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Arrangements

An arrangement [of hyperplanes] A is a finite collection of
(ℓ − 1)-dimensional vector subspaces in an ℓ-dimensional
vector space V over a field K:

A = {H1, . . . ,Hn}
defined by Hi = ker(αi) with αi ∈ V∗(1 ≤ i ≤ n).

H. Terao (Hokkaido University) 2015.09.08 5/ 45



Free Arrangements and their Exponents

A: an arrangement of hyperplanes in an ℓ-dimensional vector
space V

αH ∈ V∗: ker(αH) = H for H ∈ A
S := S(V∗): the symmetric algebra of the dual space V∗

Define a graded S-module

D(A) := {θ | θ is an R-linear derivation with

θ(αH) ∈ αHS for all H ∈ A}.

A is said to be a free arrangement if D(A) is a free S-module.

When A is free, then ∃θ1, θ2, . . . , θℓ: homogeneous basis with
degθi = di. The nonnegative integers d1,d2, . . . , dℓ are called
the exponents of A.
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Free Arrangements and their Exponents

Example.
( the braid arrangement (Weyl arrangement of type A3) )

A := {ker(xi − xj) | 1 ≤ i < j ≤ 4}
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The exponents are
(0,1,2,3)

because ...
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Free Arrangements and their Exponents

Example.
( the braid arrangement (Weyl arrangement of type A3) )

A := {ker(xi − xj) | 1 ≤ i < j ≤ 4}

The S-module D(A) is a free module with a basis

θ0 = (∂/∂x1) + (∂/∂x2) + (∂/∂x3) + (∂/∂x4)

θ1 = x1(∂/∂x1) + x2(∂/∂x2) + x3(∂/∂x3) + x4(∂/∂x4)

θ2 = x2
1(∂/∂x1) + x2

2(∂/∂x2) + x2
3(∂/∂x3) + x2

4(∂/∂x4)

θ3 = x3
1(∂/∂x1) + x3

2(∂/∂x2) + x3
3(∂/∂x3) + x3

4(∂/∂x4).

Thus the exponents are:

(degθ0,degθ1,degθ2,degθ3) = (0,1, 2,3).
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Weyl Arrangements and their Exponents

Dynkin diagrams (root systems) and exponents

Aℓ: •
α1

•
α2

· · · •
αℓ−1

•
αℓ

(1, 2, . . . , ℓ)

Bℓ: •
α1

•
α2

· · · •
αℓ−1

•//

αℓ
(1, 3,5, . . . , 2ℓ − 1)

Cℓ: •
α1

•
α2

· · · •
αℓ−1

•oo

αℓ
(1,3,5, . . . , 2ℓ − 1)

Dℓ: •
α1

•
α2

· · · •
αℓ−2

•
αℓ−1

•
αℓ

(1,3,5, . . . ,2ℓ − 3, ℓ − 1)

E6: •
α1

•
α3

•
α4

•α2

•
α5

•
α6

(1,4,5, 7,8,11)
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Weyl Arrangements and their Exponents

Dynkin diagrams (root systems) and exponents

E7: (1,5,7,9,11,13,17) •
α1

•
α3

•
α4

•α2

•
α5

•
α6

•
α7

E8: (1,7,11,13, 17,19,23, 29)

•
α1

•
α3

•
α4

•α2

•
α5

•
α6

•
α7

•
α8

F4: •
α1

•
α2

•//
α3

•
α4

(1,5,7, 11)

G2: •
α1

•oo
α2

(1,5)

(from http://www.ms.u-tokyo.ac.jp/ abenori/tex/tex7.html )
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Every Weyl arrangement is free

.
Theorem..

......

(K. Saito 1976 et al.) The Weyl arrangement A is a free
arrangement. The exponents of the Weyl arrangement A coincide
with the exponents of the corresponding root system.

Example. (Weyl arrangement of type B2)
Φ+ := {α1 := x1 − x2, α2 := x2, α1 + α2 = x1, α1 + 2α2 = x1 + x2}
The S-module D(AG) is a free module with a basis

θ1 = x1(∂/∂x1) + x2(∂/∂x2), θ2 = x3
1(∂/∂x1) + x3

2(∂/∂x2),

The exponents are

d1 = degθ1 = 1, d2 = degθ2 = 3.
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Exponents and Betti Numbers

.
Theorem..

......

(H. T.(1981)) Assume that A is a free arrangement in the complex
space V = Cℓ with exponents (d1, . . . ,dℓ). Define the complement
of A by

M(A) := V \
∪
H∈A

H.

