ARITHMETIC-GEOMETRIC MEANS FOR HYPERELLIPTIC CURVES AND CALABI-YAU VARIETIES

KEIJI MATSUMOTO AND TOMOHIDE TERASOMA

Abstract. In this paper, we define a generalized arithmetic-geometric mean \(\mu_g \) among \(2^g \) terms motivated by \(2\tau \)-formulas of theta constants. By using Thomae’s formula, we give two expressions of \(\mu_g \) when initial terms satisfy some conditions. One is given in terms of period integrals of a hyperelliptic curve \(C \) of genus \(g \). The other is by a period integral of a certain Calabi-Yau \(g \)-fold given as a double cover of the \(g \)-dimensional projective space \(\mathbb{P}^g \).

1. Introduction

Let \(\{a_{n,0}\}_n \) and \(\{a_{n,1}\}_n \) be positive real sequences defined by the recurrence relations

\[
(1.1) \quad a_{n+1,0} = \frac{a_{n,0} + a_{n,1}}{2}, \quad a_{n+1,1} = \sqrt{a_{n,0} a_{n,1}},
\]

and initial terms \(a_{0,0} = a_0, a_{0,1} = a_1 \) with \(0 < a_1 < a_0 \). One can easily show that \(\{a_{n,0}\}_n \) and \(\{a_{n,1}\}_n \) have a common limit, which is called the arithmetic-geometric mean of \(a_0 \) and \(a_1 \), and is denoted by \(\mu_1(a_0, a_1) \). By the homogeneity of the arithmetic and geometric means, we have \(\mu_1(ca_0, ca_1) = c\mu_1(a_0, a_1) \) for any positive real number \(c \).

On the other hand, two Jacobi’s theta constants \(\theta_0 \) and \(\theta_1 \) satisfy the following \(2\tau \)-formulas:

\[
(1.2) \quad \theta_0(2\tau)^2 = \frac{\theta_0(\tau)^2 + \theta_1(\tau)^2}{2}, \quad \theta_1(2\tau)^2 = \theta_0(\tau)\theta_1(\tau),
\]

where

\[
\theta_i(\tau) = \sum_{n \in \mathbb{Z}} \exp(\pi \sqrt{-1}(n^2\tau + in)), \quad i = 0, 1,
\]

and \(\tau \) belongs to the upper half space \(\mathbb{H} \). If we find an element \(\tau \in \mathbb{H} \) such that \(\theta_1(\tau)^2/\theta_0(\tau)^2 = a_1/a_0 \) for given initial terms \(a_0 \) and \(a_1 \), then we have

\[
\frac{a_0}{\mu_1(a_0, a_1)} = \frac{\theta_0(\tau)^2}{\mu_1(\theta_0(\tau)^2, \theta_1(\tau)^2)} = \frac{\theta_0(\tau)^2}{\mu_1(\theta_0(2^n\tau)^2, \theta_1(2^n\tau)^2)} = \theta_0(\tau)^2
\]

2000 Mathematics Subject Classification. Primary 14K20; Secondary 32G20.
by (1.1), (1.2) and \(\lim_{n \to \infty} \theta_i(2^n \tau) = 1 \). Moreover, the Jacobi’s formula between
\(\theta_0(\tau)^2 \) and an elliptic integral implies that
\[
\frac{a_0}{\mu_1(a_0, a_1)} = \frac{2}{\pi} \int_0^1 \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}}, \quad k = \sqrt{a_0^2 - a_1^2}.
\]

In this paper, we define a generalized arithmetic-geometric mean \(\mu_g \) among
2\(g \) terms (\(\ldots, a_I, \ldots \)) (\(I \in \mathbb{F}_2^g \)) motivated by the 2\(\tau \)-formulas (2.3) of theta constants obtained by Theorem 2 in [3] p.139. By using Thomae’s formula, we give two expressions of \(\mu_g \) whose initial terms are given as (3.1) for some 2\(g+1 \) real numbers \(p_j \). One is given in terms of period integrals of the hyperelliptic curve \(C \) of genus \(g \) represented by the double cover of the complex projective line \(\mathbb{P}^1 \) branching at \(\infty \) and 2\(g+1 \) points \(p_j \). The other is by a period integral of the Calabi-Yau \(g \)-fold which is the double cover of the \(g \)-dimensional projective space \(\mathbb{P}^g \) branching along the dual hyperplanes of the images of \(\infty \) and \(p_j \) (\(j = 1, \ldots, 2g+1 \)) under the Veronese embedding of \(\mathbb{P}^1 \) into \(\mathbb{P}^g \).

