Akira
Sakai
(ResearchGate, researchmap, Visionary
Scientists)
Professor in Mathematics
Contents
IV. Organizing scientific meetings
Updated: April 13, 2021.
I.
Research interesti“ú–{Œê”ł͂±‚¿‚çj
To rigorously prove various important statistical-physics
phenomena. They include phase
transitions and critical behavior, associated limit
theorems, and convergence to equilibrium measures and its application to
combinatorial optimization. The
mathematical models I have been interested in are
· the Ising model (for magnets) and the stochastic cellular automata,
· the ƒÓ4 model (in lattice scalar-field theory),
· self-avoiding walk (for linear polymers),
· lattice trees (for branched polymers),
· percolation (for random media),
· oriented percolation and the contact process (for the spread of an infectious disease),
· random walk with reinforcement.
1.
B.H. Fukushima-Kimura, A. Sakai, H. Toyokawa and Y.
Ueda. Stability of energy landscape.
Available soon.
2.
B.H. Fukushima-Kimura, S. Handa,
K. Kamakura, Y. Kamijima and A. Sakai. Mixing time and simulated annealing for
the stochastic cellular automata. Submitted.
arXiv:2007.11287.
3.
Akira Sakai.
Correct bounds on the Ising lace-expansion coefficients. Submitted. arXiv:2003.09856.
4.
Akira Sakai.
ƒp[ƒRƒŒ[ƒVƒ‡ƒ“‚Ì”—2020iPercolation 2020j. To appear in ”ŠwiSugakuj.
5.
K. Yamamoto, K. Kawamura, K. Ando, N. Mertig, T. Takemoto, M. Yamaoka, H. Teramoto,
A. Sakai, S. Takamaeda-Yamazaki and M. Motomura. STATICA:
a 512-spin 0.25M-weight annealing processor with an all-spin-updates-at-once architecture
for combinatorial optimization with complete spin-spin interactions. IEEE Journal of Solid-State
Circuits 56
(2021): 165–178.
6.
K. Yamamoto, K. Ando, N. Mertig,
T. Takemoto, M. Yamaoka, H. Teramoto, A. Sakai, S. Takamaeda-Yamazaki and M. Motomura. 7.3 STATICA: a 512-spin 0.25M-weight
full-digital annealing processor with a near-memory all-spin-updates-at-once
architecture for combinatorial optimization with complete spin-spin
interactions. 2020 IEEE International
Solid-State Circuits Conference.
7.
Akira Sakai.
Crossover phenomena in the critical behavior
for long-range models with power-law couplings. RIMS Kokyuroku
Bessatsu B79 (2020):
51–62. arXiv:1812.10275.
8.
S. Handa, Y. Kamijima and A. Sakai.
A survey on the lace expansion for the nearest-neighbor
models on the BCC lattice. Taiwanese J. Math. 24 (2020):
723–784. arXiv:1712.05573.
9.
S. Handa, K. Kamakura, Y.
Kamijima and A. Sakai. Finding optimal solutions by stochastic
cellular automata. arXiv:1906.06645.
10.
L.-C. Chen and A. Sakai. Critical two-point function for long-range
models with power-law couplings: The marginal case for d ³ dc. Commun.
Math. Phys. 372 (2019): 543–572 (the
full-text view-only version). arXiv:1808.06789.
11.
S. Handa, M. Heydenreich and A. Sakai. Mean-field bound on the 1-arm exponent
for Ising ferromagnets in high dimensions. A chapter in Sojourns in Probability and
Statistical Physics - I (V. Sidoravicius ed.,
Springer, 2019). arXiv:1612.08809.
12.
A. Sakai and G. Slade. Spatial moments for high-dimensional critical
contact process, oriented percolation and lattice trees. Electron. J. Probab. 24 (2019): no. 65, 1–18. arXiv:1810.04011.
13.
Akira Sakai.
Hyperscaling for oriented percolation in 1+1
space-time dimensions. J. Stat. Phys. 171 (2018): 462–469
(the full-text view-only version). arXiv:1709.08291.
14.
T. Arae, S. Isai, A. Sakai,
K. Mineta, M. Yokota-Hirai, Y. Suzuki, S. Kanaya, J.
Yamaguchi, S. Naito and Y. Chiba. Coordinated regulations of
mRNA synthesis and decay during cold acclimation in arabidopsis
cells. Plant
Cell Physiol. 58 (2017): 1090–1102.