Then the Poincaré polynomial (with its coefficients equal to the Betti
numbers ) of the topological space M(A) splits as

Poin(M(A), t) =
ℓ∏

i=1

(1+ dit).

H. Terao (Hokkaido University) 2015.09.08 12/ 45
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A Triple (A,A′,A′′)

Fix H ∈ A. Define a triple (A,A′,A′′) by

A′ := A \ {H}, A′′ := {H ∩ K | K ∈ A′} (an arrangement in H).
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braid arrangement A3
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A′ = A \ {H}

H
•

•
•

A′′

In this case we have:

exp(A′) = (0,1,2,2), exp(A) = (0,1,2, 3), exp(A′′) = (0,1,2).

This example is generalized into the Addition Theorem (AT) ....
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Addition Theorem (AT)

.
Theorem..

......

(H. T.(1980)) For a triple (A,A′,A′′), suppose that A′ is free with
exp(A′) = (d1, d2, . . . ,dℓ−1,dℓ) and A′′ is free with
exp(A′′) = (d1,d2, . . . , dℓ−1). Then A is also free with
exp(A) = (d1,d2, . . . , dℓ + 1).

Recall that, for the braid arranegemnt (the Weyl arrangement of
type A3,

exp(A′) = (0,1,2,2), exp(A′′) = (0,1, 2), exp(A) = (0,1,2,3).

Remark. In the AT, dℓ is not necessarily the maximum exponent in
exp(A′).
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Multiple Addition Theorem (MAT)

.
Theorem..

......

(ABCHT(2016?)) Let A′ be a free arrangement with exponents
(d1, . . . ,dℓ) (d1 ≤ · · · ≤ dℓ) and 1 ≤ p ≤ ℓ the multiplicity of the
maximum exponent d.
Let H1, . . . ,Hq be (new) hyperplanes.
Define A′′j := {H ∩ Hj | H ∈ A′} (j = 1, . . . ,q).
Assume
(1) X := H1 ∩ · · · ∩ Hq is q-codimensional,
(2) X ⊈

∪
H∈A′ H, and

(3) |A′| − |A′′j | = d (j = 1, . . . ,q) (Remark: ≤ always holds true) .
Then (a) q ≤ p and (b) A := A′∪{H1, . . . ,Hq} is free with
exponents (d1, . . . ,dℓ−q, (d + 1)q).
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|A′| − |A′′1 | = 3− 2 = 1
|A′| − |A′′2 | = 3− 2 = 1
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Multiple Addition Theorem (MAT)

Remark. The multiple addition theorem (MAT) does not
generalize the addition theorem (AT).

The MAT is a theorem which is applicable to a relatively
narrow class of arrangements because the only
maximum exponents can increase.

So it is natural to ask the following

Question. Is there any significant application of MAT?
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Contents

...1 Free arrangements and the Addition
Theorem (AT)

...2 Multiple Addition Theorem (MAT)

...3 Shapiro-Steinberg-Kostant-Macdonald
Dual-partition Formula
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What are Dual Partitions?

36= 1+ 4+ 5+ 7+ 8+ 11

↕ Dual Partitions

36= 1+ 1+ 1+ 2+ 3+ 3+ 4+ 5+ 5+ 5+ 6
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What are these numbers?
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What are these numbers?

(1,4,5,7,8,11) is the exponents of the root
system of the type E6

↕ Dual Partitions

(1,1,1,2,3,3,4,5, 5, 5, 6) is the height
distribution of the positive roots of the type E6
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the dual-partition formula by Shapiro, Steinberg,
Kostant, Macdonald

.
Theorem..

......

(The dual-partition formula by Shapiro, Steinberg, Kostant (1959),
Macdonald (1972) )
The exponents of an irreducible root system and the height
distribution of positive roots are dual partitions to each other.

.
Remark..

......

(1) This theorem can be (was) regarded as a method to “reading
off” the exponents from the root structure.
(2) The other methods to find the exponents include: (a) from the
degrees of basic invariants, (b) from the eigenvalues of a Coxeter
transformation, etc.
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Height of positive roots

Φ : an irreducible root system of rank ℓ

∆ = {α1, . . . , αℓ} : a simple system of Φ

Φ+: the set of positive roots

ht(α) :=
∑ℓ

i=1 ci (height) for a positive root
α =
∑ℓ

i=1 ciαi (ci ∈ Z≥0)

The height distribution in Φ+ is a sequence
of positive integers (i1, i2, . . . , im), where
i j := |{α ∈ Φ+ | ht(α) = j}| (1 ≤ j ≤ m)
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Height of positive roots (E6)

E6: •
α1

•
α3

•
α4

•α2

•
α5

•
α6

Exponents: (1,4,5,7,8,11)