In 1876, Borchardt studied in [1] the case of \(g = 2 \): the generalized arithmetic-geometric mean \(\mu_2 \) of \(a = (a_{00}, a_{01}, a_{10}, a_{11}) \) was given by the iteration of four means
\[
\frac{a_{00} + a_{01} + a_{10} + a_{11}}{4}, \quad \frac{\sqrt{a_{00}a_{10}} + \sqrt{a_{01}a_{11}}}{2}, \quad \frac{\sqrt{a_{00}a_{11}} + \sqrt{a_{10}a_{01}}}{2},
\]
and \(\mu_2(a) \) was expressed in terms of period integrals of a hyperelliptic curve of genus 2. Mestre showed in [4] that \(\mu_2(a) \) could be expressed in terms of \(\mu_1 \) and some algebraic functions of \(a \) when
\[
a_{00} > a_{01} = a_{10} > a_{11}, \quad a_{00}a_{11} > a_{01}a_{10}.
\]

2. Comparison to Theta Constants

We define a hyperelliptic curve \(C \) of genus \(g \) by
\[
C : y^2 = (x - p_1) \cdots (x - p_{2g+1}),
\]
where \(p_j \)'s are real numbers satisfying \(p_1 < \cdots < p_{2g+1} \). As in [6] p.76, we choose the cycles \(A_1, \ldots, A_g, B_1, \ldots, B_g \) in the union of the following two sheets (I),(II) in Figure 1. Here \(\mathbb{R}_+ \) is the set of non-negative real numbers, the range of values of \(y \) is written, and the cycles in the sheet II are written in thick lines. Note that the cycles satisfy
\[
A_i \cdot A_j = B_i \cdot B_j = 0, \quad A_i \cdot B_j = \delta_{ij}
\]
for \(1 \leq i, j \leq g \) under the intersection form.

We define holomorphic forms \(\omega_j \) for \(j = 1, \ldots, g \) as
\[
\omega_j = \frac{x^{j-1}dx}{y}.
\]
We define integrals $T_i^{(j)}$ by

$$T_i^{(j)} = \int_{p_i}^{p_i+1} \frac{x^{j-1}dx}{\sqrt[2g+1]{(x - p_k)\prod_{k=i+1}^{2g+1}(p_k - x)}}$$

for $1 \leq i \leq 2g$ and $1 \leq j \leq g$. Then the integrals $T_i^{(j)}$ are positive real numbers. Using these integrals, we express the period integrals of C:

$$\int_{A_i} \omega_j = (-1)^i 2T_{2i-1}^{(j)}, \quad \int_{B_i} \omega_j = 2\sqrt{-1}(\sum_{k=1}^{g} (-1)^{k+1}T_{2k}^{(j)}).$$

We set

(2.1) \quad A = (\int_{A_i} \omega_j)_{ij}, \quad B = (\int_{B_i} \omega_j)_{ij}

and consider the normalized period matrix τ by A-period:

(2.2) \quad \tau = BA^{-1}.

By Riemann's bilinear relations, $\det(A)$ is a non-zero real number and τ is a symmetric matrix whose imaginary part is positive definite. Note also that τ is purely imaginary.

