Chambers of Arrangements and Arrow’s Impossibility Theorem

Hiroaki Terao

(Hokkaido University, Sapporo, Japan)

at

Recent developments on geometrical and algebraic methods in Economics
Hokkaido University, Sapporo

2014.08.22
1. Basic concepts about hyperplane arrangements
2. Arrow’s Impossibility Theorem (economics version)
3. Arrow’s Impossibility Theorem (arrangement version)
4. Two theorems on arrangements and their chambers
5. Implications
1. Basic concepts about hyperplane arrangements
2. Arrow’s Impossibility Theorem (economics version)
3. Arrow’s Impossibility Theorem (arrangement version)
4. Two theorems on arrangements and their chambers
5. Implications
1 Basic concepts about hyperplane arrangements
2 Arrow’s Impossibility Theorem (economics version)
3 Arrow’s Impossibility Theorem (arrangement version)
4 Two theorems on arrangements and their chambers
5 Implications
1. Basic concepts about hyperplane arrangements
2. Arrow’s Impossibility Theorem (economics version)
3. Arrow’s Impossibility Theorem (arrangement version)
4. Two theorems on arrangements and their chambers
5. Implications
1. Basic concepts about hyperplane arrangements
2. Arrow’s Impossibility Theorem (economics version)
3. Arrow’s Impossibility Theorem (arrangement version)
4. Two theorems on arrangements and their chambers
5. Implications
1. Basic concepts about hyperplane arrangements

A (central) hyperplane arrangement \mathcal{A} is:

$$\mathcal{A} := \{H_1, \ldots, H_n\}$$

in an ℓ-dimensional vector space V over a field \mathbb{K} defined by $H_i = \ker(\alpha_i)$ with $\alpha_i \in V^*(1 \leq i \leq n)$.

Hyperplane Arrangement
1. Basic concepts about hyperplane arrangements

Hyperplane Arrangement

A (central) hyperplane arrangement \mathcal{A} is:

$$
\mathcal{A} := \{H_1, \ldots, H_n\}
$$

in an ℓ-dimensional vector space V over a field \mathbb{K} defined by $H_i = \ker(\alpha_i)$ with $\alpha_i \in V^*(1 \leq i \leq n)$.
1. Basic concepts about hyperplane arrangements

Hyperplane Arrangement

A (central) hyperplane arrangement \mathcal{A} is:

$$\mathcal{A} := \{H_1, \ldots, H_n\}$$

in an ℓ-dimensional vector space V over a field \mathbb{K} defined by $H_i = \ker(\alpha_i)$ with $\alpha_i \in V^*(1 \leq i \leq n)$.
Chambers

When \(K = \mathbb{R} \) (the real number field), the connected components of

\[
M(\mathcal{A}) := V \setminus \bigcup_{i=1}^{n} H_i
\]

are called chambers.
1. Basic concepts about hyperplane arrangements

- Chambers

When \(\mathbb{K} = \mathbb{R} \) (the real number field), the connected components of

\[
M(\mathcal{A}) := V \setminus \bigcup_{i=1}^{n} H_i
\]

are called chambers.
1. Basic concepts about hyperplane arrangements

- Intersection lattice

Let

\[L(\mathcal{A}) = \{ \text{all intersections of hyperplanes belonging to } \mathcal{A} \} \]

\[= \{ \bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A} \} \]

and introduce a partial order by \(X \geq Y \Leftrightarrow X \subseteq Y \) to make \(L(\mathcal{A}) \) a partially ordered set.

[Agree that \(L(\mathcal{A}) \) has the minimum \(V \).

Then \(L(\mathcal{A}) \) is called the intersection lattice.
1. Basic concepts about hyperplane arrangements

- Intersection lattice

Let

\[L(\mathcal{A}) = \{ \text{all intersections of hyperplanes belonging to } \mathcal{A} \} = \{ \bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A} \} \]

and introduce a partial order by \(X \geq Y \iff X \subseteq Y \) to make \(L(\mathcal{A}) \) a partially ordered set.

[Agree that \(L(\mathcal{A}) \) has the minimum \(V \).] Then \(L(\mathcal{A}) \) is called the intersection lattice.
1. Basic concepts about hyperplane arrangements

- Intersection lattice

Let

\[L(\mathcal{A}) = \{ \text{all intersections of hyperplanes belonging to } \mathcal{A} \} \]

= \{ \bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A} \}

and introduce a partial order by \(X \geq Y \iff X \subseteq Y \) to make \(L(\mathcal{A}) \) a partially ordered set.

[Agree that \(L(\mathcal{A}) \) has the minimum \(V \).]

Then \(L(\mathcal{A}) \) is called the intersection lattice.
1. Basic concepts about hyperplane arrangements

- Intersection lattice

Let

\[L(\mathcal{A}) = \{ \text{all intersections of hyperplanes belonging to } \mathcal{A} \} \]
\[= \{ \bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A} \} \]

and introduce a partial order by \(X \geq Y \iff X \subseteq Y \) to make \(L(\mathcal{A}) \) a partially ordered set.

[Agree that \(L(\mathcal{A}) \) has the minimum \(V \).]

Then \(L(\mathcal{A}) \) is called the intersection lattice.
1. Basic concepts about hyperplane arrangements

- Intersection lattice

Let

$$L(\mathcal{A}) = \{\text{all intersections of hyperplanes belonging to } \mathcal{A}\}$$

$$= \{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\}$$

and introduce a partial order by $X \geq Y \Leftrightarrow X \subseteq Y$ to make $L(\mathcal{A})$ a partially ordered set.

[Agree that $L(\mathcal{A})$ has the minimum V.]

Then $L(\mathcal{A})$ is called the intersection lattice.
1. Basic concepts about hyperplane arrangements

- Möbius function

Define

\[\mu : L(\mathcal{A}) \rightarrow \mathbb{Z} \]

by

\[\mu(V) := 1, \quad \mu(X) := - \sum_{Y < X} \mu(Y). \]

- Poincaré polynomial

Define the Poincaré polynomial

\[\pi(\mathcal{A}, t) := \sum_{X \in L(\mathcal{A})} \mu(X)(-t)^{\text{codim} X}. \]
1. Basic concepts about hyperplane arrangements

- **Möbius function**

 Define

 \[\mu : L(\mathcal{A}) \to \mathbb{Z} \]

 by

 \[\mu(V) := 1, \quad \mu(X) := - \sum_{Y < X} \mu(Y). \]

- **Poincaré polynomial**

 Define the **Poincaré polynomial**

 \[\pi(\mathcal{A}, t) := \sum_{X \in L(\mathcal{A})} \mu(X)(-t)^{\text{codim} X}. \]
1. Basic concepts about hyperplane arrangements

- Möbius function

Define

\[\mu : L(\mathcal{A}) \to \mathbb{Z} \]

by

\[\mu(V) := 1, \quad \mu(X) := -\sum_{Y < X} \mu(Y). \]

- Poincaré polynomial

Define the Poincaré polynomial

\[\pi(\mathcal{A}, t) := \sum_{X \in L(\mathcal{A})} \mu(X)(-t)^{\text{codim}X}. \]
1. Basic concepts about hyperplane arrangements

- Möbius function

 Define

 \[\mu : L(\mathcal{A}) \to \mathbb{Z} \]

 by

 \[\mu(V) := 1, \quad \mu(X) := -\sum_{Y < X} \mu(Y). \]

- Poincaré polynomial

 Define the Poincaré polynomial

 \[\pi(\mathcal{A}, t) := \sum_{X \in L(\mathcal{A})} \mu(X)(-t)^{\text{codim} X}. \]
1. Basic concepts about hyperplane arrangements

- Möbius function

Define

\[\mu : L(\mathcal{A}) \to \mathbb{Z} \]

by

\[\mu(V) := 1, \quad \mu(X) := -\sum_{Y<X} \mu(Y). \]

- Poincaré polynomial

Define the Poincaré polynomial

\[\pi(\mathcal{A}, t) := \sum_{X \in L(\mathcal{A})} \mu(X)(-t)^{\text{codim} X}. \]
1. Basic concepts about hyperplane arrangements

- **Factorization Theorem**

 Theorem. (H. T. 1981). Suppose that \(\mathcal{A} \) is a free arrangement in \(\mathbb{C}^\ell \) with exponents \(d_1, d_2, \ldots, d_\ell \). Then

 \[
 \pi(\mathcal{A}, t) = \prod_{i=1}^{\ell} (1 + d_i t).
 \]

- **Zaslavsky’s Chamber-Counting Formula**

 Theorem. (Thomas Zaslavsky 1975).

 \[
 |\text{Chambers}| = \pi(\mathcal{A}, 1).
 \]

 If \(\mathcal{A} \) is a free real arrangement in \(\mathbb{R}^\ell \) with exponents \(d_1, d_2, \ldots, d_\ell \), then

 \[
 |\text{Chambers}| = \pi(\mathcal{A}, 1) = \prod_{i=1}^{\ell} (1 + d_i).
 \]
1. Basic concepts about hyperplane arrangements

- **Factorization Theorem**

 Theorem. (H. T. 1981). Suppose that \mathcal{A} is a free arrangement in \mathbb{C}^ℓ with exponents d_1, d_2, \ldots, d_ℓ. Then

 $$\pi(\mathcal{A}, t) = \prod_{i=1}^{\ell} (1 + d_it).$$

- **Zaslavsky’s Chamber-Counting Formula**

 Theorem. (Thomas Zaslavsky 1975).

 $$|\text{Chambers}| = \pi(\mathcal{A}, 1).$$

 If \mathcal{A} is a free real arrangement in \mathbb{R}^ℓ with exponents d_1, d_2, \ldots, d_ℓ, then
 $$|\text{Chambers}| = \pi(\mathcal{A}, 1) = \prod_{i=1}^{\ell} (1 + d_i).$$
1. Basic concepts about hyperplane arrangements

- **Factorization Theorem**
 Theorem. (H. T. 1981). Suppose that \mathcal{A} is a free arrangement in \mathbb{C}^ℓ with exponents d_1, d_2, \ldots, d_ℓ. Then
 \[
 \pi(\mathcal{A}, t) = \prod_{i=1}^{\ell} (1 + d_i t).
 \]

- **Zaslavsky’s Chamber-Counting Formula**
 Theorem. (Thomas Zaslavsky 1975).
 \[
 |\text{Chambers}| = \pi(\mathcal{A}, 1).
 \]
 If \mathcal{A} is a free real arrangement in \mathbb{R}^ℓ with exponents d_1, d_2, \ldots, d_ℓ, then $|\text{Chambers}| = \pi(\mathcal{A}, 1) = \prod_{i=1}^{\ell} (1 + d_i)$.

