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1. Arrow’s Impossibility Theorem (economics version)

Assume that a society of m people have ℓ policy options and that every
individual has his/her own order of preferences on the ℓ policy options.

A social welfare function can be interpreted as a voting system by which the
individual preferences are aggregated into a single societal preference.

We require the following two requirements for a reasonable social welfare
function:
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Two requirements:

(A) the society prefers the option i to the option j if every individual prefers
the option i to the option j (Pareto property),

(B) whether the society prefers the option i to the option j only depends
which individuals prefer the option i to the option j (pairwise independence).
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Arrow’s impossibility theorem

For ℓ ≥ 3, the only social welfare function satisfying the two requirements
(A) and (B) is a dictatorship, that is, the societal preference has to be equal
to the preference of one particular individual.

(A) the society prefers the option i to the option j if every individual prefers
the option i to the option j (Pareto property),

(B) whether the society prefers the option i to the option j only depends
which individuals prefer the option i to the option j (pairwise independence).
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Why is this theorem true?
What is the reason behind the theorem?

Condorcet’s paradox by Marquis Condorcet (1743-94)

A, B,C : 3 people, 1, 2, 3 : 3 options
lists of preferences :
A : 1 > 2 > 3,
B : 2 > 3 > 1,
C : 3 > 1 > 2

In this situation it is very hard to decide the societal preference in a “demo-
cratic way” like the majority rule.

Roughly speaking, this is the reason why Arrow’s Impossibility Theorem
holds.
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2. Arrow’s Impossibility Theorem (arrangement version)
A = {H1, H2, . . . , Hn} : a real central arrangement in Rℓ

Ch = Ch(A) : the set of chambers
Hj : defined by αj = 0
H+

j := {x ∈ Rℓ | αj(x) > 0} : a half-space
H−

j := {x ∈ Rℓ | αj(x) < 0} : the other half-space

B := {+,−}
ϵσ
j : Ch −→ B are defined by ϵσ

j (C) = στ if C ⊆ Hτ
j

(σ, τ ∈ B, j = 1, . . . , n)

m : a positive integer
Chm, Bm : the m-time direct products
ϵσ
j : Chm → Bm is induced from ϵσ

j : Ch → B by
ϵσ
j (C1, C2, . . . , Cm) = (ϵσ

j (C1), ϵ
σ
j (C2), . . . , ϵ

σ
j (Cm))
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Definition 1. A map Φ : Chm −→ Ch is called an admissible map if
there exists a family of maps φσ

j (1 ≤ j ≤ n, σ ∈ B = {+,−}) which
satisfies the following two conditions:

(1) φσ
j (+, +, . . . , +) = +, and

(2) the diagram

Chm

ϵσ
j

��

Φ // Ch

ϵσ
j

��
Bm

φσ
j // B

commutes for each j, 1 ≤ j ≤ n, and σ ∈ B = {+,−}.
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Let AM(A,m) denote the set of all admissible maps determined by A and
m.

When Φ is an admissible map, a family of maps φσ
j (1 ≤ j ≤ n, σ ∈ B =

{+,−}) satisfying the conditions in Definition 1 is uniquely determined by
Φ, A and m.

Definition 2. For 1 ≤ h ≤ m, let
Φ : the projection to the h-th component,
φσ

j : the projection to the h-th component.
Then Φ is an admissible map with a family of maps φσ

j (1 ≤ j ≤ n, σ ∈ B =
{+,−}).

We call the admissible maps of this type projective admissible maps.
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A : the braid arrangement in Rℓ (ℓ ≥ 3)
A = {Hij | 1 ≤ i < j ≤ ℓ} where Hij := ker(xi − xj)
H+

ij := {(x1, x2, . . . , xℓ) ∈ Rℓ | xi > xj}
H−

ij = {(x1, x2, . . . , xℓ) ∈ Rℓ | xi < xj}.

Sℓ : the permutation group of {1, 2, . . . , ℓ}
Then Ch(A) ↔ Sℓ (0ne-to-one correspondence) :
Each chamber of A can be uniquely expressed as
{(x1, x2, . . . , xℓ) ∈ Rℓ | xπ(1) < xπ(2) < . . . < xπ(ℓ)}
for a permutation π ∈ Sℓ

Thus

the set of orders of preferences ↔ Sℓ ↔ Ch(A)
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Sm
ℓ ↔ Chm

ϵσ
j

��

Φ // Ch

ϵσ
j

��

↔ Sℓ

Bm
φσ

j // B

Other correspondences are:

a social welfare function ↔ Φ
a dictatorship ↔ the projection to a component

(A) (Pareto property) ↔ (1) (φσ
j (+, . . . , +) = +)

(B) (pairwise independence) ↔ (2) (commutativity) φσ
j ◦ ϵσ

j = ϵσ
j ◦ Φ (∀j)
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Arrow’s impossibility theorem can be formulated as:

Arrow’s Impossibility Theorem (arrangement version)
If A is a braid arrangement with ℓ ≥ 3, then every admissible map is projec-
tive.