15.
Y. Chino and A. Sakai. The quenched critical point for self-avoiding
walk on random conductors. J. Stat.
Phys. 163 (2016): 754–764. arXiv:1508.01262.
16.
Akira Sakai.
Application of the lace expansion to the ƒÓ4 model. Commun. Math.
Phys. 336 (2015): 619–648. arXiv:1403.5714.
17.
L.-C. Chen and A. Sakai. Critical two-point functions for long-range
statistical-mechanical models in high dimensions. Ann. Probab. 43 (2015): 639–681.
arXiv:1204.1180.
18.
L.-C. Chen and A. Sakai. Asymptotic behavior
of the gyration radius for long-range self-avoiding walk and long-range oriented
percolation. Ann. Probab. 39
(2011): 507–548. arXiv:1002.0875.
19.
Akira Sakai.
Large-time asymptotics of the gyration radius
for long-range statistical-mechanical models. RIMS
Kokyuroku Bessatsu B21 (2011): 53–62. arXiv:0912.5117.
20.
R. van der Hofstad and A. Sakai. Convergence
of the critical finite-range contact process to super-Brownian motion above the
upper critical dimension: The higher-point functions. Electron. J. Probab. 15 (2010): no. 27, 801–894. arXiv:0809.1712.
21.
L.-C. Chen and A. Sakai. Critical behavior
and the limit distribution for long-range oriented percolation. II: Spatial
correlation. Probab.
Theory Relat. Fields 145 (2009): 435–458. arXiv:0804.2039.
22.
Akira Sakai.
Applications of the lace expansion to statistical-mechanical models. A chapter in Analysis and
Stochastics of Growth Processes and Interface Models (P. Mörters et al. eds., Oxford University Press, 2008).
23.
M. Heydenreich, R. van
der Hofstad and A. Sakai. Mean-field behavior
for long- and finite range Ising model, percolation and self-avoiding walk. J. Stat. Phys. 132 (2008): 1001–1049. arXiv:0712.0312.
24.
L.-C. Chen and A. Sakai. Critical behavior
and the limit distribution for long-range oriented percolation. I. Probab. Theory
Relat. Fields 142 (2008): 151–188. arXiv:0703455.
25.
Akira Sakai.
Diagrammatic bounds on the lace-expansion coefficients for oriented
percolation. arXiv:0708.2897.
26.
M. Holmes and A. Sakai. Senile reinforced random walks. Stoch.
Proc. Appl. 117 (2007): 1519–1539.
27.
Akira Sakai. Lace expansion for the Ising model.
Commun.
Math. Phys. 272
(2007): 283–344. arXiv:math-ph/0510093.
28.
R. van der Hofstad and A. Sakai. Critical
points for spread-out self-avoiding walk, percolation and the contact process
above the upper critical dimensions.
Probab.
Theory Relat. Fields 132 (2005): 438–470. arXiv:math/0402050.
29.
Akira Sakai. Mean-field behavior
for the survival probability and the percolation point-to-surface connectivity.
J.
Stat. Phys. 117 (2004): 111–130.
30.
R.
van der Hofstad and A. Sakai. Gaussian scaling for the critical spread-out
contact process above the upper critical dimension. Electron. J. Probab. 9 (2004): no. 24, 710–769. arXiv:math/0402049.
31.
M.
Holmes, A.A. Járai, A. Sakai and G. Slade. High-dimensional graphical networks of
self-avoiding walks. Canad.
J. Math. 56 (2004): 77–114.
32.
Akira Sakai. Hyperscaling
inequalities for the contact process and oriented percolation. J. Stat. Phys.
106 (2002): 201–211.
33.
Akira Sakai. Mean-field critical behavior
for the contact process. J. Stat. Phys.
104 (2001): 111–143.
Year 2022
1. TBA.
·
100 Years of the Ising
Model (May 30– June 3). Institut des Hautes
Études Scientifiques, France.
Year 2020
1. Mixing time and simulated annealing for the
stochastic cellular automata (SCA).
·
International Workshop on
Microstructure-based Global Analysis and Its Related Topics (November 7). Hokkaido
University, Japan.
Year 2019
1. Finding optimal solutions by stochastic
cellular automata.
·
7th
Wellington Workshop in Probability and Mathematical Statistics (December 5–7).