1. Basic concepts about hyperplane arrangements

- Factorization Theorem
 Theorem. (H. T. 1981). Suppose that \mathcal{A} is a free arrangement in \mathbb{C}^ℓ with exponents d_1, d_2, \ldots, d_ℓ. Then
 \[\pi(\mathcal{A}, t) = \prod_{i=1}^{\ell} (1 + d_i t). \]

- Zaslavsky’s Chamber-Counting Formula
 Theorem. (Thomas Zaslavsky 1975).
 \[|\text{Chambers}| = \pi(\mathcal{A}, 1). \]
 If \mathcal{A} is a free real arrangement in \mathbb{R}^ℓ with exponents d_1, d_2, \ldots, d_ℓ, then
 \[|\text{Chambers}| = \pi(\mathcal{A}, 1) = \prod_{i=1}^{\ell} (1 + d_i). \]
1. Basic concepts about hyperplane arrangements

- **Factorization Theorem**

 Theorem. (H. T. 1981). Suppose that \mathcal{A} is a free arrangement in \mathbb{C}^ℓ with exponents d_1, d_2, \ldots, d_ℓ. Then

 $$\pi(\mathcal{A}, t) = \prod_{i=1}^{\ell} (1 + d_i t).$$

- **Zaslavsky’s Chamber-Counting Formula**

 Theorem. (Thomas Zaslavsky 1975).

 $$|\text{Chambers}| = \pi(\mathcal{A}, 1).$$

 If \mathcal{A} is a free real arrangement in \mathbb{R}^ℓ with exponents d_1, d_2, \ldots, d_ℓ, then $|\text{Chambers}| = \pi(\mathcal{A}, 1) = \prod_{i=1}^{\ell} (1 + d_i)$.

1. Basic concepts about hyperplane arrangements

- **Factorization Theorem**
 Theorem. (H. T. 1981). Suppose that \mathcal{A} is a free arrangement in \mathbb{C}^ℓ with exponents d_1, d_2, \ldots, d_ℓ. Then
 \[\pi(\mathcal{A}, t) = \prod_{i=1}^{\ell} (1 + d_i t). \]

- **Zaslavsky’s Chamber-Counting Formula**
 Theorem. (Thomas Zaslavsky 1975).
 \[|\text{Chambers}| = \pi(\mathcal{A}, 1). \]
 If \mathcal{A} is a free real arrangement in \mathbb{R}^ℓ with exponents d_1, d_2, \ldots, d_ℓ, then $|\text{Chambers}| = \pi(\mathcal{A}, 1) = \prod_{i=1}^{\ell} (1 + d_i)$.
1. Basic concepts about hyperplane arrangements

Catalan arrangement of type B_2 is free with exponents $(1, 5, 7)$

The number of chambers is

$$\pi(\mathcal{A}, 1) = (1 + 1 \times 1)(1 + 5 \times 1)(1 + 7 \times 1) = 96$$

related to the Edelman-Reiner conjecture (solved by M. Yoshinaga in 2004)
1. Basic concepts about hyperplane arrangements

Catalan arrangement of type B_2 is free with exponents $(1, 5, 7)$

The number of chambers is

$$\pi(\mathcal{A}, 1) = (1 + 1 \times 1)(1 + 5 \times 1)(1 + 7 \times 1) = 96$$

related to the Edelman-Reiner conjecture (solved by M. Yoshinaga in 2004)
1. Basic concepts about hyperplane arrangements

Catalan arrangement of type B_2 is free with exponents $(1, 5, 7)$

The number of chambers is

$$\pi(\mathcal{A}, 1) = (1 + 1 \times 1)(1 + 5 \times 1)(1 + 7 \times 1) = 96$$

related to the Edelman-Reiner conjecture (solved by M. Yoshinaga in 2004)
1. Basic concepts about hyperplane arrangements

Catalan arrangement of type B_2 is free with exponents $(1, 5, 7)$

The number of chambers is

$$\pi(\mathcal{A}, 1) = (1 + 1 \times 1)(1 + 5 \times 1)(1 + 7 \times 1) = 96$$

related to the Edelman-Reiner conjecture (solved by M. Yoshinaga in 2004)
1. Basic concepts about hyperplane arrangements

Catalan arrangement of type B_2 is free with exponents $(1, 5, 7)$

The number of chambers is

$$\pi(\mathcal{A}, 1) = (1 + 1 \times 1)(1 + 5 \times 1)(1 + 7 \times 1) = 96$$

related to the Edelman-Reiner conjecture (solved by M. Yoshinaga in 2004)
2. Arrow’s Impossibility Theorem (economics version)

Assume that a society of m people have ℓ policy options and that every individual has his/her own order of preferences on the ℓ policy options.

A social welfare function can be interpreted as a voting system by which the individual preferences are aggregated into a single societal preference.

We require the following two requirements for a reasonable social welfare function:
Assume that a society of m people have ℓ policy options and that every individual has his/her own order of preferences on the ℓ policy options.

A social welfare function can be interpreted as a voting system by which the individual preferences are aggregated into a single societal preference.

We require the following two requirements for a reasonable social welfare function:
Assume that a society of m people have ℓ policy options and that every individual has his/her own order of preferences on the ℓ policy options.

A social welfare function can be interpreted as a voting system by which the individual preferences are aggregated into a single societal preference.

We require the following two requirements for a reasonable social welfare function:
Assume that a society of m people have ℓ policy options and that every individual has his/her own order of preferences on the ℓ policy options.

A social welfare function can be interpreted as a voting system by which the individual preferences are aggregated into a single societal preference.

We require the following two requirements for a reasonable social welfare function:
2. Arrow’s Impossibility Theorem (economics version)

- The Two Requirements

 (A) the society prefers the option \(i \) to the option \(j \) if every individual prefers the option \(i \) to the option \(j \) (Pareto property),

 (B) whether the society prefers the option \(i \) to the option \(j \) only depends which individuals prefer the option \(i \) to the option \(j \) (pairwise independence).
The Two Requirements

(A) the society prefers the option i to the option j if every individual prefers the option i to the option j (Pareto property),

(B) whether the society prefers the option i to the option j only depends which individuals prefer the option i to the option j (pairwise independence).
2. Arrow’s Impossibility Theorem (economics version)

- The Two Requirements

(A) the society prefers the option i to the option j if every individual prefers the option i to the option j (Pareto property),

(B) whether the society prefers the option i to the option j only depends which individuals prefer the option i to the option j (pairwise independence).
2. Arrow’s Impossibility Theorem (economics version)

Arrow’s Impossibility Theorem (Kenneth Arrow 1950). For $\ell \geq 3$, the only social welfare function satisfying the two requirements (A) and (B) is a dictatorship, that is, the societal preference has to be equal to the preference of one particular individual.

(A) the society prefers the option i to the option j if every individual prefers the option i to the option j (Pareto property),
(B) whether the society prefers the option i to the option j only depends which individuals prefer the option i to the option j (pairwise independence).
2. Arrow’s Impossibility Theorem (economics version)

Arrow’s Impossibility Theorem (Kenneth Arrow 1950).

For $\ell \geq 3$, the only social welfare function satisfying the two requirements (A) and (B) is a dictatorship, that is, the societal preference has to be equal to the preference of one particular individual.

(A) the society prefers the option i to the option j if every individual prefers the option i to the option j (Pareto property),

(B) whether the society prefers the option i to the option j only depends which individuals prefer the option i to the option j (pairwise independence).
Arrow’s Impossibility Theorem (Kenneth Arrow 1950). For \(\ell \geq 3 \), the only social welfare function satisfying the two requirements (A) and (B) is a dictatorship, that is, the societal preference has to be equal to the preference of one particular individual.

(A) the society prefers the option \(i \) to the option \(j \) if every individual prefers the option \(i \) to the option \(j \) (Pareto property),
(B) whether the society prefers the option \(i \) to the option \(j \) only depends which individuals prefer the option \(i \) to the option \(j \) (pairwise independence).
2. Arrow’s Impossibility Theorem (economics version)

Arrow’s Impossibility Theorem (Kenneth Arrow 1950).
For $\ell \geq 3$, the only social welfare function satisfying the two requirements (A) and (B) is a dictatorship, that is, the societal preference has to be equal to the preference of one particular individual.

(A) the society prefers the option i to the option j if every individual prefers the option i to the option j (Pareto property),

(B) whether the society prefers the option i to the option j only depends which individuals prefer the option i to the option j (pairwise independence).
Arrow’s Impossibility Theorem (Kenneth Arrow 1950).
For \(\ell \geq 3 \), the only social welfare function satisfying the two requirements (A) and (B) is a dictatorship, that is, the societal preference has to be equal to the preference of one particular individual.

(A) the society prefers the option \(i \) to the option \(j \) if every individual prefers the option \(i \) to the option \(j \) (Pareto property),
(B) whether the society prefers the option \(i \) to the option \(j \) only depends which individuals prefer the option \(i \) to the option \(j \) (pairwise independence).
Why is Arrow’s theorem true?

What is the reason behind Arrow’s theorem?

Condorcet’s paradox by Marquis Condorcet (1743-94)

A, B, C : 3 people, 1, 2, 3 : 3 options

lists of preferences:

A : 1 > 2 > 3,
B : 2 > 3 > 1,
C : 3 > 1 > 2

In this situation it is very hard to decide the societal preference in a “democratic way” like the majority rule.

Roughly speaking, this is the reason why Arrow’s Impossibility Theorem holds.
2. Arrow’s Impossibility Theorem (economics version)

Why is Arrow’s theorem true?

What is the reason behind Arrow’s theorem?
Condorcet’s paradox by Marquis Condorcet (1743-94)

A, B, C : 3 people, 1, 2, 3 : 3 options
lists of preferences :
A : 1 > 2 > 3,
B : 2 > 3 > 1,
C : 3 > 1 > 2

In this situation it is very hard to decide the societal preference in a “democratic way” like the majority rule. Roughly speaking, this is the reason why Arrow’s Impossibility Theorem holds.
2. Arrow’s Impossibility Theorem (economics version)

Why is Arrow’s theorem true?

What is the reason behind Arrow’s theorem?

Condorcet’s paradox by Marquis Condorcet (1743-94)

$A, B, C : 3$ people, $1, 2, 3 : 3$ options

lists of preferences :

$A : 1 > 2 > 3,$

$B : 2 > 3 > 1,$

$C : 3 > 1 > 2$

In this situation it is very hard to decide the societal preference in a “democratic way” like the majority rule. Roughly speaking, this is the reason why Arrow’s Impossibility Theorem holds.
2. Arrow’s Impossibility Theorem (economics version)

Why is Arrow’s theorem true?

What is the reason behind Arrow’s theorem?

Condorcet’s paradox by Marquis Condorcet (1743-94)

A, B, C : 3 people, 1, 2, 3 : 3 options
lists of preferences :
A : 1 > 2 > 3,
B : 2 > 3 > 1,
C : 3 > 1 > 2

In this situation it is very hard to decide the societal preference in a “democratic way” like the majority rule. Roughly speaking, this is the reason why Arrow’s Impossibility Theorem holds.
2. Arrow’s Impossibility Theorem (economics version)

Why is Arrow’s theorem true?

