Akira Sakai

Associate professor

Department of Mathematics

Hokkaido University

Nishi 8-chome, Kita 10-jo

Kita-ku, Sapporo

Hokkaido 060-0810

JAPAN

Email: sakai at math.sci.hokudai.ac.jp

 

Contents

I. Fields of interest

II. Research papers

III. Scientific meetings

IV. Workshops

V. Teaching

VI. Curriculum vitae

 

Updated: September 19, 2018.

 

 

                        I.       Fields of interest 日本語版はこちら

 

My major research field is mathematical physics (probability and statistical mechanics). The topics I have been most fascinated with are phase transitions and critical phenomena, as well as associated scaling limits. For example, the Ising model, a statistical-mechanical model of ferromagnetism, is known to take on positive spontaneous magnetization as soon as the temperature of the system is turned down below the critical point. Various other observables also exhibit singular behavior around the critical point, due to cooperation of infinitely many interacting variables. To fully understand such phenomena, it would require development of a theory beyond the standard probability theory. This is a challenging and intriguing problem, towards which I would love to make even a tiny contribution.

 

The mathematical models I have been studying are

·     the Ising model,

·     the φ4 model (in lattice scalar-field theory),

·     self-avoiding walk (a model for linear polymers),

·     percolation (for random media),

·     the contact process (for the spread of an infectious disease),

·     random walk with reinforcement.

 

 

                    II.        Research papers

 

1.     L.-C. Chen and A. Sakai.  Critical two-point functions for long-range models with power-law couplings: The marginal case for d ³ dc.  Submitted.  arXiv:1808.06789.

 

2.     S. Handa, Y. Kamijima and A. Sakai.  A survey on the lace expansion for the nearest-neighbor models on the BCC lattice.  Submitted.  arXiv:1712.05573.

 

3.     S. Handa, M. Heydenreich and A. Sakai.  Mean-field bound on the 1-arm exponent for Ising ferromagnets in high dimensions.  Accepted for publication in a festschrift for Chuck Newman’s 70th birthday.  arXiv:1612.08809.

 

4.    Akira Sakai.  Hyperscaling for oriented percolation in 1+1 space-time dimensions.  J. Stat. Phys. 171 (2018): 462–469.  arXiv:1709.08291.

 

5.     T. Arae, S. Isai, A. Sakai, K. Mineta, M. Yokota-Hirai, Y. Suzuki, S. Kanaya, J. Yamaguchi, S. Naito and Y. Chiba.  Coordinated regulations of mRNA synthesis and decay during cold acclimation in arabidopsis cells.  Plant Cell Physiol. 58 (2017): 1090–1102.

 

6.     Y. Chino and A. Sakai.  The quenched critical point for self-avoiding walk on random conductors.  J. Stat. Phys. 163 (2016): 754–764.  arXiv:1508.01262.

 

7.     Akira Sakai.  Application of the lace expansion to the φ4 model.  Commun. Math. Phys. 336 (2015): 619–648.  arXiv:1403.5714.

 

8.     L.-C. Chen and A. Sakai.  Critical two-point functions for long-range statistical-mechanical models in high dimensions.  Ann. Probab. 43 (2015): 639–681.  arXiv:1204.1180.

 

9.     L.-C. Chen and A. Sakai.  Asymptotic behavior of the gyration radius for long-range self-avoiding walk and long-range oriented percolation.  Ann. Probab. 39 (2011): 507–548.  arXiv:1002.0875.

 

10.      Akira Sakai.  Large-time asymptotics of the gyration radius for long-range statistical-mechanical models.  RIMS Kokyuroku Bessatsu B21 (2011): 53–62.  arXiv:0912.5117.

 

11.      R. van der Hofstad and A. Sakai.  Convergence of the critical finite-range contact process to super-Brownian motion above the upper critical dimension: The higher-point functions.  Electron. J. Probab. 15 (2010): 801–894.  arXiv:0809.1712.

 

12.      L.-C. Chen and A. Sakai.  Critical behavior and the limit distribution for long-range oriented percolation. II: Spatial correlation.  Probab. Theory Related Fields 145 (2009): 435–458.  arXiv:0804.2039.

 

13.     Akira Sakai.  Applications of the lace expansion to statistical-mechanical models.  A chapter in Analysis and Stochastics of Growth Processes and Interface Models (P. Mörters et al. eds., Oxford University Press, 2008).

 

14.     M. Heydenreich, R. van der Hofstad and A. Sakai.  Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk.  J. Stat. Phys. 132 (2008): 1001–1049.  arXiv:0712.0312.

 

15.     L.-C. Chen and A. Sakai.  Critical behavior and the limit distribution for long-range oriented percolation. I.   Probab. Theory Related Fields 142 (2008): 151–188.  arXiv:0703455.