Remark 2.1. Since the Vandermonde matrix $\det(x_i^{j-1})_{1 \leq i, j \leq g}$ is positive on $p_{2i-1} \leq x_i \leq p_{2i}$, $(-1)^{g(g+1)/2} \det(A)$ is positive.
For $I = (i_1, \ldots, i_g) \in \mathbb{F}_2^g$, we define theta constants as

$$\theta_I(\tau) = \sum_{n \in \mathbb{Z}^g} \exp(\pi \sqrt{-1} \cdot n \tau \cdot \!n + \pi \sqrt{-1} \cdot n \cdot \!I).$$

Proposition 2.2. Let M be a positive definite symmetric $g \times g$ real matrix. Then $\theta_I(\sqrt{-1}M)$ is positive for each $I \in \mathbb{F}_2^g$.

Proof. By the inversion formula of the theta function in [5] p.195, we have

$$\sqrt{\det(M)} \cdot \theta_I(\sqrt{-1}M) = \sum_{n \in \mathbb{Z}^g} \exp \left(\sqrt{-1} \pi (\frac{I}{2}) (\sqrt{-1}M^{-1}) \cdot n + \frac{I}{2} \right),$$

where $\sqrt{\det(M)}$ takes a positive value. Since each term of the right hand side is positive, the left hand side is positive. \qed

We consider variable $u = (u_I)_{I \in \mathbb{F}_2^g}$ whose coordinates are indexed by \mathbb{F}_2^g. The pair $(\theta_I(\tau))$ is denoted by $\theta(\tau)$. For $I \in \mathbb{F}_2^g$, we define quadratic polynomials $F_I(u)$ of 2^g variables $u = (u_I)_{I \in \mathbb{F}_2^g}$ by

$$F_I(u) = \frac{1}{2^g} \sum_{P \in \mathbb{F}_2^g} u_I \cdot P u_P.$$

We remark that the coefficients of $2^g F_I(u)$ are in $\mathbb{Z}_{\geq 0}$. By Theorem 2 in [3] p.139, we have 2τ-formulas of theta constants

$$(2.3) \quad \theta_I(2\tau)^2 = F_I(\theta(\tau))$$

for $I \in \mathbb{F}_2^g$.

Now prepare some combinatorial notations for the statement of Thomae’s formula. For an index $I \in \mathbb{F}_2^g$, we define a subset S_I of $R = \{1, \ldots, 2g+1, \infty\}$ as follows. Let η_i be elements of $M(2, g, \mathbb{F}_2)$ defined as

$$\eta_{2i-1} = \begin{pmatrix} 0 & \ldots & 0 & i \text{-th} & 1 & 0 & \ldots & 0 \\ 1 & \ldots & 1 & 0 & 0 & \ldots & 0 \end{pmatrix},$$

$$\eta_{2i} = \begin{pmatrix} 0 & \ldots & 0 & i \text{-th} & 1 & 0 & \ldots & 0 \\ 1 & \ldots & 1 & 1 & 0 & \ldots & 0 \end{pmatrix},$$

for $i = 1, \ldots, 2g + 1$. Then a subset T_I of $R - \{2g + 1, \infty\} = \{1, 2, \ldots, 2g\}$ is characterized by the equality

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \sum_{j \in T_I} \eta_j.$$

We set

$$S_I = \begin{cases} T_I & \text{if } \#T_I \text{ is even,} \\ T_I \cup \{2g + 1\} & \text{if } \#T_I \text{ is odd.} \end{cases}$$

Let U be the set $\{1, 3, 5, \ldots, 2g + 1\}$ and $R_1 \circ R_2$ be the symmetric difference of sets R_1 and R_2.
Proposition 2.3 ([6] p.120, [2]). Let A be the period matrix of C in (2.1). Then we have

\[
(2\pi)^{2g}\theta_I(\tau)^4 \frac{\det(A)^2}{\det(\Lambda)^2} = \prod_{i<j,i,j \in S \circ U} (p_j - p_i) \prod_{i<j,i,j \notin S \circ U} (p_j - p_i).
\]

Here we used the fact that \(\theta_I(\tau)\) is a real number to determine the sign of Thomae’s formula in [6].