What is the reason behind Arrow’s theorem?

Condorcet’s paradox by Marquis Condorcet (1743-94)

A, B, C : 3 people, $1, 2, 3$: 3 options

lists of preferences :

$A : 1 > 2 > 3$,

$B : 2 > 3 > 1$,

$C : 3 > 1 > 2$

In this situation it is very hard to decide the societal preference in a “democratic way” like the majority rule.

Roughly speaking, this is the reason why Arrow’s Impossibility Theorem holds.
Why is Arrow’s theorem true?

What is the reason behind Arrow’s theorem?

Condorcet’s paradox by Marquis Condorcet (1743-94)

A, B, C : 3 people, 1, 2, 3 : 3 options
lists of preferences :
A : 1 > 2 > 3,
B : 2 > 3 > 1,
C : 3 > 1 > 2

In this situation it is very hard to decide the societal preference in a “democratic way” like the majority rule.

Roughly speaking, this is the reason why Arrow’s Impossibility Theorem holds.
Why is Arrow’s theorem true?

What is the reason behind Arrow’s theorem?
Condorcet’s paradox by Marquis Condorcet (1743-94)

A, B, C : 3 people, 1, 2, 3 : 3 options

lists of preferences:
A : 1 > 2 > 3,
B : 2 > 3 > 1,
C : 3 > 1 > 2

In this situation it is very hard to decide the societal preference in a “democratic way” like the majority rule.

Roughly speaking, this is the reason why Arrow’s Impossibility Theorem holds.
3. Arrow’s Impossibility Theorem (arrangement version)

\[\mathcal{A} = \{H_1, H_2, \ldots, H_n\} : \text{a real central arrangement in } \mathbb{R}^\ell \]

\[\text{Ch} = \text{Ch}(\mathcal{A}) : \text{the set of chambers} \]

\[H_j : \text{defined by } \alpha_j = 0 \]

\[H_j^+ := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) > 0\} : \text{a half-space} \]

\[H_j^- := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) < 0\} : \text{the other half-space} \]

\[B := \{+, -, 0\} \]

\[\epsilon^\sigma_j : \text{Ch} \rightarrow B \text{ are defined by } \epsilon^\sigma_j(C) = \sigma \tau \text{ if } C \subseteq H_j^\tau \]

\[(\sigma, \tau \in B, j = 1, \ldots, n) \]

\[m : \text{a positive integer} \]

\[\text{Ch}^m, B^m : \text{the } m\text{-time direct products} \]

\[\epsilon^\sigma_j : \text{Ch}^m \rightarrow B^m \text{ is induced from } \epsilon^\sigma_j : \text{Ch} \rightarrow B \text{ by} \]

\[\epsilon^\sigma_j(C_1, C_2, \ldots, C_m) = (\epsilon^\sigma_j(C_1), \epsilon^\sigma_j(C_2), \ldots, \epsilon^\sigma_j(C_m)) \]
3. Arrow’s Impossibility Theorem (arrangement version)

\(\mathcal{A} = \{H_1, H_2, \ldots, H_n\} \) : a real central arrangement in \(\mathbb{R}^\ell \)

\(\text{Ch} = \text{Ch}(\mathcal{A}) \) : the set of chambers

\(H_j \) : defined by \(\alpha_j = 0 \)

\(H_j^+ := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) > 0\} \) : a half-space

\(H_j^- := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) < 0\} \) : the other half-space

\(B := \{+, -, \} \)

\(\epsilon^\sigma_j : \text{Ch} \rightarrow B \) are defined by \(\epsilon^\sigma_j(C) = \sigma \tau \) if \(C \subseteq H_j^\tau \)

(\(\sigma, \tau \in B, j = 1, \ldots, n \))

\(m \) : a positive integer

\(\text{Ch}^m, B^m \) : the \(m \)-time direct products

\(\epsilon^\sigma_j : \text{Ch}^m \rightarrow B^m \) is induced from \(\epsilon^\sigma_j : \text{Ch} \rightarrow B \) by

\(\epsilon^\sigma_j(C_1, C_2, \ldots, C_m) = (\epsilon^\sigma_j(C_1), \epsilon^\sigma_j(C_2), \ldots, \epsilon^\sigma_j(C_m)) \)
3. Arrow’s Impossibility Theorem (arrangement version)

\[\mathcal{A} = \{H_1, H_2, \ldots, H_n\} : \text{a real central arrangement in } \mathbb{R}^\ell \]

\[\text{Ch} = \text{Ch}(\mathcal{A}) : \text{the set of chambers} \]

\[H_j : \text{defined by } \alpha_j = 0 \]

\[H_j^+ := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) > 0\} : \text{a half-space} \]

\[H_j^- := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) < 0\} : \text{the other half-space} \]

\[B := \{+, -, \} \]

\[\epsilon_j^\sigma : \text{Ch} \rightarrow B \text{ are defined by } \epsilon_j^\sigma(C) = \sigma \tau \text{ if } C \subseteq H_j^\tau \]

\[(\sigma, \tau \in B, j = 1, \ldots, n) \]

\[m : \text{a positive integer} \]

\[\text{Ch}^m, B^m : \text{the } m\text{-time direct products} \]

\[\epsilon_j^\sigma : \text{Ch}^m \rightarrow B^m \text{ is induced from } \epsilon_j^\sigma : \text{Ch} \rightarrow B \text{ by} \]

\[\epsilon_j^\sigma(C_1, C_2, \ldots, C_m) = (\epsilon_j^\sigma(C_1), \epsilon_j^\sigma(C_2), \ldots, \epsilon_j^\sigma(C_m)) \]
3. Arrow’s Impossibility Theorem (arrangement version)

\[\mathcal{A} = \{H_1, H_2, \ldots, H_n\} : \text{a real central arrangement in } \mathbb{R}^\ell \]
\[\text{Ch} = \text{Ch}(\mathcal{A}) : \text{the set of chambers} \]
\[H_j : \text{defined by } \alpha_j = 0 \]
\[H_j^+ := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) > 0\} : \text{a half-space} \]
\[H_j^- := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) < 0\} : \text{the other half-space} \]
\[B := \{+, -, \} \]
\[\epsilon_j^\sigma : \text{Ch} \rightarrow B \text{ are defined by } \epsilon_j^\sigma(C) = \sigma \tau \text{ if } C \subseteq H_j^\tau \]
\[(\sigma, \tau \in B, j = 1, \ldots, n) \]
\[m : \text{a positive integer} \]
\[\text{Ch}^m, B^m : \text{the } m\text{-time direct products} \]
\[\epsilon_j^\sigma : \text{Ch}^m \rightarrow B^m \text{ is induced from } \epsilon_j^\sigma : \text{Ch} \rightarrow B \text{ by} \]
\[\epsilon_j^\sigma(C_1, C_2, \ldots, C_m) = (\epsilon_j^\sigma(C_1), \epsilon_j^\sigma(C_2), \ldots, \epsilon_j^\sigma(C_m)) \]
3. Arrow’s Impossibility Theorem (arrangement version)

\(A = \{H_1, H_2, \ldots, H_n\} \) : a real central arrangement in \(\mathbb{R}^\ell \)

\(\text{Ch} = \text{Ch}(A) \) : the set of chambers

\(H_j \) : defined by \(\alpha_j = 0 \)

\(H_j^+ := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) > 0\} \) : a half-space

\(H_j^- := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) < 0\} \) : the other half-space

\(B := \{+, -, \} \)

\(\epsilon_j^\sigma : \text{Ch} \rightarrow B \) are defined by \(\epsilon_j^\sigma(C) = \sigma \tau \) if \(C \subseteq H_j^\tau \)

\((\sigma, \tau \in B, j = 1, \ldots, n) \)

\(m \) : a positive integer

\(\text{Ch}^m, B^m \) : the \(m \)-time direct products

\(\epsilon_j^\sigma : \text{Ch}^m \rightarrow B^m \) is induced from \(\epsilon_j^\sigma : \text{Ch} \rightarrow B \) by

\(\epsilon_j^\sigma(C_1, C_2, \ldots, C_m) = (\epsilon_j^\sigma(C_1), \epsilon_j^\sigma(C_2), \ldots, \epsilon_j^\sigma(C_m)) \)
3. Arrow’s Impossibility Theorem (arrangement version)

\[\mathcal{A} = \{H_1, H_2, \ldots, H_n\} : \text{a real central arrangement in } \mathbb{R}^\ell \]

\[\text{Ch} = \text{Ch}(\mathcal{A}) : \text{the set of chambers} \]

\[H_j : \text{defined by } \alpha_j = 0 \]

\[H_j^+ := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) > 0\} : \text{a half-space} \]

\[H_j^- := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) < 0\} : \text{the other half-space} \]

\[B := \{+, -\} \]

\[\epsilon_j^\sigma : \text{Ch} \longrightarrow B \text{ are defined by } \epsilon_j^\sigma(C) = \sigma \tau \text{ if } C \subseteq H_j^\tau \]

(\(\sigma, \tau \in B, j = 1, \ldots, n\))

\[m : \text{a positive integer} \]

\[\text{Ch}^m, B^m : \text{the } m\text{-time direct products} \]

\[\epsilon_j^\sigma : \text{Ch}^m \rightarrow B^m \text{ is induced from } \epsilon_j^\sigma : \text{Ch} \rightarrow B \text{ by} \]

\[\epsilon_j^\sigma(C_1, C_2, \ldots, C_m) = (\epsilon_j^\sigma(C_1), \epsilon_j^\sigma(C_2), \ldots, \epsilon_j^\sigma(C_m)) \]
3. Arrow’s Impossibility Theorem (arrangement version)

\(\mathcal{A} = \{H_1, H_2, \ldots, H_n\} \) : a real central arrangement in \(\mathbb{R}^\ell \)

\(\text{Ch} = \text{Ch}(\mathcal{A}) \) : the set of chambers

\(H_j \) : defined by \(\alpha_j = 0 \)

\(H_j^+ := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) > 0\} \) : a half-space

\(H_j^- := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) < 0\} \) : the other half-space

\(B := \{+, -\} \)

\(\epsilon_j^\sigma : \text{Ch} \rightarrow B \) are defined by \(\epsilon_j^\sigma(C) = \sigma \tau \) if \(C \subseteq H_j^\tau \)

(\(\sigma, \tau \in B, j = 1, \ldots, n \))

\(m \) : a positive integer

\(\text{Ch}^m, B^m \) : the \(m \)-time direct products

\(\epsilon_j^\sigma : \text{Ch}^m \rightarrow B^m \) is induced from \(\epsilon_j^\sigma : \text{Ch} \rightarrow B \) by