 

16.     Akira Sakai.  Diagrammatic bounds on the lace-expansion coefficients for oriented percolation.  arXiv:0708.2897.

 

17.     M. Holmes and A. Sakai.  Senile reinforced random walks.  Stoch. Proc. Appl. 117 (2007): 1519–1539.

 

18.     Akira Sakai.  Lace expansion for the Ising model.  Commun. Math. Phys. 272 (2007): 283–344.  arXiv:math-ph/0510093.

 

19.     R. van der Hofstad and A. Sakai.  Critical points for spread-out self-avoiding walk, percolation and the contact process above the upper critical dimensions.  Probab. Theory Related Fields 132 (2005): 438–470.  arXiv:math/0402050.

 

20.     Akira Sakai.  Mean-field behavior for the survival probability and the percolation point-to-surface connectivity.  J. Stat. Phys. 117 (2004): 111–130.

 

21.     R. van der Hofstad and A. Sakai.  Gaussian scaling for the critical spread-out contact process above the upper critical dimension.  Electron. J. Probab. 9 (2004): 710–769.  arXiv:math/0402049.

 

22.     M. Holmes, A.A. Járai, A. Sakai and G. Slade.  High-dimensional graphical networks of self-avoiding walks.  Canad. J. Math. 56 (2004): 77–114.

 

23.     Akira Sakai.  Hyperscaling inequalities for the contact process and oriented percolation.  J. Stat. Phys. 106 (2002): 201–211.

 

24.     Akira Sakai.  Mean-field critical behavior for the contact process.  J. Stat. Phys. 104 (2001): 111–143.

 

 

                 III.       Scientific meetings

 

Year 2019

 

1.      TBA.

·    AIMaP 1-day Workshop (March 26). RIES, Hokkaido University, Japan.

 

Year 2018

 

1.      Critical two-point function for long-range models with power-law couplings: The marginal case for d ³ dc.

·    17th Stochastic Analysis on Large-scale Interacting Systems (November 5–8). RIMS, Kyoto University, Japan.

·    High-dimensional Critical Phenomena in Random Environments (September 24–26). The University of Bristol, UK.

·    2018 Spring Probability Workshop (June 4–8). Academia Sinica, Taiwan.

 

2.      Hyperscaling for oriented percolation in 1+1 space-time dimensions.

·    Rikkyo Math Phys Seminar (May 23). Rikkyo University, Japan

·    NUS Probability Seminar (February 12). National University of Singapore, Singapore.

 

Year 2017

 

1.      Hyperscaling for oriented percolation in 1+1 space-time dimensions.

·    NTU Math Colloquium (November 27). National Taiwan University, Taiwan.

 

2.      強磁性イジング模型の相転移・臨界現象に関する研究の最近の動向Recent progress in researches on phase transitions and critical behavior for Ising ferromagnets).

·    MSJ Fall Meeting (September 11–14). Yamagata University, Japan.

 

3.      Critical behavior for oriented percolation: From a mathematically rigorous standpoint.

·    Summer School in Mathematical Physics (August 25–27). The University of Tokyo, Japan.

 

4.      The lace expansion for self-avoiding walk and percolation on the BCC lattice.

·    Seminar on Probability (July 18). Osaka University, Japan.

 

5.      Mean-field bound on the 1-arm exponent for high-dimensional Ising ferromagnets.

·    Physical and Mathematical Approaches to Interacting Particle Systems – In Honer of 70th Birthday of Herbert Spohn (January 11–12). Tokyo Institute of Technology, Japan.

 

Previous years

 

 

                  IV.       Workshops

 

1.     The 1-day workshop “Recent Progress in Probability Theory and Its Applications” (July 28, 2017). Hokkaido University, Japan.

 

2.     2017 Spring Probability Workshop (March 6–8, 2017). Academia Sinica, Taiwan.

 

3.     The 2nd workshop on Universality and Scaling Limits in Probability and Statistical Mechanics (August 59, 2013). Hokkaido University, Japan.

 

4.     International Workshop on Potential Theory (February 4, 2013). Hokkaido University, Japan.

 

5.     The RIMS workshop “Applications of Renormalization Group Methods in Mathematical Sciences” (September 1214, 2011). Kyoto University, Japan.

 

6.     The SPA Satellite workshop “Universality and Scaling Limits in Probability and Statistical Mechanics” (August 30September 3, 2010). Hokkaido University, Japan.

 

 

                     V.        Teaching (April 2018 – February 2019)

 

2nd Semester

Monday

Tuesday

Wednesday

Thursday

Friday

  8:45 – 10:15

N.A.

N.A.