3. STATEMENT AND PROOF OF THE MAIN THEOREM

Definition 3.1 (AGM sequences).

1. For an element \(u = (u_I)_I \in \mathbb{R}_{+}^{2g}\), we define the termwise root \(\sqrt{u}\) of \(u\) by \((\sqrt{u_I})_I\).

2. Let \(a = (a_I)_I\) be an element in \((\mathbb{R}_{+})^{2g}\). We define \(a_k = (a_{k,I})_I\) inductively by the relation

\[
a_{0,I} = a_I, \quad a_{k+1,I} = F_I(\sqrt{a_k}).
\]

A proof of the following proposition will be left to readers.

Proposition-Definition 3.2 (Generalized arithmetic-geometric mean). For an element \(a = (a_I)_I \in (\mathbb{R}_{+})^{2g}\), the limits \(\lim_{k \to \infty} a_{k,I}\) exist and are independent of indexes \(I\). This common limit is called the generalized arithmetic-geometric mean of \((a_I)_I\) and denoted by \(\mu_g(a_I)\).

Problem 3.3. Is it possible to express the generalized arithmetic-geometric mean \(\mu_g(a_I)\) of \(a = (a_I)_I \in (\mathbb{R}_{+})^{2g}\) in terms of period integrals of a family of varieties parametrized by \(a\)?

Theorem 3.4. Let \(p_1 < \cdots < p_{2g+1}\) be real numbers. We define \(a_I\) by

\[
a_I = \sqrt{\prod_{i<j,i,j \in S \circ U} (p_j - p_i) \prod_{i<j,i,j \notin S \circ U} (p_j - p_i)}.
\]

Then we have

\[
\mu_g(a_I) = \frac{(2\pi)^{2g}}{|\det(A)|},
\]

where \(A\) is the period matrix of \(C\) in (2.1).

Proof. By the initial condition, we have

\[
a_{0,I} = \frac{(2\pi)^{2g}\theta_I(\tau)^2}{|\det(A)|}.
\]

We show that

\[
a_{n,I} = \frac{(2\pi)^{2g}\theta_I(2^n\tau)^2}{|\det(A)|},
\]
by induction on \(n \). Since \(\theta_I(2^n \tau) \) is a positive real number by Proposition 2.2 for each \(I \), we have
\[
 a_{n+1,I} = F(\sqrt{a_n}) \\
= \frac{(2\pi)^g \cdot F(\theta_I(2^n \tau))}{|\det(A)|} \quad \text{(by the induction hypothesis)} \\
= \frac{(2\pi)^g \cdot \theta_I(2^{n+1} \tau)^2}{|\det(A)|} \quad \text{(by the formula (2.3))}
\]
Therefore we have
\[
 \lim_{n \to \infty} a_{n,I} = \frac{(2\pi)^g}{|\det(A)|}.
\]

4. Period of Calabi-Yau variety of certain type

We study a relation between the generalized arithmetic-geometric mean of the last section and a period of a Gorenstein Calabi-Yau variety of a certain type.

Definition 4.1 (Calabi-Yau varieties). A variety \(X \) only with Gorenstein singularities is called a Calabi-Yau variety if the dualizing sheaf of \(X \) is trivial and \(X \) has a global crepant resolution.

Let \(P = P^g \) be the \(g \) dimensional projective space and \(H_1 \cdots H_{2g+2} \) be hyperplanes of \(P \). There is a unique line bundle \(\mathcal{L} \) on \(P \) and a unique isomorphism \(\varphi : \mathcal{L} \otimes^2 \mathcal{O}_X(\sum_{i=1}^{2g+2} H_i) \) up to a non-zero constant. Using the isomorphism \(\varphi \), we define a double covering \(X = \text{Spec}(\mathcal{O}_X \oplus \mathcal{L}) \), where the multiplication on \(\mathcal{L} \otimes \mathcal{L} \to \mathcal{O}_X \) is given by the isomorphism \(\varphi \).

By the following Proposition 4.2, \(X \) becomes a Calabi-Yau variety, since it admits a global crepant resolution.