List of positive roots:
height 1 : α1, α2, α3, α4, α5, α6

height 2 : α1 + α3, α2 + α4, α3 + α4, α4 + α5, α5 + α6

height 3 : α1 + α3 + α4, α2 + α3 + α4, . . .
.
.
.
.

height 11: α̃ = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 (the highest root)
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height 3 : α1 + α3 + α4, α2 + α3 + α4, . . .
.
.
.
.

height 11: α̃ = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 (the highest root)
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Height of positive roots (E6)
he

ig
ht

s
ht=11 α̃

ht=10 •
ht=9 •
ht=8 • •
ht=7 • • •
ht=6 • • •
ht=5 • • • •
ht=4 • • • • •
ht=3 • • • • •
ht=2 α1 + α3 α2 + α4 α3 + α4 • •
ht=1 α1 α2 α3 α4 α5 α6

α̃ = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6, ht(α̃) = 11 (the highest root)
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Height Distribution ( E6 )

he
ig

ht
di

st
rib

ut
io

n
1 •
1 •
1 •
2 • •
3 • • •
3 • • •
4 • • • •
5 • • • • •
5 • • • • •
5 • • • • •
6 • • • • • •

7 5 4 3 1 exponents
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Exponents (E6)

he
ig

ht
di

st
rib

ut
io

n
•
•
•
• •
• • •
• • •
• • • •
• • • • •
• • • • •
• • • • •
• • • • • •

11 8 7 5 4 1 exponents
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The Dual-Partition Formula ( E6)

he
ig

ht
di

st
rib

ut
io

n
1 •
1 •
1 •
2 • •
3 • • •
3 • • •
4 • • • •
5 • • • • •
5 • • • • •
5 • • • • •
6 • • • • • •

11 8 7 5 4 1 exponents
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History of the Dual-Partition Formula

. . . . . . we shall presently describe, of “reading off” the exponents from the root structure of g was
discovered by Arnold Shapiro. . . . . . . However, even though one verifies that the numbers produced
by this procedure agree with the exponents . . . . . . the important question of proving that this
“agreement” is more than just a coincidence remained open.

(1959) A. Shapiro (empirical proof using the classification)

(1959) R. Steinberg (empirical proof using the classification)

(1959) B. Kostant (1st proof without using the classification)

(1972) I. G. Macdonald (2nd proof: generating functions)

(2016?) ABCHT ( for ideal subarr.: using free arrangements)
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Contents

...1 Free arrangements and the Addition
Theorem (AT)

...2 Multiple Addition Theorem (MAT)

...3 Shapiro-Steinberg-Kostant-Macdonald
Dual-partition Formula

...4 Ideal Subarrangement Theorem
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Subarrangements of a Weyl arrangement

Φ+ : the set of positive roots

For any subset I of Φ+, let

A(I ) := {ker(α) | α ∈ I }
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the root poset and ideals

.
Definition..

......

Introduce a partial order ≥ into the set Φ+ of positive roots by

β1 ≥ β2⇐⇒ β1 − β2 ∈
ℓ∑

i=1

Z≥0αi .

The poset is called the (positive) root poset.
A subset I of Φ+ is called an ideal if, for {β1, β2} ⊂ Φ+,

β1 ≥ β2, β1 ∈ I ⇒ β2 ∈ I .

.
Definition..

......

When I is an ideal of Φ+ the arrangement A(I ) := {kerα | α ∈ I } is
called an ideal subarrangement of A.
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Examples of ideals/non-ideals of the root poset ofA3

A3: •
α1

•
α2

•
α3

Φ+ = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}

α1 ≤ α1 + α2 ≤ α1 + α2 + α3,

α2 ≤ α1 + α2 ≤ α1 + α2 + α3,

α2 ≤ α2 + α3 ≤ α1 + α2 + α3,

α3 ≤ α2 + α3 ≤ α1 + α2 + α3

Thus {α1, α2, α3, α1 + α2, α2 + α3} is an ideal, while
{α1, α2, α3, α1 + α2 + α3} is not.

Note that the entire set Φ+ is always an ideal.
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Main Theorem

.
Theorem..

......

If

Φ : an irreducible root system of rank ℓ

I : an ideal of Φ+,

then
(1) A(I ) is free, and

(2) the exponents of A(I ) and the height distribution of
the positive roots in I are dual partitions to each other.

This positively settles a conjecture by Sommers-Tymoczko (2006).
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Main Corollary

In particular, when the ideal I is equal to the entire Φ+, our main
theorem yields:

.
Corollary
..

......