\(\epsilon_j^\sigma(C_1, C_2, \ldots, C_m) = (\epsilon_j^\sigma(C_1), \epsilon_j^\sigma(C_2), \ldots, \epsilon_j^\sigma(C_m)) \)
3. Arrow’s Impossibility Theorem (arrangement version)

$\mathcal{A} = \{H_1, H_2, \ldots, H_n\}$: a real central arrangement in \mathbb{R}^ℓ

$\text{Ch} = \text{Ch}(\mathcal{A})$: the set of chambers

H_j: defined by $\alpha_j = 0$

$H^+_j := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) > 0\}$: a half-space

$H^-_j := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) < 0\}$: the other half-space

$B := \{+, -, 0\}$

$\epsilon^\sigma_j : \text{Ch} \rightarrow B$ are defined by $\epsilon^\sigma_j(C) = \sigma \tau$ if $C \subseteq H^+_j$

$(\sigma, \tau \in B, j = 1, \ldots, n)$

m: a positive integer

Ch^m, B^m: the m-time direct products

$\epsilon^\sigma_j : \text{Ch}^m \rightarrow B^m$ is induced from $\epsilon^\sigma_j : \text{Ch} \rightarrow B$ by

$\epsilon^\sigma_j(C_1, C_2, \ldots, C_m) = (\epsilon^\sigma_j(C_1), \epsilon^\sigma_j(C_2), \ldots, \epsilon^\sigma_j(C_m))$
3. Arrow’s Impossibility Theorem (arrangement version)

\[\mathcal{A} = \{H_1, H_2, \ldots, H_n\} : \text{a real central arrangement in } \mathbb{R}^\ell \]

\[\text{Ch} = \text{Ch}(\mathcal{A}) : \text{the set of chambers} \]

\[H_j : \text{defined by } \alpha_j = 0 \]

\[H_j^\pm := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) > 0\} : \text{a half-space} \]

\[H_j^- := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) < 0\} : \text{the other half-space} \]

\[B := \{+, -\} \]

\[\epsilon_j^\sigma : \text{Ch} \longrightarrow B \text{ are defined by } \epsilon_j^\sigma(C) = \sigma \tau \text{ if } C \subseteq H_j^\tau \]

\[(\sigma, \tau \in B, j = 1, \ldots, n) \]

\[m : \text{a positive integer} \]

\[\text{Ch}^m, B^m : \text{the } m\text{-time direct products} \]

\[\epsilon_j^\sigma : \text{Ch}^m \rightarrow B^m \text{ is induced from } \epsilon_j^\sigma : \text{Ch} \rightarrow B \text{ by} \]

\[\epsilon_j^\sigma(C_1, C_2, \ldots, C_m) = (\epsilon_j^\sigma(C_1), \epsilon_j^\sigma(C_2), \ldots, \epsilon_j^\sigma(C_m)) \]
3. Arrow’s Impossibility Theorem (arrangement version)

\[\mathcal{A} = \{H_1, H_2, \ldots, H_n\} : \text{a real central arrangement in } \mathbb{R}^\ell \]

\[\text{Ch} = \text{Ch}(\mathcal{A}) : \text{the set of chambers} \]

\[H_j : \text{defined by } \alpha_j = 0 \]

\[H_j^+ := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) > 0\} : \text{a half-space} \]

\[H_j^- := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) < 0\} : \text{the other half-space} \]

\[B := \{+, -\} \]

\[\epsilon_j^\sigma : \text{Ch} \rightarrow B \text{ are defined by } \epsilon_j^\sigma(C) = \sigma \tau \text{ if } C \subseteq H_j^\tau \]

\[(\sigma, \tau \in B, j = 1, \ldots, n) \]

\[m : \text{a positive integer} \]

\[\text{Ch}^m, B^m : \text{the } m\text{-time direct products} \]

\[\epsilon_j^\sigma : \text{Ch}^m \rightarrow B^m \text{ is induced from } \epsilon_j^\sigma : \text{Ch} \rightarrow B \text{ by} \]

\[\epsilon_j^\sigma(C_1, C_2, \ldots, C_m) = (\epsilon_j^\sigma(C_1), \epsilon_j^\sigma(C_2), \ldots, \epsilon_j^\sigma(C_m)) \]
3. Arrow’s Impossibility Theorem (arrangement version)

\[\mathcal{A} = \{H_1, H_2, \ldots, H_n\} : \text{a real central arrangement in } \mathbb{R}^\ell \]

\[\text{Ch} = \text{Ch}(\mathcal{A}) : \text{the set of chambers} \]

\[H_j : \text{defined by } \alpha_j = 0 \]

\[H_j^+ := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) > 0\} : \text{a half-space} \]

\[H_j^- := \{x \in \mathbb{R}^\ell \mid \alpha_j(x) < 0\} : \text{the other half-space} \]

\[B := \{+, -\} \]

\[\epsilon_j^\sigma : \text{Ch} \longrightarrow B \text{ are defined by } \epsilon_j^\sigma(C) = \sigma \tau \text{ if } C \subseteq H_j^\tau \]

\[(\sigma, \tau \in B, j = 1, \ldots, n) \]

\[m : \text{a positive integer} \]

\[\text{Ch}^m, B^m : \text{the } m\text{-time direct products} \]

\[\epsilon_j^\sigma : \text{Ch}^m \to B^m \text{ is induced from } \epsilon_j^\sigma : \text{Ch} \to B \text{ by} \]

\[\epsilon_j^\sigma(C_1, C_2, \ldots, C_m) = (\epsilon_j^\sigma(C_1), \epsilon_j^\sigma(C_2), \ldots, \epsilon_j^\sigma(C_m)) \]
3. Arrow’s Impossibility Theorem (arrangement version)

- Definition 1.

A map $\Phi : \text{Ch}^m \rightarrow \text{Ch}$ is called an **admissible map** if there exists a family of maps $\varphi_{j}^{\sigma} : B^m \rightarrow B$ ($1 \leq j \leq n$, $\sigma \in B = \{+, -\}$) which satisfies the following two conditions:

1. $\varphi_{j}^{\sigma}(+, +, \ldots, +) = +$, and
2. the diagram

\[
\begin{array}{ccc}
\text{Ch}^m & \xrightarrow{\Phi} & \text{Ch} \\
\downarrow{\varepsilon_{j}^{\sigma}} & & \downarrow{\varepsilon_{j}^{\sigma}} \\
B^m & \xrightarrow{\varphi_{j}^{\sigma}} & B
\end{array}
\]

commutes for each j, $1 \leq j \leq n$, and $\sigma \in B = \{+, -\}$.
Definition 1.

A map $\Phi : \text{Ch}^m \rightarrow \text{Ch}$ is called an admissible map if there exists a family of maps $\varphi_j^\sigma : B^m \rightarrow B \ (1 \leq j \leq n, \ \sigma \in B = \{+, -\})$ which satisfies the following two conditions:

1. $\varphi_j^\sigma(+, +, \ldots, +) = +$, and
2. the diagram

\[
\begin{array}{ccc}
\text{Ch}^m & \xrightarrow{\Phi} & \text{Ch} \\
\downarrow \varepsilon_j^\sigma & & \downarrow \varepsilon_j^\sigma \\
B^m & \xrightarrow{\varphi_j^\sigma} & B
\end{array}
\]

commutes for each $j, 1 \leq j \leq n$, and $\sigma \in B = \{+, -\}$.
Definition 1.

A map \(\Phi : \text{Ch}^m \longrightarrow \text{Ch} \) is called an \textit{admissible map} if there exists a family of maps \(\varphi_j^\sigma : B^m \longrightarrow B \) \((1 \leq j \leq n, \ \sigma \in B = \{+, -\}) \) which satisfies the following two conditions:

(1) \(\varphi_j^\sigma(+, +, \ldots, +) = + \), and

(2) the diagram

\[
\begin{array}{ccc}
\text{Ch}^m & \xrightarrow{\Phi} & \text{Ch} \\
\downarrow{\epsilon_j^\sigma} & & \downarrow{\epsilon_j^\sigma} \\
B^m & \xrightarrow{\varphi_j^\sigma} & B
\end{array}
\]

commutes for each \(j, 1 \leq j \leq n \), and \(\sigma \in B = \{+, -\} \).
3. Arrow’s Impossibility Theorem (arrangement version)

- Definition 1.

A map $\Phi : \text{Ch}^m \rightarrow \text{Ch}$ is called an admissible map if there exists a family of maps $\varphi^\sigma_j : B^m \rightarrow B$ ($1 \leq j \leq n$, $\sigma \in B = \{+, -\}$) which satisfies the following two conditions:

1. $\varphi^\sigma_j(+, +, \ldots, +) = +$, and

2. the diagram

\[
\begin{array}{ccc}
\text{Ch}^m & \xrightarrow{\Phi} & \text{Ch} \\
\downarrow \epsilon^\sigma_j & & \downarrow \epsilon^\sigma_j \\
B^m & \xrightarrow{\varphi^\sigma_j} & B
\end{array}
\]

commutes for each j, $1 \leq j \leq n$, and $\sigma \in B = \{+, -\}$.
3. Arrow’s Impossibility Theorem (arrangement version)

Definition 1.

A map $\Phi : \text{Ch}^m \rightarrow \text{Ch}$ is called an admissible map if there exists a family of maps $\varphi_j^\sigma : B^m \rightarrow B$ ($1 \leq j \leq n$, $\sigma \in B = \{+, -\}$) which satisfies the following two conditions:

1. $\varphi_j^\sigma(+, +, \ldots, +) = +$, and
2. the diagram

```
\begin{align*}
\text{Ch}^m & \xrightarrow{\Phi} \text{Ch} \\
\downarrow \text{e}_j^\sigma & \quad \quad \quad \quad \quad \quad \quad \downarrow \text{e}_j^\sigma \\
B^m & \xrightarrow{\varphi_j^\sigma} B
\end{align*}
```

commutes for each $j, 1 \leq j \leq n$, and $\sigma \in B = \{+, -\}$.
3. Arrow’s Impossibility Theorem (arrangement version)

- Definition 1 (continuing).

Let $AM(\mathcal{A}, m)$ denote the set of all admissible maps determined by \mathcal{A} and m.

When Φ is an admissible map, a family of maps $\varphi^\sigma_j (1 \leq j \leq n, \sigma \in B = \{+, -\})$ satisfying the conditions in Definition 1 is uniquely determined by Φ, \mathcal{A} and m.
Definition 1 (continuing).

Let $AM(\mathcal{A}, m)$ denote the set of all admissible maps determined by \mathcal{A} and m.