Victoria University of Wellington, New Zealand.
·
Workshop
on Probabilistic Methods in Statistical Mechanics of Random Media and Random
Fields (May 27–31). Universiteit Leiden, the Netherlands.
·
AIMaP 1-day Workshop
(March 26). RIES, Hokkaido University, Japan.
2.
Critical
two-point function for long-range models with power-law couplings: The marginal
case for d ³ dc.
·
The 12th
MSJ-SI gStochastic Analysis, Random Fields and Integrable Probabilityh (July
31–August 9). Kyushu University, Japan.
·
Seminar in Statistics
(January 16). The University of Auckland, New Zealand.
Year 2018
1.
Critical
two-point function for long-range models with power-law couplings: The marginal
case for d ³ dc.
·
17th
International Symposium gStochastic Analysis on Large-scale Interacting Systemsh
(November 5–8). RIMS, Kyoto
University, Japan.
·
High-dimensional Critical Phenomena in Random
Environments (September 24–26). The University of Bristol, UK.
·
2018
Spring Probability Workshop (June 4–8). Academia Sinica,
Taiwan.
2.
Hyperscaling for oriented percolation in 1+1 space-time dimensions.
·
Rikkyo Math Phys
Seminar (May 23). Rikkyo University, Japan
·
NUS Probability Seminar (February 12). National University of Singapore, Singapore.
Year 2017
1.
Hyperscaling for oriented percolation in 1+1 space-time dimensions.
·
NTU Math Colloquium (November 27).
National Taiwan University, Taiwan.
·
MSJ
Fall Meeting (September 11–14). Yamagata University, Japan.
3.
Critical
behavior for oriented percolation: From a mathematically
rigorous standpoint.
·
Summer School in Mathematical
Physics (August 25–27). The
University of Tokyo, Japan.
4.
The
lace expansion for self-avoiding walk and percolation on the BCC lattice.
·
Seminar on
Probability (July 18). Osaka
University, Japan.
5.
Mean-field
bound on the 1-arm exponent for high-dimensional Ising
ferromagnets.
·
Physical and
Mathematical Approaches to Interacting Particle Systems – In Honer of 70th Birthday of Herbert Spohn (January
11–12). Tokyo Institute of Technology, Japan.
IV.
Organizing scientific meetings
Year 2022
1.
The
3rd workshop on Universality and Scaling Limits in Probability and
Statistical Mechanics. Hokkaido University, Japan.
Year 2021
1.
PRIMA 2021: Pacific Rim Mathematical
Association Congress 2021 (December 5–10,
2021). University of British Columbia, Canada.
2.
The
RIMS Workshop gRigorous Statistical Mechanics and Related Topics IIIh (November
16–19, 2021). RIMS, Kyoto
University, Japan.
3.
The 10th World Congress in Probability and
Statistics (July 19–23, 2021).
Seoul National University, South Korea.
Year 2020 and before
1.
The
RIMS Workshop gRigorous
Statistical Mechanics and Related Topics IIh (November 24–27, 2020). Zoom.
2.
The
RIMS Workshop gRigorous
Statistical Mechanics and Related Topicsh (November 18–21, 2019). RIMS, Kyoto University, Japan.
3.
The
1-day workshop gRecent
Progress in Probability Theory and Its Applicationsh (July 28, 2017).
Hokkaido University, Japan.
4.
2017
Spring Probability Workshop (March 6–8, 2017). Academia Sinica, Taiwan.
5.
The 2nd
workshop on Universality and Scaling Limits in Probability and Statistical Mechanics
(August 5–9, 2013). Hokkaido
University, Japan.
6.
International
Workshop on Potential Theory (February 4, 2013). Hokkaido University, Japan.
7.
The
RIMS workshop gApplications
of Renormalization Group Methods in Mathematical Sciencesh (September 12–14, 2011). Kyoto University, Japan.
8.
The
SPA Satellite workshop gUniversality and
Scaling Limits in Probability and Statistical Mechanicsh (August 30–September 3, 2010). Hokkaido University,
Japan.
V.