Proposition 4.2.

1. If \(\bigcup_{i=1}^{2g+2} H_i \) is normal crossing, then the variety \(X \) has only Gorenstein singularities. Also it admits a global crepant resolution.
2. Under the above hypotheses, the dualizing sheaf is isomorphic to the structure sheaf.

Proof. (1) Locally on \(P \), the variety \(X \) is defined by the equation \(\eta^2 = \xi_1 \cdots \xi_g \), where \(\xi_1, \ldots, \xi_g \) are local coordinates. Therefore this variety \(U \) is an affine toric variety defined by \(\text{Spec}(\sigma \cap M^*) \), where
\[
 M^* = \mathbb{Z}^g + \left(\frac{1}{2}, \ldots, \frac{1}{2} \right) \mathbb{Z} \subset \mathbb{Q}^g, \quad \sigma = (R_+)^g.
\]
Let \(\sigma \) be the dual simplex of \(\sigma \) and \(M \) be the dual lattice of \(M \). Since \(\sigma \) is generated by elements contained primitive hyperplanes, \(X \) is Gorenstein. We can construct a global crepant resolution as follows. We make a refinement of the simplex \(\sigma \) into a regular fan \(\bigcup_{w \in \rho_g} \sigma_w \) indexed by the set \(\rho_g \) of “unfair tournament” of \(\{1, \ldots, g\} \). A sequence \(w = (w_1, \ldots, w_{g-1}) \) is an element of the set \(\rho_g \) if it satisfies the following properties:
(i) w_1 is equal to 1 or 2 and
(ii) w_i is equal to w_{i-1} or $i+1$ for $2 \leq i \leq g-1$.

For an element w of ρ_g, we define σ_w as a cone generated by

$$B_w = \{ u_1 = e_1 + e_2, u_2 = e_{w_1} + e_3, u_3 = e_{w_2} + e_4, \ldots, u_{g-1} = e_{w_{g-2}} + e_g, u_g = 2e_{w_{g-1}} \},$$

where e_i is the standard basis of $\mathbb{Z}^g \supset M$. Since the set B_w is a free base of M, the fan $\cup_{w \in \rho_g} \sigma_w$ is regular and it defines a smooth toric variety \tilde{X}. The coordinates associated to $\mathbb{Z}^g \subset M^*$ are written as ξ_1, \ldots, ξ_g. (η corresponds to $\frac{1}{2}(1, \ldots, 1).$) Let z_1, \ldots, z_g be the coordinates associated to the dual base B_w of M. Then we have

$$z_1^{u_1} \cdots z_g^{u_g} = \xi_1^{e_1} \cdots \xi_g^{e_g}.$$

Thus $\xi_1^{\frac{1}{2}} \cdots \xi_g^{\frac{1}{2}} = z_1 \cdots z_g$. Therefore the pull back of the rational differential form ω_X to the affine toric variety associated to σ_w is a non-zero constant multiple of $dz_1 \wedge \cdots \wedge dz_g$, which shows that the map $\tilde{X} \to X$ is a crepant resolution. Since the local crepant resolutions depend only on the choice of order of the components of the branching divisor, they are patched together into a global crepant resolution.

(2) Let ξ_1, \ldots, ξ_g be inhomogeneous coordinates of \mathbb{P} with the infinite hyperplane H_{g+2} and $l_i = l_i(\xi)$ be inhomogeneous linear forms defining the hyperplane H_i for $i = 1, \ldots, 2g+1$. Then defining equation of the double covering X can be written as

$$\eta^2 = \prod_{i=1}^{2g+1} l_i(\xi).$$

As is shown in the proof of (1),

$$(4.1) \quad \omega_X = \frac{1}{\eta} d\xi_1 \wedge \cdots \wedge d\xi_g$$

is a global generator of the dualizing sheaf of X. \hfill \Box

For real numbers $p_1 < \cdots < p_{2g+1}$, we define linear forms l_i by

$$l_i = \xi_1 - p_i \xi_2 + p_i^2 \xi_3 + \cdots + (-1)^{g-1} p_i^{g-1} \xi_g + (-1)^g p_i^g$$

and set $H_i = \{ l_i = 0 \}$. By using the Vandermonde matrix, we see that $\cup_{i=1}^{2g+2} H_i$ is a normal crossing divisor.