N.A.

N.A.

N.A.

10:30 – 12:00

D3&D2&B4

B4(Kamakura)

B4(Kawamoto)

M1(Mizushiri)

M1(Nishimura)

12:00 – 13:00

Lunch

Lunch

Lunch

Lunch

Lunch

13:00 – 14:30

N.A.

N.A.

D3

N.A.

N.A.

14:45 – 16:15

N.A.

N.A.

D3&D2

N.A.

N.A.

16:30 – 18:00

N.A.

HITACHI

O.H.

N.A.

N.A.

                                        (Lectures-Preparation-Marking; Office Hour; Seminars; Not Available )

 

1.     Seminar on Mathematics (2nd semester @ Science Bldg 4-509).

·    B4 Seminar (Kamakura) on Random Walks in Random Environment.

·    B4 Seminar (Kawamoto) on Classical and Spatial Stochastic Processes.

·    M1 Seminar (Mizushiri) on Random Graphs and Complex Networks.

·    M1 Seminar (Nishimura) on Introduction to Stochastic Integration.

·    D3 Seminar (Handa) on The 1-arm Exponent for the Classical Ising Model.

·    D3&D2 Seminar (Handa, Kamijima) on Critical Behavior for the Quantum Ising Model.

·    D3&D2&B4 Seminar (Handa, Kamijima, Kamakura) on The Probabilistic Cellular Automata.

·    HITACHI Seminar (Fujisawa, Handa, Aoki, Kamijima, Ueda, Toyokawa, Kamakura) @ FMI.

 

2.     Linear Algebra I (1st semester, Mondays 10:3012:00 @ Multimedia Education Bldg E-301).

 

3.     Basic Mathematical Science (1st semester, Fridays 10:3012:00 @ Science Bldg 5-301).

 

4.     Calculus I (1st semester, Fridays 14:4516:15 @ Multimedia Education Bldg E-311).

 

5.     Overview of Mathematical SciencesPhase Transition and Critical Behavior for Oriented Percolation (有向パーコレーションの相転移・臨界現象) (Summer term, Wednesdays 16:3018:00 @ Science Bldg 5-201).

 

6.     Seminar on Mathematics (1st semester @ Science Bldg 4-509).

·    B4 Seminar (Kamakura) on Random Walks in Random Environment.

·    B4 Seminar (Kawamoto) on Classical and Spatial Stochastic Processes.

·    M1 Seminar (Mizushiri) on Random Graphs and Complex Networks.

·    M1 Seminar (Nishimura) on Introduction to Stochastic Integration.

·    D2 Seminar (Kamijima) on Random Loop Representations for Quantum Spin Systems.

·    D3 Seminar (Handa) on The Lace Expansion for the Quantum Ising Model.

 

 

                  VI.       Curriculum vitae

 

·    September 2015 – August 2019

Councilor of the Bernoulli Society.

·    March 2016

Selected as one of Excellent Teachers 2015.

·    March 2014

The Hokkaido University President’s Award for Teaching Excellence 2013.

·    March 2013

The Hokkaido University President’s Award for Teaching Excellence 2012.

·    March 2012

Selected as one of Excellent Teachers 2011.

·    April 2011 – present

Associate professor of the Department of Mathematics, Hokkaido University, Japan.

·    March 2008 – March 2011

Tenure-track assistant professor of Creative Research Institution SOUSEI, Hokkaido University, Japan.

·    April 2006 – February 2008

Lecturer in Probability of the Department of Mathematical Sciences, the University of Bath, UK.

·    April 2004 – March 2006

Postdoctoral researcher of Wiskunde en Informatica, Technische Universiteit Eindhoven (TU/e), the Netherlands.

·    January 2003 – March 2004

Postdoctoral researcher of the Interacting-Stochastic-Systems (ISS) group, EURANDOM, the Netherlands.

·    January 2001 – December 2002

Postdoctoral researcher of the Department of Mathematics, the University of British Columbia, Canada.

·    April 1996 – December 2000

Ph.D. study in Applied Physics, Tokyo Institute of Technology, Japan.

Awarded Ph.D. for the thesis “Analyses of the Critical Behavior for the Contact Process based on a Percolation Structure” supervised by Professor Takashi Hara.

·    April 1994 – March 1996

Master study in Applied Physics, Tokyo Institute of Technology, Japan.

Awarded M.Sc. for the thesis “Approach to Fractal Growth Phenomena” supervised by Professor Takashi Hara.

·    April 1990 – March 1994

Undergraduate study in Applied Physics, Tokyo Institute of Technology, Japan.

Awarded B.Sc. for the thesis “Recurrent in the Plane, Transient in Space” supervised by Professor Kohei Uchiyama.