Teaching (April 2021 – February 2022)
1st semester |
Monday |
Tuesday |
Wednesday |
Thursday |
Friday |
8:45 – 10:15 |
N.A. |
‰ÈE‹Z‚Ì¢ŠE |
N.A. |
N.A. |
Šm—¦E“Œv“ü–å |
10:30 – 12:00 |
N.A. |
N.A. |
”—‰ÈŠwŠî‘b |
N.A. |
N.A. |
12:00 – 13:00 |
Lunch |
Lunch |
Lunch |
Lunch |
Lunch |
13:00 – 14:15 |
N.A. |
—À |
㓇 |
N.A. |
Žç‰® |
14:25 – 15:40 |
N.A. |
–ì“c |
㓇 |
N.A. |
’O‹e |
15:50 – 17:05 |
SCA (16:30 – 18:00) |
¼À |
N.A. |
F.M. |
“c’† |
17:15 – 18:30 |
Group (18:15 – 19:45) |
‰Í–{ |
O.H. |
F.M. |
N.A. |
(Lectures; Seminars; Faculty Meetings; Office
Hour; Not
Available )
1. Seminars @ Science
Bldg 3-413.
·
B4 Seminar (–ì“c) on Mathematics
in Phase Transitions and Critical Phenomena.
·
M1 Seminar (¼À) on Sandpile
Models.
·
M1 Seminar (’O‹e) on Stochastic
Differential Equations.
·
M2 Seminar (—À) on ???.
·
M2 Seminar (Žç‰®) on The
Continuous-time Lace Expansion.
·
M2 Seminar (“c’†) on Stochastic
Calculus for Finance II.
·
D1 Seminar (‰Í–{) on Introduction
to a Renormalization Group Method.
·
PD Seminar (㓇 @ Science Bldg 3-513) on the quantum Ising model.
·
CREST SCA Seminar (Fukushima-Kimura, 㓇,
‰Í–{ @ Science Bldg
3-513).
·
CREST Group Seminar (Fukushima-Kimura, –Ø,
΋´, ‰Í–{, âV“¡).
2. ‰ÈŠwE‹Zp‚Ì¢ŠEF”Šw‚Ì‚½‚Ì‚µ‚ÝiThe World of Science and Technologyj (Tuesdays 8:45–10:15 @ Multimedia Education Bldg
???).
3. Šm—¦E“Œv“ü–åiIntroduction to Probability and
Statisticsj (Fridays
8:45–10:15 @ Science Bldg 5-203).
4. ”—‰ÈŠwŠî‘biBasic Mathematical Sciencej (Wednesdays 10:30–12:00 @ Science Bldg 3-309).
· August
2020 – present
Associate editor of Taiwanese
Journal of Mathematics.
· March
2020 – present
Associate editor of Mathematical Physics, Analysis
and Geometry.
· February
2020 – present
Professor in Mathematics, Faculty of Science, Hokkaido
University, Japan.
· September
2015 – August 2019
Councilor of the Bernoulli Society.
· Excellent
Teachers 2018,
2015,
2012,
2011
The Hokkaido University Presidentfs Award for Teaching Excellence in 2013 and in 2012.
· April
2011 – January 2020
Associate professor in Mathematics, Faculty of Science, Hokkaido
University, Japan.
· March
2008 – March 2011
Tenure-track assistant professor of Creative Research Institution SOUSEI,
Hokkaido University, Japan.
· April
2006 – February 2008
Lecturer in Probability of the Department of Mathematical Sciences,
the University of Bath, UK.
· April
2004 – March 2006
Postdoctoral researcher of Wiskunde en Informatica, Technische Universiteit Eindhoven (TU/e), the Netherlands.
· January
2003 – March 2004
Postdoctoral researcher of the Interacting Stochastic Systems
(ISS) group, EURANDOM, the Netherlands.
· January
2001 – December 2002
Postdoctoral researcher of the Department of Mathematics, the University
of British Columbia, Canada.
· April
1996 – December 2000
Ph.D. study in Applied Physics, Tokyo Institute of
Technology, Japan.
Awarded Ph.D. for the thesis gAnalyses of the
Critical Behavior for the Contact Process based on a
Percolation Structureh supervised by Takashi Hara.
· April
1994 – March 1996
Master study in Applied Physics, Tokyo Institute of Technology,
Japan.
Awarded M.Sc. for the thesis gApproach to Fractal
Growth Phenomenah supervised by Takashi Hara.
· April
1990 – March 1994
Undergraduate study in Applied Physics, Tokyo Institute
of Technology, Japan.
Awarded B.Sc. for the thesis gRecurrent in the
Plane, Transient in Spaceh supervised by Kohei Uchiyama.