When Φ is an admissible map, a family of maps φ^σ_j ($1 \leq j \leq n, \sigma \in B = \{+,-\}$) satisfying the conditions in Definition 1 is uniquely determined by Φ, \mathcal{A} and m.
3. Arrow’s Impossibility Theorem (arrangement version)

Definition 1 (continuing).

Let $AM(\mathcal{A}, m)$ denote the set of all admissible maps determined by \mathcal{A} and m.

When Φ is an admissible map, a family of maps φ^σ_j ($1 \leq j \leq n, \sigma \in B = \{+,-\}$) satisfying the conditions in Definition 1 is uniquely determined by Φ, \mathcal{A} and m.
3. Arrow’s Impossibility Theorem (arrangement version)

- Definition 1 (continuing).

Let $AM(\mathcal{A}, m)$ denote the set of all admissible maps determined by \mathcal{A} and m.

When Φ is an admissible map, a family of maps φ^σ_j ($1 \leq j \leq n, \sigma \in B = \{+, -\}$) satisfying the conditions in Definition 1 is uniquely determined by Φ, \mathcal{A} and m.
3. Arrow’s Impossibility Theorem (arrangement version)

Definition 2.
For $1 \leq h \leq m$, let $\Phi :$ the projection to the h-th component, $\varphi^\sigma_j :$ the projection to the h-th component.

Then Φ is an admissible map with a family of maps
φ^σ_j ($1 \leq j \leq n, \sigma \in B = \{+, -\}$).

We call the admissible maps of this type projective admissible maps.
Definition 2.

For $1 \leq h \leq m$, let $\Phi :$ the projection to the h-th component, $\varphi^\sigma_j :$ the projection to the h-th component. Then Φ is an admissible map with a family of maps φ_j^σ ($1 \leq j \leq n, \sigma \in B = \{+,-\}$).

We call the admissible maps of this type projective admissible maps.
Definition 2.

For $1 \leq h \leq m$, let $\Phi :$ the projection to the h-th component, $\varphi_j^\sigma :$ the projection to the h-th component.

Then Φ is an admissible map with a family of maps φ_j^σ ($1 \leq j \leq n, \sigma \in B = \{+, -\}$).

We call the admissible maps of this type projective admissible maps.
Definition 2.

For $1 \leq h \leq m$, let $\Phi :$ the projection to the h-th component, $\varphi^\sigma_j :$ the projection to the h-th component.

Then Φ is an admissible map with a family of maps $\varphi^\sigma_j (1 \leq j \leq n, \sigma \in B = \{+, -\})$.

We call the admissible maps of this type projective admissible maps.
Definition 2.

For $1 \leq h \leq m$, let $\Phi :$ the projection to the h-th component, $\varphi_j^{\sigma} :$ the projection to the h-th component. Then Φ is an admissible map with a family of maps $\varphi_j^{\sigma} (1 \leq j \leq n, \sigma \in B = \{+, -\})$.

We call the admissible maps of this type projective admissible maps.
3. Arrow’s Impossibility Theorem (arrangement version)

Definition 2.

For $1 \leq h \leq m$, let Φ : the projection to the h-th component, φ^σ_j : the projection to the h-th component. Then Φ is an admissible map with a family of maps φ^σ_j ($1 \leq j \leq n, \sigma \in B = \{+, -, \}$).
We call the admissible maps of this type **projective admissible maps**.
3. Arrow’s Impossibility Theorem (arrangement version)

- The Braid Arrangement Case

\(\mathcal{A} : \) the braid arrangement in \(\mathbb{R}^\ell \) \((\ell \geq 3)\)

\(\mathcal{A} = \{ H_{ij} \mid 1 \leq i < j \leq \ell \} \) where \(H_{ij} := \ker(x_i - x_j) \)

\(H_{ij}^+ := \{ (x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_i > x_j \} \)

\(H_{ij}^- = \{ (x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_i < x_j \} \).

\(S_\ell : \) the permutation group of \(\{1, 2, \ldots, \ell\} \)

Then \(\text{Ch}(\mathcal{A}) \leftrightarrow S_\ell \) (One-to-one correspondence):

Each chamber of \(\mathcal{A} \) can be uniquely expressed as

\(\{ (x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_{\pi(1)} < x_{\pi(2)} < \cdots < x_{\pi(\ell)} \} \) for a permutation \(\pi \in S_\ell \)

Thus the set of orders of preferences \(\leftrightarrow S_\ell \leftrightarrow \text{Ch}(\mathcal{A}) \)
3. Arrow’s Impossibility Theorem (arrangement version)

- The Braid Arrangement Case

\(\mathcal{A} \): the braid arrangement in \(\mathbb{R}^\ell \) (\(\ell \geq 3 \))

\[\mathcal{A} = \{ H_{ij} \mid 1 \leq i < j \leq \ell \} \]

where \(H_{ij} := \ker(x_i - x_j) \)

\[H_{ij}^+ := \{(x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_i > x_j\} \]

\[H_{ij}^- := \{(x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_i < x_j\} \].

\(S_\ell \): the permutation group of \(\{1, 2, \ldots, \ell\} \)

Then \(\text{Ch}(\mathcal{A}) \leftrightarrow S_\ell \) (One-to-one correspondence):

Each chamber of \(\mathcal{A} \) can be uniquely expressed as

\[\{(x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_{\pi(1)} < x_{\pi(2)} < \cdots < x_{\pi(\ell)}\} \]

for a permutation \(\pi \in S_\ell \)

Thus the set of orders of preferences \(\leftrightarrow S_\ell \leftrightarrow \text{Ch}(\mathcal{A}) \)
3. Arrow’s Impossibility Theorem (arrangement version)

- The Braid Arrangement Case

\[\mathcal{A} : \text{the braid arrangement in } \mathbb{R}^\ell \ (\ell \geq 3) \]

\[\mathcal{A} = \{H_{ij} \mid 1 \leq i < j \leq \ell\} \text{ where } H_{ij} := \ker(x_i - x_j) \]

\[H_{ij}^+ := \{(x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_i > x_j\} \]

\[H_{ij}^- = \{(x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_i < x_j\}. \]

\[S_\ell : \text{the permutation group of } \{1, 2, \ldots, \ell\} \]

Then \(\text{Ch}(\mathcal{A}) \leftrightarrow S_\ell \) (One-to-one correspondence):

Each chamber of \(\mathcal{A} \) can be uniquely expressed as

\[\{(x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_{\pi(1)} < x_{\pi(2)} < \cdots < x_{\pi(\ell)}\} \]

for a permutation \(\pi \in S_\ell \)

Thus the set of orders of preferences \(\leftrightarrow S_\ell \leftrightarrow \text{Ch}(\mathcal{A}) \)
3. Arrow’s Impossibility Theorem (arrangement version)

- The Braid Arrangement Case

\(\mathcal{A} : \) the braid arrangement in \(\mathbb{R}^\ell \) (\(\ell \geq 3 \))

\(\mathcal{A} = \{H_{ij} | 1 \leq i < j \leq \ell \} \) where \(H_{ij} := \ker(x_i - x_j) \)

\(H_{ij}^+ := \{(x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell | x_i > x_j \} \)

\(H_{ij}^- = \{(x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell | x_i < x_j \} \).

\(S_\ell : \) the permutation group of \(\{1, 2, \ldots, \ell\} \)

Then \(\text{Ch}(\mathcal{A}) \leftrightarrow S_\ell \) (One-to-one correspondence):

Each chamber of \(\mathcal{A} \) can be uniquely expressed as

\(\{(x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell | x_{\pi(1)} < x_{\pi(2)} < \cdots < x_{\pi(\ell)} \} \) for a permutation \(\pi \in S_\ell \)

Thus the set of orders of preferences \(\leftrightarrow S_\ell \leftrightarrow \text{Ch}(\mathcal{A}) \)
3. Arrow’s Impossibility Theorem (arrangement version)

- The Braid Arrangement Case

\(\mathcal{A} : \) the braid arrangement in \(\mathbb{R}^\ell \) (\(\ell \geq 3 \))

\(\mathcal{A} = \{H_{ij} \mid 1 \leq i < j \leq \ell \} \) where \(H_{ij} := \ker(x_i - x_j) \)

\(H_{ij}^+ := \{(x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_i > x_j \} \)

\(H_{ij}^- := \{(x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_i < x_j \} \).

\(S_\ell \) : the permutation group of \(\{1, 2, \ldots, \ell \} \)

Then \(\text{Ch}(\mathcal{A}) \leftrightarrow S_\ell \) (One-to-one correspondence) :

Each chamber of \(\mathcal{A} \) can be uniquely expressed as

\(\{(x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_{\pi(1)} < x_{\pi(2)} < \cdots < x_{\pi(\ell)} \} \) for a permutation \(\pi \in S_\ell \)

Thus the set of orders of preferences \(\leftrightarrow S_\ell \leftrightarrow \text{Ch}(\mathcal{A}) \).
3. Arrow’s Impossibility Theorem (arrangement version)

- The Braid Arrangement Case

\(\mathcal{A} : \) the braid arrangement in \(\mathbb{R}^\ell \) (\(\ell \geq 3 \))

\(\mathcal{A} = \{H_{ij} \mid 1 \leq i < j \leq \ell\} \) where \(H_{ij} := \ker(x_i - x_j) \)

\(H_{ij}^+ := \{(x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_i > x_j\} \)

\(H_{ij}^- = \{(x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_i < x_j\}. \)

\(S_\ell : \) the permutation group of \(\{1, 2, \ldots, \ell\} \)

Then \(\text{Ch}(\mathcal{A}) \leftrightarrow S_\ell \) (One-to-one correspondence) :

Each chamber of \(\mathcal{A} \) can be uniquely expressed as

\[\{(x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_{\pi(1)} < x_{\pi(2)} < \cdots < x_{\pi(\ell)}\} \]

for a permutation \(\pi \in S_\ell \)

Thus the set of orders of preferences \(\leftrightarrow S_\ell \leftrightarrow \text{Ch}(\mathcal{A}) \)
3. Arrow’s Impossibility Theorem (arrangement version)

- The Braid Arrangement Case

\mathcal{A}: the braid arrangement in \mathbb{R}^ℓ ($\ell \geq 3$)

$\mathcal{A} = \{H_{ij} \mid 1 \leq i < j \leq \ell\}$ where $H_{ij} := \ker(x_i - x_j)$

$H_{ij}^+ := \{(x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_i > x_j\}$

$H_{ij}^- = \{(x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_i < x_j\}.$

S_ℓ: the permutation group of $\{1, 2, \ldots, \ell\}$

Then $\text{Ch}(\mathcal{A}) \leftrightarrow S_\ell$ (One-to-one correspondence):

Each chamber of \mathcal{A} can be uniquely expressed as

$\{(x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_{\pi(1)} < x_{\pi(2)} < \cdots < x_{\pi(\ell)}\}$ for a permutation $\pi \in S_\ell$

