1 What is a Lefschetz fibration?

A Lefschetz fibration is a fibering structure on a 4-dimensional manifold, which resembles a surface bundle over a surface, but which allows finitely many singularities, called Lefschetz type critical points.

Definition 4.1 f is a Lefschetz fibration over Σ_g with regular fiber Σ_b (for short, genus-g LF/Σ_g) if the following conditions are satisfied:

1. $b_1, \ldots, b_6 \in \Sigma_b$; critical values of f is a Σ_b-bundle over $\Sigma_g \setminus \{b_1, \ldots, b_6\}$.
2. Each singular fiber $f^{-1}(b_i)$ has a unique critical point $q_i \in f^{-1}(b_i)$.

Around q_i and $b_i = f(q_i)$, f is expressed as $(z_1, z_2) \mapsto z_1^2 + z_2^2$ by local complex coordinates, which are compatible with the orientations.

3. (relative minimality) Each fiber does not contain a (-1) sphere.

4. (non-triviality) f contains at least one singular fiber.

Each singular fiber $f^{-1}(b_i)$ is obtained by crushing a simple closed curve ϵ_i on a regular fiber $f^{-1}(b)$ to a point.

The curve ϵ_i is called the vanishing cycle of the singular fiber $f^{-1}(b_i)$.

2 Question

The minimal number of singular fibers in a LF is an interesting object.

$N(g,h) = \min \{\text{the number of singular fibers in } f | f \text{ is a genus-}g \text{ LF/}\Sigma_g\}$.

There have been a lot of studies about $N(g,h)$ [KOO1], etc.

In the case of LF’s over the torus, however, very few constraints have been known. So we will study $N(g,1)$, which means the case of LF’s over the torus.

3 Mapping class group

$M_g = \{f : \Sigma_g \rightarrow \Sigma_g | f \text{ is an orientation-preserving diffeomorphism}/\text{isotopy}\}$ is a group w.r.t. the product induced by composition as maps and called the mapping class group of Σ_g. M_g has fundamental elements, called Dehn twists which generate M_g.

$\tau_c : A \text{ right hand Dehn twist} along a simple closed curve } c.

Let γ_i be a loop on Σ_g based at b_i which surrounds exclusively b_i. The local monodromy around b_i is the right hand Dehn twist τ_{γ_i} along the corresponding vanishing cycle γ_i. That is, $f^{-1}(\gamma_i) \rightarrow \Sigma_g \times \{0, 1\}$ identifying $\Sigma_g \times 0$ and $\Sigma_g \times 1$ via the diffeomorphism τ_{γ_i}: $f^{-1}(\gamma_i) \cong \Sigma_g \times \{0, 1\}$, $(x,1) \sim (\tau_{\gamma_i}(x),0)$.

4 Monodromy representation

There is a good relation between Lefschetz fibrations and the mapping class groups of surfaces.

Theorem 4.1 (Classification of LF) [M].

If $g \geq 2$, then

$$\underset{\text{isomorphism}}{g : \text{LF/}\Sigma_g} \rightarrow M_g$$

$\Phi : \tau_c(\Sigma_g \setminus \{b_1, \ldots, b_6\}) \rightarrow M_g$; anti-homomorphism with $\Phi(\gamma_i)(\text{right hand Dehn twist})/\text{conjugacy}$

$\{\tau_{\gamma_1}, \ldots, \tau_{\gamma_6} \text{ = a product of } h \text{ commutators in } M_g\}$

$\text{elementary transformation & global conjugacy}$

In the case of LF’s over the torus, if we find a relation in the form a product of h right hand Dehn twists τ_{γ_i} is a single commutator in M_g, then we can construct a genus-g LF/\Sigma_g with h singular fibers. So, for our purpose, all we have to do is to find a relation as above with a small number n of the right hand Dehn twists in the left side.

In the rest of this poster, we will denote a right hand Dehn twist along a curve α simply by α (the curve itself), and the inverse of a right hand Dehn twist α by $\bar{\alpha}$.

5 k-holed torus relation

k-holed torus relations which are relations in the mapping class group of k-holed torus (torus with k boundary components), have been constructed by Korkmaz & Ozbagci [KOO2]. These relations will be used to construct LF’s over the torus. (In the following figures, α_i’s represent the boundary components of k-holed torus.)

6 Relations representing a commutator

By embedding the k-holed torus in Σ_g and using the k-holed torus relations, the author found the following relations.

7 Conclusion

The relations above can be used to construct a genus-ℓ LF/T2 with n singular fibers, a genus-ℓ LF/T^2 with 7 singular fibers, a genus-ℓ LF/T2 with 6 singular fibers, and a genus-g LF/T2 with 5 singular fibers ($g \geq 7$). As a result of these, we obtain:

Theorem 7.1 [H]

References

[N] Hamada, Upper bounds for the minimal number of singular fibers in a Lefschetz fibration over the torus, in preparation.