(The dual-partition formula by Shapiro, Steinberg, Kostant,
Macdonald )
The exponents of the entire Φ and the height distribution of the
entire positive roots are dual partitions to each other.
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Multiple Addition Theorem (MAT) (Revisited)

.
Theorem..

......

(ABCHT(2016?)) Let A′ be a free arrangement with exponents
(d1, . . . ,dℓ) (d1 ≤ · · · ≤ dℓ) and 1 ≤ p ≤ ℓ the multiplicity of the
maximum exponent d.
Let H1, . . . ,Hq be (new) hyperplanes.
Define A′′j := {H ∩ Hj | H ∈ A′} (j = 1, . . . ,q).
Assume
(1) X := H1 ∩ · · · ∩ Hq is q-codimensional,
(2) X ⊈

∪
H∈A′ H, and

(3) |A′| − |A′′j | = d (j = 1, . . . ,q) (Remark: ≤ always holds true) .
Then (a) q ≤ p and (b) A := A′∪{H1, . . . ,Hq} is free with
exponents (d1, . . . ,dℓ−q, (d + 1)q).
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(d1, . . . ,dℓ) (d1 ≤ · · · ≤ dℓ) and 1 ≤ p ≤ ℓ the multiplicity of the
maximum exponent d.
Let H1, . . . ,Hq be (new) hyperplanes.
Define A′′j := {H ∩ Hj | H ∈ A′} (j = 1, . . . ,q).
Assume
(1) X := H1 ∩ · · · ∩ Hq is q-codimensional,
(2) X ⊈

∪
H∈A′ H, and

(3) |A′| − |A′′j | = d (j = 1, . . . ,q) (Remark: ≤ always holds true) .
Then (a) q ≤ p and (b) A := A′∪{H1, . . . ,Hq} is free with
exponents (d1, . . . ,dℓ−q, (d + 1)q).
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Inductive use of MAT (E6) : I = Φ+0

he
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n

0
0
0
0
0
0
0
0
0
0
0

0 0 0 0 0 0 exponents
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Inductive use of MAT (E6) : I = Φ+1

he
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di
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0
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0
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0
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6 • • • • • •

1 1 1 1 1 1 exponents
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Inductive use of MAT (E6) : I = Φ+2

he
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5 • • • • •
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2 2 2 2 2 1 exponents
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Inductive use of MAT (E6) : I = Φ+3
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Inductive use of MAT (E6) : I = Φ+4

he
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4 4 4 4 4 1 exponents
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Inductive use of MAT (E6) : I = Φ+5
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4 • • • •
5 • • • • •
5 • • • • •
5 • • • • •
6 • • • • • •

5 5 5 5 4 1 exponents
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Inductive use of MAT (E6) : I = Φ+6
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3 • • •
4 • • • •
5 • • • • •
5 • • • • •
5 • • • • •
6 • • • • • •

6 6 6 5 4 1 exponents
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Inductive use of MAT (E6) : I = Φ+7

he
ig

ht
di

st
rib

ut
io

n
0
0
0
0
3 • • •
3 • • •
4 • • • •
5 • • • • •
5 • • • • •
5 • • • • •
6 • • • • • •
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Inductive use of MAT (E6) : I = Φ+8
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2 • •
3 • • •
3 • • •
4 • • • •
5 • • • • •
5 • • • • •
5 • • • • •
6 • • • • • •

8 8 7 5 4 1 exponents
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Inductive use of MAT (E6) : I = Φ+9
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1 •
2 • •
3 • • •
3 • • •
4 • • • •
5 • • • • •
5 • • • • •
5 • • • • •
6 • • • • • •

9 8 7 5 4 1 exponents
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Inductive use of MAT (E6) : I = Φ+10
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1 •
1 •
2 • •
3 • • •
3 • • •
4 • • • •
5 • • • • •
5 • • • • •
5 • • • • •
6 • • • • • •

10 8 7 5 4 1 exponents
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The Dual-Partition Formula ( E6) (again)
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1 •
1 •
1 •
2 • •
3 • • •
3 • • •
4 • • • •
5 • • • • •
5 • • • • •
5 • • • • •
6 • • • • • •

11 8 7 5 4 1 exponents
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Summary

...1 We have a theorem (Multiple Addition Theorem
(MAT)) in the theory of free arrangements.

...2 Although the MAT is similar to the old addition
theorem (AT) (1980), it does not generalize the AT .

...3 As an application of the MAT, we may give a new
classification-free proof of the celebrated
dual-partition formula for a root system by
Shapiro-Steinberg-Kostant-Macdonald.

...4 Moreover, we have the dual-partion formula for any
ideal subarrangements.
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I stop here.

Thanks for your attention!
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