Thus the set of orders of preferences $\leftrightarrow S_\ell \leftrightarrow \text{Ch}(\mathcal{A})$
3. Arrow’s Impossibility Theorem (arrangement version)

- The Braid Arrangement Case

\(\mathcal{A} : \) the braid arrangement in \(\mathbb{R}^\ell \) (\(\ell \geq 3 \))

\(\mathcal{A} = \{ H_{ij} \mid 1 \leq i < j \leq \ell \} \) where \(H_{ij} := \ker(x_i - x_j) \)

\(H_{ij}^+ := \{ (x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_i > x_j \} \)

\(H_{ij}^- = \{ (x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_i < x_j \}. \)

\(S_\ell : \) the permutation group of \(\{1, 2, \ldots, \ell\} \)

Then \(\text{Ch}(\mathcal{A}) \leftrightarrow S_\ell \) (One-to-one correspondence):

Each chamber of \(\mathcal{A} \) can be uniquely expressed as

\(\{(x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell \mid x_{\pi(1)} < x_{\pi(2)} < \cdots < x_{\pi(\ell)} \} \) for a permutation \(\pi \in S_\ell \)

Thus the set of orders of preferences \(\leftrightarrow S_\ell \leftrightarrow \text{Ch}(\mathcal{A}) \)
3. Arrow’s Impossibility Theorem (arrangement version)

- The Braid Arrangement Case

\(\mathcal{A} : \) the braid arrangement in \(\mathbb{R}^\ell \) (\(\ell \geq 3 \))

\(\mathcal{A} = \{ H_{ij} | 1 \leq i < j \leq \ell \} \) where \(H_{ij} := \ker(x_i - x_j) \)

\(H_{ij}^+ := \{ (x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell | x_i > x_j \} \)

\(H_{ij}^- = \{ (x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell | x_i < x_j \} \).

\(S_\ell : \) the permutation group of \{1, 2, \ldots, \ell\}

Then \(\text{Ch}(\mathcal{A}) \leftrightarrow S_\ell \) (One-to-one correspondence):

Each chamber of \(\mathcal{A} \) can be uniquely expressed as

\(\{ (x_1, x_2, \ldots, x_\ell) \in \mathbb{R}^\ell | x_{\pi(1)} < x_{\pi(2)} < \cdots < x_{\pi(\ell)} \} \) for a permutation \(\pi \in S_\ell \)

Thus the set of orders of preferences \(\leftrightarrow S_\ell \leftrightarrow \text{Ch}(\mathcal{A}) \)
3. Arrow’s Impossibility Theorem (arrangement version)

The Braid Arrangement Case

\[S^m_\ell \leftrightarrow \text{Ch}^m \xrightarrow{\Phi} \text{Ch} \leftrightarrow S_\ell \]

Other correspondences are:

- a social welfare function \(\leftrightarrow \Phi \)
- a dictatorship \(\leftrightarrow \) the projection to a component
- (A) (Pareto property) \(\leftrightarrow (1) (\varphi^\sigma_j (+, \ldots, +) = +) \)
- (B) (pairwise independence) \(\leftrightarrow (2) \) (commutativity)

\[\varphi^\sigma_j \circ \epsilon^\sigma_j = \epsilon^\sigma_j \circ \Phi \ (\forall j) \]
3. Arrow’s Impossibility Theorem (arrangement version)

The Braid Arrangement Case

\[S^m_\ell \leftrightarrow \text{Ch}^m \xrightarrow{\Phi} \text{Ch} \leftrightarrow S_\ell \]

Other correspondences are:

- a social welfare function \(\leftrightarrow\) \(\Phi\)
- a dictatorship \(\leftrightarrow\) the projection to a component
- (A) (Pareto property) \(\leftrightarrow\) (1) \((\varphi^\sigma_j (+, \ldots, +) = +)\)
- (B) (pairwise independence) \(\leftrightarrow\) (2) (commutativity)
 \(\varphi^\sigma_j \circ \epsilon^\sigma_j = \epsilon^\sigma_j \circ \Phi \ (\forall j)\)
3. Arrow’s Impossibility Theorem (arrangement version)

- The Braid Arrangement Case

\[S_\ell^m \leftrightarrow \begin{array}{c} \text{Ch}^m \xrightarrow{\Phi} \text{Ch} \\ \epsilon_j^\sigma \downarrow \quad \phi_j^\sigma \downarrow \end{array} \leftrightarrow S_\ell \]

Other correspondences are:
- a social welfare function \(\leftrightarrow \Phi \)
- a dictatorship \(\leftrightarrow \) the projection to a component
- (A) (Pareto property) \(\leftrightarrow (1) \ (\phi_j^\sigma (+, \ldots, +) = +) \)
- (B) (pairwise independence) \(\leftrightarrow (2) \ (\text{commutativity}) \
\phi_j^\sigma \circ \epsilon_j^\sigma = \epsilon_j^\sigma \circ \Phi \ (\forall j) \)
3. Arrow’s Impossibility Theorem (arrangement version)

- The Braid Arrangement Case

\[S^m_\ell \leftrightarrow \text{Ch}^m \xrightarrow{\Phi} \text{Ch} \leftrightarrow S_\ell \]

Other correspondences are:

- A social welfare function \(\leftrightarrow \Phi \)
- A dictatorship \(\leftrightarrow \) the projection to a component
 (A) (Pareto property) \(\leftrightarrow \) (1) \(\varphi_j^\sigma (+, \ldots, +) = + \)
 (B) (pairwise independence) \(\leftrightarrow \) (2) (commutativity)
 \(\varphi_j^\sigma \circ \epsilon_j^\sigma = \epsilon_j^\sigma \circ \Phi \; (\forall j) \)
3. Arrow’s Impossibility Theorem (arrangement version)

The Braid Arrangement Case

\[S^m_\ell \leftrightarrow \text{Ch}^m \xrightarrow{\Phi} \text{Ch} \leftrightarrow S_\ell \]

Other correspondences are:
- A social welfare function \(\leftrightarrow \Phi \)
- A dictatorship \(\leftrightarrow \) the projection to a component
- (A) (Pareto property) \(\leftrightarrow (1) (\varphi^\sigma_j (+, \ldots, +) = +) \)
- (B) (pairwise independence) \(\leftrightarrow (2) \) (commutativity)
 \[\varphi^\sigma_j \circ \epsilon^\sigma_j = \epsilon^\sigma_j \circ \Phi \ (\forall j) \]
3. Arrow’s Impossibility Theorem (arrangement version)

- The Braid Arrangement Case

\[S^m_\ell \leftrightarrow \text{Ch}^m \xrightarrow{\Phi} \text{Ch} \leftrightarrow S_\ell \]

Other correspondences are:
- a social welfare function \(\leftrightarrow \Phi \)
- a dictatorship \(\leftrightarrow \) the projection to a component
 - (A) (Pareto property) \(\leftrightarrow (1) (\varphi^\sigma_j (+, \ldots, +) = +) \)
 - (B) (pairwise independence) \(\leftrightarrow (2) \) (commutativity)
 \[\varphi^\sigma_j \circ \epsilon^\sigma_j = \epsilon^\sigma_j \circ \Phi \quad (\forall j) \]
3. Arrow’s Impossibility Theorem (arrangement version)

- The Braid Arrangement Case

\[S^m_\ell \leftrightarrow \text{Ch}^m \overset{\Phi}{\longrightarrow} \text{Ch} \leftrightarrow S_\ell \]

\[B^m \overset{\varphi^\sigma_j}{\longrightarrow} B \]

Other correspondences are:

- A social welfare function \(\leftrightarrow \Phi \)
- A dictatorship \(\leftrightarrow \) the projection to a component

\((A) \) (Pareto property) \(\leftrightarrow (1) \) (\(\varphi_j^\sigma (+, \ldots, +) = + \))

\((B) \) (pairwise independence) \(\leftrightarrow (2) \) (commutativity)

\(\varphi_j^\sigma \circ \epsilon_j^\sigma = \epsilon_j^\sigma \circ \Phi \quad (\forall j) \)
3. Arrow’s Impossibility Theorem (arrangement version)

Arrow’s impossibility theorem can be formulated as:

Arrow’s Impossibility Theorem (arrangement version)
If \mathcal{A} is a braid arrangement with $\ell \geq 3$, then every admissible map is projective.
Arrow’s impossibility theorem can be formulated as:

Arrow’s Impossibility Theorem (arrangement version)

If \mathcal{A} is a braid arrangement with $\ell \geq 3$, then every admissible map is projective.
3. Arrow’s Impossibility Theorem (arrangement version)

Arrow’s impossibility theorem can be formulated as:

Arrow’s Impossibility Theorem (arrangement version)
If \mathcal{A} is a braid arrangement with $\ell \geq 3$, then every admissible map is projective.
Condorcet’s paradox can be interpreted in terms of arrangements and their chambers:
3. Arrow’s Impossibility Theorem (arrangement version)

Condorcet’s paradox can be interpreted in terms of arrangements and their chambers:
3. Arrow’s Impossibility Theorem (arrangement version)

Braid arrangement in \mathbb{R}^3

H_{13}
$1=3$

H_{12}
$1=2$

H_{23}
$2=3$

$2>1>3$

$1>2>3$

$2>3>1$

$1>3>2$

$3>2>1$

$3>1>2$

Lists of preferences

A: $1>2>3$
B: $2>3>1$
C: $3>1>2$

$(H_{12})^+ \cap (H_{23})^+ \cap (H_{13})^-$ would satisfy all of the three, but it is empty. (Condorcet’s paradox)
Decomposability/Indecomposability of an Arrangement

For a central arrangement \mathcal{A}, define the rank of \mathcal{A}

$$ r(\mathcal{A}) = \text{codim}_{\mathbb{R}^\ell} \bigcap_{1 \leq j \leq n} H_j $$

Definition 3. A central arrangement \mathcal{A} is said to be **decomposable** if there exist nonempty arrangements \mathcal{A}_1 and \mathcal{A}_2 such that $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$ (disjoint) and $r(\mathcal{A}) = r(\mathcal{A}_1) + r(\mathcal{A}_2)$. In this case, write $\mathcal{A} = \mathcal{A}_1 \sqcup \mathcal{A}_2$

A central arrangement \mathcal{A} is said to be **indecomposable** if it is not decomposable.
4. Two theorems on arrangements

Decomposability/Indecomposability of an Arrangement

For a central arrangement \mathcal{A}, define the rank of \mathcal{A}

$$r(\mathcal{A}) = \text{codim}_{\mathbb{R}^\ell} \bigcap_{1 \leq j \leq n} H_j$$

Definition 3. A central arrangement \mathcal{A} is said to be **decomposable** if there exist nonempty arrangements \mathcal{A}_1 and \mathcal{A}_2 such that $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$ (disjoint) and $r(\mathcal{A}) = r(\mathcal{A}_1) + r(\mathcal{A}_2)$. In this case, write $\mathcal{A} = \mathcal{A}_1 \uplus \mathcal{A}_2$

