `− 1, then

∇′λ,s[ηT ] = λ(S−1)\T [ηT ] +
∑

T ′∈βnbc
|T∩T ′|=`−1
T ′⊂S∪T

ε(T, T ′)λT\T ′ [ηT ′ ].

• Otherwise ∇′λ,s[ηT ] = 0.
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Type A.III.: Let Ds = C〈S+q〉 where q ∈ [n+ 1] \S = (`+ 2, `+ 3, . . . , n+ 1),

and S + q := S ∪ {q}, and 〈S + q〉 = {S ′ ∈
((

[n+1]
`+1

))
| S ′ ⊂ S + q}. In this

case, Γ(Ds) = 〈S + q〉 and mult(S ′,Ds) = 1 for S ′ ∈ 〈S + q〉, S ′ 6= S, because
the ideal (∆S,∆S′) is a radical ideal by Lemma 7 (i).

Case A.III.1.: Suppose q 6= n+ 1.

• If T ∈ βnbc with T ⊂ S + q, then

∇′λ,s[ηT ] =

 ∑
j∈S+q

λj

 [ηT ]−
∑

T ′∈βnbc
|T∩T ′|=`−1
|T ′∩(S+q)|=`−1

ε(T, T ′)λT\T ′ [ηT ′ ].

• Otherwise ∇′λ,s[ηT ] = 0.

Case A.III.2.: Suppose q = n+ 1.

• If T ∈ βnbc with |T ∩ S| = `− 1, then

∇′λ,s[ηT ] = −λT\S
∑

T ′∈βnbc
T ′∩S=T∩S

[ηT ′ ].

• Otherwise ∇′λ,s[ηT ] = 0.

Case B.: Let S = (n− `+ 1, . . . , n+ 1).

Type B.I.: Let Ds = C{S,S′} for S ′ ∈
((

[n+1]
`+1

))
with |S ∩ S ′| ≤ `− 1. For this

type, we have the exact same formulas as Case A.

Type B.II.: Suppose ` ≥ 2. Let Ds = C〈S−p〉.

Case B.II.1.: Suppose p 6= n+ 1.

• If T ∈ βnbc with |T ∩ (S − p)| = `− 1, then

∇′λ,s[ηT ] = −

 ∑
j 6∈S−p

λj

 [ηT ].

• If T ∈ βnbc with |T ∩ (S − p)| = `− 2, then

∇′λ,s[ηT ] = −
∑

T ′∈βnbc
|T∩T ′|=`−1
|T ′∩(S−p)|=`−1

ε(T, T ′)λT\T ′ [ηT ′ ].

• Otherwise ∇′λ,s[ηT ] = 0.
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Case B.II.2.: Same formulas as Case A. II. 2.

Type B.III.: Let Ds = C〈S+q〉 where q ∈ [n+ 1] \S = (`+ 2, `+ 3, . . . , n+ 1).

Case B.III.1.: Suppose q 6= 1.

• If T ∈ βnbc with T ⊂ S + q, then

∇′λ,s[ηT ] = −

 ∑
j 6∈S+q

λj

 [ηT ].

• If T ∈ βnbc with |T ∩ (S + q)| = `− 1, then

∇′λ,s[ηT ] = −
∑

T ′∈βnbc
|T∩T ′|=`−1
T ′⊂(S+q)

ε(T, T ′)λT\T ′ [ηT ′ ].

• Otherwise ∇′λ,s[ηT ] = 0.

Case B.III.2.: Same formulas as Case A. III. 2.

Summarizing Cases A and B above, we have

Theorem 16 Suppose that B = BA is one-codimensional in ((CP
`)∗)n. Let

J (A∞) = {S}, D = B \ B and D = ∪ts=1Ds be the irreducible decomposition.
Then

(1) the logarithmic Gauss-Manin connection matrix Ω in Theorem 15 can be
expressed as Ω =

∑t
s=1 Ωs ⊗ d′ log Ds such that each Ωs has its entries in∑n

i=1 Zλi.

(2) The eigenvalues of Ωs are:

(i)
∑
j∈S λj with multiplicity one and the rest are zero (if Ds is of type I in

Proposition 5),

(ii)
∑
j∈S−p λj with multiplicity n− `− 1 and the rest are zero (if Ds is of type

II), or

(iii)
∑
j∈S+q λj with multiplicity ` and the rest are zero (if Ds is of type III),

where we define λn+1 := −λ1 −−λ2 − · · · − λn.

(The explicit formulas for Ωs are given above when S = (1, 2, . . . , `+ 1) (Case
A) or S = (n− `+ 1, n− `+ 2, . . . , n+ 1) (Case B).)
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PROOF. Although the βnbc basis depends on the linear order on A. it is
known [FT, 3.11] that two βnbc bases are connected by an integral unimodular
matrix (without λ). Thus one can assume that S = (1, 2, . . . , ` + 1) (when
n+ 1 6∈ S) or S = (n− `+ 1, n− `+ 2, . . . , n+ 1) (when n+ 1 ∈ S). Use the
above-mentioned explicit formulas for Cases A and B. 2

Example 17 Let ` = 2, n = 4, S = (1, 2, 3) and J (A∞) = {S}.
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Write 123 for (1, 2, 3) etc. The boundary divisor D = BA\BA has the following
eight irreducible components:
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D1 = C{123,145}

�
�
�
�
�
��

@
@

@
@

@
@@

1 2 34

D2 = C{123,245}
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D3 = C{123,345}
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D4 = C〈123−3〉
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13 2

4

D5 = C〈123−2〉
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D6 = C〈123−1〉
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321

4

D7 = C〈123+4〉

31 2

4

D8 = C〈123+5〉
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The matrices Ωs(s = 1, . . . , 8) in terms of the βnbc basis {[η24], [η34]}, are

Ω1 =

−λ2 −λ2

−λ3 −λ3

 , Ω2 =

−λ1 − λ3 0

λ3 0

 , Ω3 =

0 λ2

0 −λ1 − λ2

 ,
Ω4 =

λ1 + λ2 λ2

0 0

 , Ω5 =

 0 0

λ3 λ1 + λ3

 , Ω6 =

 λ3 −λ2

−λ3 λ2

 ,
Ω7 =

λ1 + λ2 + λ3 + λ4 0

0 λ1 + λ2 + λ3 + λ4

 , Ω8 =

−λ4 0

0 −λ4

 .

For an arbitrary arrangement A ∈ An(C`) and B = BA, it seems to be difficult
to find explicit matrix presentations for ∇′λ. Based upon our result for the
codimension one case, it might be natural to ask the following questions:

Question 1. Does each entry of the matrix Ωs lie in
∑n
i=1 Zλi?

Question 2. Is B smooth?
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