We define a subset Δ of \mathbb{R}^g as

$$\Delta = \{(x_1, \ldots, x_g) \mid (-1)^{i-1} l_{2i-1}(x_1, \ldots, x_g) \geq 0 \text{ for } i = 1, \ldots, g+1, \text{ and } (-1)^i l_{2i}(x_1, \ldots, x_g) \geq 0 \text{ for } i = 1, \ldots, g \}.$$
Then $\gamma = \gamma_+ - \gamma_-$ defines a g-chain in X. We have the following relation between the generalized arithmetic-geometric mean and a period of the Calabi-Yau variety X. The following theorem is obtained by Theorem 2 in [7].

Theorem 4.3. Let $(a_I)_I$ be an element of \mathbb{R}^g_+ defined in (3.1). Under the above notation, we have

$$\mu(a_I) = \frac{2\pi g}{\int_\gamma \omega_X}.$$

Proof. Let C_j be a copy of the curve C given by $y_j = \prod_{i=1}^{2g-1}(x_j - p_i)$. We define a map $\pi : C_1 \times \cdots \times C_g \to X$ by sending $((x_1, y_1), \ldots, (x_g, y_g))$ to the point whose ξ_k-coordinate and η-coordinate are the ($g+1-k$)-th elementary symmetric function of x_1, \ldots, x_g and $\prod_{i=1}^{g} y_i$, respectively. Then we have

$$\pi^* \omega_X = \sum_{\sigma \in S_g} \text{sgn}(\sigma) \sum_{i=1}^{g} \omega_{\sigma(i)}.$$

Since $\pi_*(A_1 \times \cdots \times A_g) = (-1)^{g(g+1)/2}2^{g-1}\gamma$, we have

$$2^{g-1} \int_\gamma \omega_X = | \det(A) |.$$

By Theorem 3.4, we have the theorem. \hfill \Box

5. **Genus Two Case**

In this section, we will give a detailed study for the case of $g = 2$. Refer to [1] and [4] for the original results by Borchardt and recent related works by Mestre, respectively. We begin with $(a_{00}, a_{01}, a_{10}, a_{11})$ as initial data for AGM sequences. The recursive relations for $a_{k, I}$ ($I \in \mathbb{F}_2^g, k = 0, 1, \cdots$) are given as $a_{0, I} = a_I$ and $a_{k+1, I} = F_I(\sqrt{a_{k,00}}, \cdots, \sqrt{a_{k,11}})$, where

$$F_{00}(u_{00}, u_{01}, u_{10}, u_{11}) = \frac{1}{4}(u_{00}^2 + u_{01}^2 + u_{10}^2 + u_{11}^2),$$

$$F_{01}(u_{00}, u_{01}, u_{10}, u_{11}) = \frac{1}{2}(u_{00}u_{01} + u_{11}u_{10}),$$

$$F_{10}(u_{00}, u_{01}, u_{10}, u_{11}) = \frac{1}{2}(u_{00}u_{10} + u_{11}u_{01}),$$

$$F_{11}(u_{00}, u_{01}, u_{10}, u_{11}) = \frac{1}{2}(u_{00}u_{11} + u_{10}u_{01}).$$

In the following, we assume that $a_{00} > a_{10} > a_{11} > a_{01}$ and $a_{00}a_{01} > a_{10}a_{11}$. First we define positive real numbers $k_1 > k_2$ and $0 < l_2 < l_1 < 1$ such that

$$(a_{00} + a_{01})^2 - (a_{10} + a_{11})^2 = k_1^2, \quad (a_{00} - a_{01})^2 - (a_{10} - a_{11})^2 = k_2^2.$$
Therefore by Theorem 3.4, we have

\[a_{00} + a_{01} = \frac{1 + l_1^2}{1 - l_1^2} k_1, \quad a_{10} + a_{11} = \frac{2l_1}{1 - l_1^2} k_1, \]

\[a_{00} - a_{01} = \frac{1 + l_2^2}{1 - l_2^2} k_2, \quad a_{10} - a_{11} = \frac{2l_2}{1 - l_2^2} k_2, \]