A central arrangement \mathcal{A} is said to be **indecomposable** if it is not decomposable.
Decomposability/Indecomposability of an Arrangement

For a central arrangement \mathcal{A}, define the rank of \mathcal{A}
$$r(\mathcal{A}) = \text{codim}_{\mathbb{R}^l} \bigcap_{1 \leq j \leq n} H_j$$

Definition 3. A central arrangement \mathcal{A} is said to be **decomposable** if there exist nonempty arrangements \mathcal{A}_1 and \mathcal{A}_2 such that $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$ (disjoint) and $r(\mathcal{A}) = r(\mathcal{A}_1) + r(\mathcal{A}_2)$. In this case, write $\mathcal{A} = \mathcal{A}_1 \uplus \mathcal{A}_2$

A central arrangement \mathcal{A} is said to be **indecomposable** if it is not decomposable.
4. Two theorems on arrangements

- Decomposability/Indecomposability of an Arrangement

For a central arrangement \mathcal{A}, define the rank of \mathcal{A}

$$r(\mathcal{A}) = \text{codim}_{\mathbb{R}^\ell} \bigcap_{1 \leq j \leq n} H_j$$

Definition 3. A central arrangement \mathcal{A} is said to be **decomposable** if there exist nonempty arrangements \mathcal{A}_1 and \mathcal{A}_2 such that $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$ (disjoint) and $r(\mathcal{A}) = r(\mathcal{A}_1) + r(\mathcal{A}_2)$. In this case, write $\mathcal{A} = \mathcal{A}_1 \cupdot \mathcal{A}_2$

A central arrangement \mathcal{A} is said to be **indecomposable** if it is not decomposable.
4. Two theorems on arrangements

Decomposability/Indecomposability of an Arrangement

For a central arrangement \mathcal{A}, define the rank of \mathcal{A}

$$r(\mathcal{A}) = \text{codim}_{\mathbb{R}^\ell} \bigcap_{1 \leq j \leq n} H_j$$

Definition 3. A central arrangement \mathcal{A} is said to be **decomposable** if there exist nonempty arrangements \mathcal{A}_1 and \mathcal{A}_2 such that $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$ (disjoint) and $r(\mathcal{A}) = r(\mathcal{A}_1) + r(\mathcal{A}_2)$. In this case, write $\mathcal{A} = \mathcal{A}_1 \uplus \mathcal{A}_2$

A central arrangement \mathcal{A} is said to be **indecomposable** if it is not decomposable.
Decomposability/Indecomposability of an Arrangement

For a central arrangement \mathcal{A}, define the rank of \mathcal{A}

$$r(\mathcal{A}) = \operatorname{codim}_{\mathbb{R}^\ell} \bigcap_{1 \leq j \leq n} H_j$$

Definition 3. A central arrangement \mathcal{A} is said to be **decomposable** if there exist nonempty arrangements \mathcal{A}_1 and \mathcal{A}_2 such that $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$ (disjoint) and $r(\mathcal{A}) = r(\mathcal{A}_1) + r(\mathcal{A}_2)$. In this case, write $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$

A central arrangement \mathcal{A} is said to be **indecomposable** if it is not decomposable.
Decomposability/Indecomposability of an Arrangement

Remark 1. $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$ if and only if the defining polynomials for $\mathcal{A}_1 \neq \emptyset$ and $\mathcal{A}_2 \neq \emptyset$ have no common variables after an appropriate linear coordinate change.

Remark 2. It is also known that \mathcal{A} is decomposable if and only if its Poincaré polynomial $\pi(\mathcal{A}, t)$ is divisible by $(t + 1)^2$.

An arrangement of only one hyperplane is always indecomposable.

An arrangement of two hyperplanes is always decomposable.

The Boolean arrangement is always decomposable into arrangements with only one hyperplane.
4. Two theorems on arrangements

Decomposability/Indecomposability of an Arrangement

Remark 1. \(\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \) if and only if the defining polynomials for \(\mathcal{A}_1 \neq \emptyset \) and \(\mathcal{A}_2 \neq \emptyset \) have no common variables after an appropriate linear coordinate change.

Remark 2. It is also known that \(\mathcal{A} \) is decomposable if and only if its Poincaré polynomial \(\pi(\mathcal{A}, t) \) is divisible by \((t + 1)^2 \).

An arrangement of **only one hyperplane** is always indecomposable.

An arrangement of **two hyperplanes** is always decomposable.

The Boolean arrangement is always decomposable into arrangements with only one hyperplane.
Decomposability/Indecomposability of an Arrangement

Remark 1. $A = A_1 \cup A_2$ if and only if the defining polynomials for $A_1 \neq \emptyset$ and $A_2 \neq \emptyset$ have no common variables after an appropriate linear coordinate change.

Remark 2. It is also known that A is decomposable if and only if its Poincaré polynomial $\pi(A, t)$ is divisible by $(t + 1)^2$.

An arrangement of only one hyperplane is always indecomposable.

An arrangement of two hyperplanes is always decomposable.

The Boolean arrangement is always decomposable into arrangements with only one hyperplane.
4. Two theorems on arrangements

Decomposability/Indecomposability of an Arrangement

Remark 1. $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$ if and only if the defining polynomials for $\mathcal{A}_1 \neq \emptyset$ and $\mathcal{A}_2 \neq \emptyset$ have no common variables after an appropriate linear coordinate change.

Remark 2. It is also known that \mathcal{A} is decomposable if and only if its Poincaré polynomial $\pi(\mathcal{A}, t)$ is divisible by $(t + 1)^2$.

An arrangement of only one hyperplane is always indecomposable.

An arrangement of two hyperplanes is always decomposable.

The Boolean arrangement is always decomposable into arrangements with only one hyperplane.
4. Two theorems on arrangements

- Decomposability/Indecomposability of an Arrangement

Remark 1. $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$ if and only if the defining polynomials for $\mathcal{A}_1 \neq \emptyset$ and $\mathcal{A}_2 \neq \emptyset$ have no common variables after an appropriate linear coordinate change.

Remark 2. It is also known that \mathcal{A} is decomposable if and only if its Poincaré polynomial $\pi(\mathcal{A}, t)$ is divisible by $(t + 1)^2$.

An arrangement of **only one hyperplane** is always indecomposable.

An arrangement of **two hyperplanes** is always decomposable.

The Boolean arrangement is always decomposable into arrangements with only one hyperplane.
4. Two theorems on arrangements

Decomposability/Indecomposability of an Arrangement

Remark 1. \(\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \) if and only if the defining polynomials for \(\mathcal{A}_1 \neq \emptyset \) and \(\mathcal{A}_2 \neq \emptyset \) have no common variables after an appropriate linear coordinate change.

Remark 2. It is also known that \(\mathcal{A} \) is decomposable if and only if its Poincaré polynomial \(\pi(\mathcal{A}, t) \) is divisible by \((t + 1)^2 \).

An arrangement of only one hyperplane is always indecomposable.

An arrangement of two hyperplanes is always decomposable.

The Boolean arrangement is always decomposable into arrangements with only one hyperplane.
4. Two theorems on arrangements

Decomposability/Indecomposability of an Arrangement

Remark 1. \(\mathcal{A} = \mathcal{A}_1 \sqcup \mathcal{A}_2 \) if and only if the defining polynomials for \(\mathcal{A}_1 \neq \emptyset \) and \(\mathcal{A}_2 \neq \emptyset \) have no common variables after an appropriate linear coordinate change.

Remark 2. It is also known that \(\mathcal{A} \) is decomposable if and only if its Poincaré polynomial \(\pi(\mathcal{A}, t) \) is divisible by \((t + 1)^2 \).

An arrangement of only one hyperplane is always indecomposable.

An arrangement of two hyperplanes is always decomposable.

The Boolean arrangement is always decomposable into arrangements with only one hyperplane.
Decomposability/Indecomposability of an Arrangement

Any nonempty real central arrangement \mathcal{A} can be uniquely (up to order) decomposed into nonempty indecomposable arrangements:

$$\mathcal{A} = \mathcal{A}_1 \uplus \mathcal{A}_2 \uplus \cdots \uplus \mathcal{A}_r.$$
4. Two theorems on arrangements

- Decomposability/Indecomposability of an Arrangement

Any nonempty real central arrangement \mathcal{A} can be uniquely (up to order) decomposed into nonempty indecomposable arrangements:

$$\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \cdots \cup \mathcal{A}_r.$$
4. Two theorems on arrangements

- Decomposability/Indecomposability of an Arrangement

Any nonempty real central arrangement \mathcal{A} can be uniquely (up to order) decomposed into nonempty indecomposable arrangements:

$$\mathcal{A} = \mathcal{A}_1 \uplus \mathcal{A}_2 \uplus \cdots \uplus \mathcal{A}_r.$$
4. Two theorems on arrangements

- Decomposability/Indecomposability of an Arrangement

Any nonempty real central arrangement \mathcal{A} can be uniquely (up to order) decomposed into nonempty indecomposable arrangements:

$$\mathcal{A} = \mathcal{A}_1 \uplus \mathcal{A}_2 \uplus \cdots \uplus \mathcal{A}_r.$$
The following two theorems completely determine the set $AM(\mathcal{A}, m)$ of admissible maps.
4. Two theorems on arrangements

The following two theorems completely determine the set $AM(\mathcal{A}, m)$ of admissible maps.
The following two theorems completely determine the set $AM(\mathcal{A}, m)$ of admissible maps.
Theorem 1. For a nonempty real central arrangement \mathcal{A} with the decomposition

$$\mathcal{A} = \mathcal{A}_1 \sqcup \mathcal{A}_2 \sqcup \cdots \sqcup \mathcal{A}_r,$$

there exists a natural bijection

$$AM(\mathcal{A}, m) \simeq AM(\mathcal{A}_1, m) \times AM(\mathcal{A}_2, m) \times \cdots \times AM(\mathcal{A}_r, m)$$

for each positive integer m.
Theorem 1. For a nonempty real central arrangement \mathcal{A} with the decomposition

$$\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \cdots \cup \mathcal{A}_r,$$

there exists a natural bijection

$$AM(\mathcal{A}, m) \simeq AM(\mathcal{A}_1, m) \times AM(\mathcal{A}_2, m) \times \cdots \times AM(\mathcal{A}_r, m)$$

for each positive integer m.
4. Two theorems on arrangements

Theorem 2. Let \mathcal{A} be a nonempty indecomposable real central arrangement and m be a positive integer. Then,

1. if $|\mathcal{A}| = 1$, $AM(\mathcal{A}, m) = \{\Phi : \text{Ch}^m \to \text{Ch} | \Phi(C, C, \ldots, C) = C \}$ for each chamber C,
2. if $|\mathcal{A}| \geq 3$, every admissible map is projective.
4. Two theorems on arrangements