Condorcet’s paradox can be interpreted in terms of arrangements and their
chambers:

12



Braid arrangement in R^3

H12

H13 H23

1=2
1=3 2=3A

2>1>3 1>2>3

B 2>3>1 1>3>2

3>2>1 3>1>2
Lists of preferences

A : 1>2>3 C

B : 2>3>1 

C : 3>1>2 

(H12)+ ¥ cap (H23)+ ¥ cap (H13)- would satisfy all of the 

three, but it is empty. (Condorcet’s paradox) 
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3. A theorem on arramgements

For a central arrangement A, define the rank of A
r(A) = codimRℓ

∩
1≤j≤n Hj

Definition 3. A central arrangement A is said to be decomposable if there
exist nonempty arrangements A1 and A2 such that A = A1 ∪ A2 (disjoint)
and r(A) = r(A1) + r(A2). In this case, write A = A1 ⊎ A2

A central arrangement A is said to be indecomposable if it is not decom-
posable.
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Remark 1. A = A1 ⊎A2 if and only if the defining polynomials for A1 and
A2 have no common variables after an appropriate linear coordinate change.

Remark 2. It is also known that A is decomposable if and only if its
characteristic polynomial χ(A, t) is divisible by (t − 1)2.

An arrangement of only one hyperplane is always indecomposable.

An arrangement of two hyperplanes is always decomposable.

The Boolean arrangement is always decomposable into arrangements with
only one hyperplane.
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Any nonempty real central arrangement A can be uniquely (up to order)
decomposed into nonempty indecomposable arrangements:

A = A1 ⊎ A2 ⊎ . . . ⊎ Ar.

The following two theorems completely determine the set AM(A,m) of ad-
missible maps.
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Theorem 1. For a nonempty real central arrangement A with the decom-
position

A = A1 ⊎ A2 ⊎ . . . ⊎ Ar.

there exists a natural bijection

AM(A,m) ≃ AM(A1,m) × AM(A2,m) × . . . × AM(Ar,m)

for each positive integer m.
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Theorem 2. Let A be a nonempty indecomposable real central arrangement
and m be a positive integer. Then,

(1) if |A| = 1, AM(A,m) = {Φ : Chm → Ch | Φ(C,C, . . . , C) = C for each
chamber C},

(2) if |A| ≥ 3, every admissible map is projective.
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Corollary. Decompose a nonempty real central arrangement A into nonempty
indecomposable arrangements as
A = A1 ⊎ A2 ⊎ . . . ⊎ Aa ⊎ B1 ⊎ B2 ⊎ . . . ⊎ Bb with |Ap| = 1 (1 ≤ p ≤ a) and
|Bq| ≥ 3 (1 ≤ q ≤ b). Then, for each positive integer m,

|AM(A,m)| = (2a(2m−2))mb
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4. Implications (?)

What do Theorems 1 and 2 imply?

Theorem 1. For a nonempty real central arrangement A with the decom-
position A = A1 ⊎ A2 ⊎ . . . ⊎ Ar. there exists a natural bijection
AM(A,m) ≃ AM(A1,m) × AM(A2,m) × . . . × AM(Ar,m)
for each positive integer m.

Theorem 2. Let A be a nonempty indecomposable real central arrangement
and m be a positive integer. Then,
(1) if |A| = 1, AM(A,m) = {Φ : Chm → Ch | Φ(C,C, . . . , C) = C for each
chamber C},
(2) if |A| ≥ 3, every admissible map is projective.
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hyperplane ↔ a political issue

arrangement ↔ a set of political issues

A = A1 ⊎ A2 ⊎ . . . ⊎ Ar. ↔ a set of political issues is grouped into certain
subsets

For each Ai with (|Ai| ≥ 3), there is a ”mini-dictator.”

For each Ai with (|Ai| = 1), any voting system (e. g., the simple majority
rule) works as long as the unanimous decision is respected.
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This is random thoughts which might mean nothing.

However, Theorems mean something mathematically.
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I stop here. Thank you!
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