Resonant bands, Aomoto complex and real 4-nets

Michele Torielli
Joint work with M. Yoshinaga (ArXiv: 1404.5014)
Department of Mathematics, Hokkaido University, JSPS
27 August 2014

Introduction
The resonant band is a useful notion for the computation of the nontrivial monodromy eigenspaces of the Milnor fiber of a real line arrangement. We develop the resonant band description for the cohomology of the Aomoto complex. As an application, we prove that real 4-nets do not exist. Let us fix some notation:
- \(k \in \mathbb{Z} \), \(k \geq 3 \);
- \(\mathbb{K} \) a field (generally, \(\mathbb{R} \) or \(\mathbb{C} \)) and \(\mathbb{K}^2 \) the projective plane;
- \(\mathcal{A} = \{ H_1, \ldots, H_n \} \) a line arrangement in \(\mathbb{K}^2 \);
- \(\mathcal{A} = \{ \mathcal{H}_1, \ldots, \mathcal{H}_6 \} \) the affine line arrangement in \(\mathbb{K}^2 = \mathbb{K}^2 \setminus \mathcal{H}_0 \) obtained from \(\mathcal{A} \);
- \(\mathcal{A}_0(\mathcal{A}) \) the Orlik-Solomon algebra of \(\mathcal{A} \) over \(\mathbb{F}_2 \) generated by the symbols \(e_1, \ldots, e_n \);
- For \(S \subseteq \mathcal{A} \), consider \(e(S) := \sum_{i \in S} e_i \in \mathcal{A}_0^1(\mathcal{A}) \) and \(\eta_0 := e(\mathcal{A}) = \sum_{i=1}^n e_i \).

Definition (k-nets)
\(\mathcal{A} \) supports a \(k \)-net structure if and only if there exist a partition \(\mathcal{A} = \mathcal{A}_1 \cup \cdots \cup \mathcal{A}_k \) and a finite set of points \(\mathcal{X} \subseteq \mathbb{K}^2 \) such that:
- For all \(i \neq j \), if \(H \in \mathcal{A}_i \) and \(H' \in \mathcal{A}_j \), then \(H \cap H' \neq \emptyset \);
- For all \(p \in \mathcal{X} \) and for all \(i = 1, \ldots, k \), there exists a unique \(H \in \mathcal{A}_i \) such that \(p \in H \).

Known facts
- If \(k \geq 5 \) there does not exist any \(k \)-net;
- There exist infinitely many 3-nets;
- The Hesse arrangement is the only known 4-net.

Theorem 2 (Papadima-Suciu)
Consider \(S \subseteq \mathcal{A} \). Then \(e(S) \land \eta_0 = 0 \) if and only if \(\forall p \in \mathbb{K}^2 \) one of the following is satisfied:
- if \(|A_p| \) is odd, then \(|A_p| = |S_p| \);
- if \(|A_p| \) is even then \(|S_p| \) is even, where \(A_p := \{ H \in \mathcal{A} \mid p \in H \} \).

From now on we consider the case \(\mathbb{K} = \mathbb{R} \) and \(n = \text{odd} \).
- The connected components of \(\mathbb{R}^2 \setminus \bigcup_{i \in \mathcal{A}} H \) are called chambers. The set of all chambers is denoted by \(\text{ch}(\mathcal{A}) \).
- Given \(C_1, C_2 \in \text{ch}(\mathcal{A}) \), \(d(C_1, C_2) \) is the number of line that separate the chambers.
- A band is a region bounded by two consecutive parallel lines.
- Each band \(B \) has two unbounded chambers \(U_1(B) \) and \(U_2(B) \).
- A band \(B \) is called resonant if \(d(U_1(B), U_2(B)) \) is even. The set of all resonant bands is denoted by \(\text{RB}(\mathcal{A}) \).

Theorem A (T.-Yoshinaga)
\(\text{Ker}(\nabla) \cong H^0(A^{\text{res}}_1(\mathcal{A}), \eta_0) \).

Proposition (T.-Yoshinaga)
When \(|A_p| = 4 \), then there are four cases:
- \(S_p = \emptyset \);
- \(S_p = A_p \);
- \(|S_p| = 2 \) and lines in \(S_p \) are adjacent.
- \(|S_p| = 2 \) and lines in \(S_p \) are separated by lines in \(A_p \setminus S_p \).
Moreover, if \(e(S) \land \eta_0 = 0 \), then (4) cannot happen.

Theorem B (T.-Yoshinaga)
There does not exist a real arrangement \(\mathcal{A} \) that supports a 4-net structure.

Proof
Suppose \(\mathcal{A} \) supports a 4-net structure with partition \(\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3 \cup \mathcal{A}_4 \). There exists a multiple point \(p \in \mathbb{R}^2 \) of \(\mathcal{A} \) with multiplicity 4 such that \(p \) is the intersection point of 4 lines \(H_i \in \mathcal{A}_i \). The lines are ordered like:

\[
\begin{align*}
1 \rightarrow & \ 2 \rightarrow \ 3 \rightarrow \ 4
\end{align*}
\]

We can now define \(S = \mathcal{A}_1 \cup \mathcal{A}_3 \). Then we have \(\eta_0 \land e(S) = 0 \). By definition, \(S_p = \{ H_1, H_3 \} \) consists of two lines and separated by the other two lines \(H_2 \) and \(H_4 \). Therefore (4) in the previous Proposition happens. This contradicts the statement of the last Proposition.

Bibliography