Theorem 2. Let \mathcal{A} be a nonempty indecomposable real central arrangement and m be a positive integer. Then,

1. if $|\mathcal{A}| = 1$, $AM(\mathcal{A}, m) = \{ \Phi : Ch^m \to Ch | \Phi(C, C, \ldots, C) = C \text{ for each chamber } C \}$,
2. if $|\mathcal{A}| \geq 3$, every admissible map is projective.
4. Two theorems on arrangements

Theorem 2. Let \mathcal{A} be a nonempty indecomposable real central arrangement and m be a positive integer. Then,

1. if $|\mathcal{A}| = 1$, $AM(\mathcal{A}, m) = \{ \Phi : \text{Ch}^m \to \text{Ch} \mid \Phi(C, C, \ldots, C) = C \text{ for each chamber } C \}$,

2. if $|\mathcal{A}| \geq 3$, every admissible map is projective.
4. Two theorems on arrangements

Theorem 2. Let \mathcal{A} be a nonempty indecomposable real central arrangement and m be a positive integer. Then,

1. if $|\mathcal{A}| = 1$, $AM(\mathcal{A}, m) = \{\Phi : Ch^m \to Ch | \Phi(C, C, \ldots, C) = C \text{ for each chamber } C\}$,
2. if $|\mathcal{A}| \geq 3$, every admissible map is projective.
Corollary. Decompose a nonempty real central arrangement \mathcal{A} into nonempty indecomposable arrangements as
$\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \cdots \cup \mathcal{A}_a \cup \mathcal{B}_1 \cup \mathcal{B}_2 \cup \cdots \cup \mathcal{B}_b$ with
$|\mathcal{A}_p| = 1 \ (1 \leq p \leq a)$ and $|\mathcal{B}_q| \geq 3 \ (1 \leq q \leq b)$.
Then, for each positive integer m,

$$|AM(\mathcal{A}, m)| = (2^{a(2^m-2)})^b$$
4. Two theorems on arrangements

Corollary. Decompose a nonempty real central arrangement \mathcal{A} into nonempty indecomposable arrangements as $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \cdots \cup \mathcal{A}_a \cup \mathcal{B}_1 \cup \mathcal{B}_2 \cup \cdots \cup \mathcal{B}_b$ with $|\mathcal{A}_p| = 1$ \((1 \leq p \leq a)\) and $|\mathcal{B}_q| \geq 3$ \((1 \leq q \leq b)\).

Then, for each positive integer m,

$$|AM(\mathcal{A}, m)| = (2^{a(2^m-2)})m^b$$
Corollary. Decompose a nonempty real central arrangement \mathcal{A} into nonempty indecomposable arrangements as
$\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \cdots \cup \mathcal{A}_a \cup \mathcal{B}_1 \cup \mathcal{B}_2 \cup \cdots \cup \mathcal{B}_b$ with
$|\mathcal{A}_p| = 1 \ (1 \leq p \leq a)$ and $|\mathcal{B}_q| \geq 3 \ (1 \leq q \leq b)$. Then, for each positive integer m,

$$|\text{AM}(\mathcal{A}, m)| = (2^a(2^m-2))m^b$$
5. Implications

What do Theorems 1 and 2 imply?

Theorem 1. For a nonempty real central arrangement \mathcal{A} with the decomposition $\mathcal{A} = \mathcal{A}_1 \uplus \mathcal{A}_2 \uplus \cdots \uplus \mathcal{A}_r$, there exists a natural bijection

$$AM(\mathcal{A}, m) \simeq AM(\mathcal{A}_1, m) \times AM(\mathcal{A}_2, m) \times \cdots \times AM(\mathcal{A}_r, m)$$

for each positive integer m.

Theorem 2. Let \mathcal{A} be a nonempty indecomposable real central arrangement and m be a positive integer. Then,

1. if $|\mathcal{A}| = 1$, $AM(\mathcal{A}, m) = \{\Phi : Ch^m \to Ch | \Phi(C, C, \ldots, C) = C \text{ for each chamber } C\}$,
2. if $|\mathcal{A}| \geq 3$, every admissible map is projective.
5. Implications

What do Theorems 1 and 2 imply?

Theorem 1. For a nonempty real central arrangement A with the decomposition $A = A_1 \uplus A_2 \uplus \cdots \uplus A_r$, there exists a natural bijection

$AM(A, m) \simeq AM(A_1, m) \times AM(A_2, m) \times \cdots \times AM(A_r, m)$

for each positive integer m.

Theorem 2. Let A be a nonempty indecomposable real central arrangement and m be a positive integer. Then,

1. if $|A| = 1$, $AM(A, m) = \{ \Phi : \text{Ch}^m \to \text{Ch} \mid \Phi(C, C, \ldots, C) = C \text{ for each chamber } C \}$,
2. if $|A| \geq 3$, every admissible map is projective.
5. Implications

What do Theorems 1 and 2 imply?

Theorem 1. For a nonempty real central arrangement \mathcal{A} with the decomposition $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \cdots \cup \mathcal{A}_r$, there exists a natural bijection

$$AM(\mathcal{A}, m) \simeq AM(\mathcal{A}_1, m) \times AM(\mathcal{A}_2, m) \times \cdots \times AM(\mathcal{A}_r, m)$$

for each positive integer m.

Theorem 2. Let \mathcal{A} be a nonempty indecomposable real central arrangement and m be a positive integer. Then,

(1) if $|\mathcal{A}| = 1$, $AM(\mathcal{A}, m) = \{\Phi : Ch^m \to Ch | \Phi(C, C, \ldots, C) = C \text{ for each chamber } C\}$,

(2) if $|\mathcal{A}| \geq 3$, every admissible map is projective.
5. Implications

What do Theorems 1 and 2 imply?

Theorem 1. For a nonempty real central arrangement \mathcal{A} with the decomposition $\mathcal{A} = \mathcal{A}_1 \uplus \mathcal{A}_2 \uplus \cdots \uplus \mathcal{A}_r$, there exists a natural bijection

$$AM(\mathcal{A}, m) \simeq AM(\mathcal{A}_1, m) \times AM(\mathcal{A}_2, m) \times \cdots \times AM(\mathcal{A}_r, m)$$

for each positive integer m.

Theorem 2. Let \mathcal{A} be a nonempty indecomposable real central arrangement and m be a positive integer. Then,

1. if $|\mathcal{A}| = 1$, $AM(\mathcal{A}, m) = \{\Phi : Ch^m \to Ch | \Phi(C, C, \ldots, C) = C \text{ for each chamber } C\}$,

2. if $|\mathcal{A}| \geq 3$, every admissible map is projective.
5. Implications

What do Theorems 1 and 2 imply?

Theorem 1. For a nonempty real central arrangement \mathcal{A} with the decomposition $\mathcal{A} = \mathcal{A}_1 \uplus \mathcal{A}_2 \uplus \cdots \uplus \mathcal{A}_r$, there exists a natural bijection

$$AM(\mathcal{A}, m) \cong AM(\mathcal{A}_1, m) \times AM(\mathcal{A}_2, m) \times \cdots \times AM(\mathcal{A}_r, m)$$

for each positive integer m.

Theorem 2. Let \mathcal{A} be a nonempty indecomposable real central arrangement and m be a positive integer. Then,

1. if $|\mathcal{A}| = 1$, $AM(\mathcal{A}, m) = \{ \Phi : \text{Ch}^m \rightarrow \text{Ch} | \Phi(C, C, \ldots, C) = C \text{ for each chamber } C \}$,
2. if $|\mathcal{A}| \geq 3$, every admissible map is projective.
5. Implications

hyperplane \leftrightarrow a political issue

arrangement \leftrightarrow a set of political issues

$\mathcal{A} = \mathcal{A}_1 \sqcup \mathcal{A}_2 \sqcup \cdots \sqcup \mathcal{A}_r$. \leftrightarrow a set of political issues is grouped into certain subsets

For each \mathcal{A}_i with ($|\mathcal{A}_i| \geq 3$), there is a "mini-dictator."

For each \mathcal{A}_i with ($|\mathcal{A}_i| = 1$), any voting system (e.g., the simple majority rule) works as long as unanimous decisions are respected.
5. Implications

hyperplane \leftrightarrow a political issue

arrangement \leftrightarrow a set of political issues

$\mathcal{A} = \mathcal{A}_1 \uplus \mathcal{A}_2 \uplus \cdots \uplus \mathcal{A}_r$. \leftrightarrow a set of political issues is grouped into certain subsets

For each \mathcal{A}_i with $(|\mathcal{A}_i| \geq 3)$, there is a “mini-dictator.”

For each \mathcal{A}_i with $(|\mathcal{A}_i| = 1)$, any voting system (e.g., the simple majority rule) works as long as unanimous decisions are respected.
5. Implications

- hyperplane ↔ a political issue
- arrangement ↔ a set of political issues
- $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \cdots \cup \mathcal{A}_r$. ↔ a set of political issues is grouped into certain subsets

For each \mathcal{A}_i with ($|\mathcal{A}_i| \geq 3$), there is a “mini-dictator.”

For each \mathcal{A}_i with ($|\mathcal{A}_i| = 1$), any voting system (e.g., the simple majority rule) works as long as unanimous decisions are respected.
5. Implications

hyperplane ↔ a political issue

arrangement ↔ a set of political issues

\[\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \cdots \cup \mathcal{A}_r. \leftrightarrow \text{a set of political issues is grouped into certain subsets} \]

For each \(\mathcal{A}_i \) with \(|\mathcal{A}_i| \geq 3 \), there is a “mini-dictator.”

For each \(\mathcal{A}_i \) with \(|\mathcal{A}_i| = 1 \), any voting system (e.g., the simple majority rule) works as long as unanimous decisions are respected.
5. Implications

hyperplane \leftrightarrow a political issue

arrangement \leftrightarrow a set of political issues

$\mathcal{A} = \mathcal{A}_1 \uplus \mathcal{A}_2 \uplus \cdots \uplus \mathcal{A}_r$. \leftrightarrow a set of political issues is grouped into certain subsets

For each \mathcal{A}_i with $(|\mathcal{A}_i| \geq 3)$, there is a “mini-dictator.”

For each \mathcal{A}_i with $(|\mathcal{A}_i| = 1)$, any voting system (e.g., the simple majority rule) works as long as unanimous decisions are respected.
This is random thoughts which might mean nothing.
However, Theorems mean something mathematically.
This is random thoughts which might mean nothing. However, Theorems mean something mathematically.
This work appeared in *Advances in Math.* 214 (2007) 366–378
I stop here.
Thank you!
5. Implications

I stop here.

Thank you!
5. Implications

I stop here.
Thank you!