We set

\[p_1 = 0, \quad p_2 = \frac{1}{(1 - l_2^2)(1 - l_1^2)}, \]

\[p_3 = \frac{2(l_1 l_2 + 1) a_{00}}{(1 - l_1^2)(1 - l_2^2)(k_1 + k_2)(1 - l_1 l_2)}, \]

\[p_4 = \frac{2(l_1 l_2 + 1) a_{01}}{(1 - l_1^2)(1 - l_2^2)(k_1 - k_2)(1 - l_1 l_2)}, \]

\[p_5 = \frac{4 a_{00} a_{01}}{(k_1 - k_2)(k_1 + k_2)(1 - l_2^2)(1 - l_1^2)}. \]

Then we have

\[(a_{00}^2 : a_{01}^2 : a_{10}^2 : a_{11}^2) = ((p_3 - p_1)(p_5 - p_1)(p_5 - p_3)(p_4 - p_2) : (p_4 - p_1)(p_5 - p_1)(p_5 - p_4)(p_3 - p_2) : (p_3 - p_2)(p_5 - p_2)(p_5 - p_3)(p_4 - p_1) : (p_4 - p_2)(p_5 - p_2)(p_5 - p_4)(p_3 - p_1)). \]

Therefore by Theorem 3.4, we have

\[
\lim_{n \to \infty} a_{n,00} = \frac{4\pi^2 a_{00}}{|\det(A)| \sqrt{(p_3 - p_1)(p_5 - p_1)(p_5 - p_3)(p_4 - p_2)}}
\]

\[
= \frac{8\pi^2}{|\det(A)|} \cdot (1 - l_1^2)^2(1 - l_2^2)^2 \sqrt{\frac{(a_{00} a_{01} - a_{10} a_{11})^3 (1 - l_1 l_2)^3}{a_{00} a_{01} a_{10} a_{11} (l_1^2 - l_2^2)(1 + l_1 l_2)}}.
\]

where \(A \) is the period matrix of \(C \) in (2.1).

Using the result of §4, we have

\[
|\det(A)| = 4 \cdot \int_{\Delta} \frac{d\xi_1 \wedge d\xi_2}{\sqrt{\prod_{i=1}^5 (\xi_1 - p_i \xi_2 + p_i^2)}},
\]

where \(\Delta \) is a domain in \(\mathbb{R}^2 \) defined by \(l_1 \geq 0, -l_2 \geq 0, -l_3 \geq 0, l_4 \geq 0 \) and \(l_5 \geq 0 \). This is a period integral of the covering \(X \) of \(\mathbb{P}^2 \) defined by

\[
\eta^2 = \prod_{i=1}^5 (\xi_1 - p_i \xi_2 + p_i^2).
\]

We notice that the variety \(X \) is the (nodal) Kummer surface of the Jacobian of \(C \).

Remark 5.1. When

\[a_{00} > a_{01} = a_{10} > a_{11}, \quad a_{00} a_{11} > a_{01} a_{10}, \]
μ_2(a) can be expressed in terms of the arithmetic-geometric mean μ_1 and expressions p_2, ..., p_5 by a (see [4]).

REFERENCES

Keiji Matsumoto
Department of Mathematics
Hokkaido University
Sapporo, 060-0810, Japan
e-mail: matsu@math.sci.hokudai.ac.jp

Tomohide Terasoma
Graduate School of Mathematical Sciences
The University of Tokyo
Komaba, Meguro, Tokyo, 153-8914, Japan
e-mail: terasoma@ms.u-tokyo.ac.jp