HOLOMORPHIC SOLUTIONS OF SEMILINEAR HEAT EQUATIONS

Hiroaki AIKAWA and Nakao HAYASHI
Department of Mathematics, Gunma University, Kiryu 376, JAPAN

Key words and phrases: semilinear heat equation, holomorphic solution, Hardy space.

1. Introduction

Let us consider the following semilinear heat equation:

\[\partial_t u - \Delta u = P(u, \overline{u}) \quad \text{for} \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^n, \]

\[u(0, x) = \varphi(x) \quad \text{for} \quad x \in \mathbb{R}^n \]

with \(\varphi \in L^p(\mathbb{R}^n) \), where \(P \) is a polynomial vanishing at the origin and \(\Delta \) stands for the Laplacian with respect to \(x \). The analyticity in time of the solutions of a semilinear heat equation has been considered by many authors. For example Ōuchi [2] treated the analyticity in time of the solutions of certain initial boundary value problems with bounded continuous initial functions, which include (1) if \(P(u, \overline{u}) \) is a monotone polynomial of \(u \) with real coefficients.

The main aim of the present paper is to prove that the solution of (1) local in time with the initial function in \(L^p(\mathbb{R}^n) \), \(1 \leq p < \infty \), \(n \geq 1 \), is holomorphic not only in time but also in space variables. We shall, in fact, show that the solution \(u(t, \cdot) \) of (1) extends analytically to a strip of which width grows in proportion to \(\sqrt{t} \). Hence, we shall regard the solution \(u(t, x) \) as a function of \(t \) and \(x \) than as a Banach space valued function of \(t \). This is a sharp contrast with the treatment in [2].

Let us introduce a domain \(\Omega \) in \(\mathbb{C}^{n+1} \), to which the solution \(u \) will extend holomorphically, as well as some function spaces of holomorphic functions defined on \(\Omega \). For \(0 < \alpha < \pi/2, \beta > 0 \) and \(T > 0 \) we let

\[\Omega = \{ (\tau, x + iy); 0 < |\tau| < T, |\arg \tau| < \alpha, |y| < \beta \sqrt{\tau} \}. \]

We can write \(\Omega \) as \(D \times \mathbb{R}^n \) with \(D = \cup_{0 < t < T} D(t) \) and \(D(t) = \{ (te^{i\theta}, y); |\theta| < \alpha, |y| < \beta \sqrt{t} \} \). Let us define norms for holomorphic functions \(f \) on \(\Omega \). Let

\[\| f \|_{H^p(t)} = \sup_{(\tau, y) \in D(t)} \left(\int_{\mathbb{R}^n} |f(\tau, x + iy)|^p dx \right)^{1/p}, \]

\[\| f \|_{H^m_p(t)} = \sum_{j=0}^m \| (\sqrt{t} \nabla)^j f \|_{H^p(t)}. \]
for $0 < t < T$, where ∇ stands for the nabla with respect to x. Then we put

$$H^p_m(\Omega) = \{ f; f \text{ is holomorphic on } \Omega \text{ and } \| f \|_{H^p_m(t)} \text{ is locally bounded on } (0,T) \},$$

$$BH^p_m(\Omega) = \{ f; f \text{ is holomorphic on } \Omega \text{ and } \| f \|_{BH^p_m(\Omega)} = \sup_{0 < t < T} \| f \|_{H^p_m(t)} < \infty \}.$$

It is easy to see that $BH^p_m(\Omega)$ is a Banach space. The above function spaces are kinds of Hardy spaces on a tube domain (cf. [4; Chapter III]). Let $BH^p_\infty(\Omega) = \cap_{m=0}^\infty BH^p_m(\Omega)$. For simplicity we shall drop the subscript m if $m = 0$.

We shall show

Theorem 1. Let $1 \leq p < \infty$ and $\varphi \in L^p(\mathbb{R}^n)$. Suppose the degree of P is smaller than $1 + \frac{2p}{n}$. Then there exists $T > 0$ for which (1) has a unique solution $u(t,x)$ for $0 < t < T$ extensible holomorphically to Ω and the extension belongs to $BH^p_\infty(\Omega)$.

The limiting case of Theorem 1 as $p \to \infty$ is

Theorem 2. Let $h(z,w)$ be a holomorphic function on \mathbb{C}^2 vanishing at the origin. If φ is a bounded continuous function on \mathbb{R}^n, then there exists $T > 0$ for which

$$\partial_t u - \Delta u = h(u, \overline{u}) \quad \text{for } (t,x) \in \mathbb{R}^+ \times \mathbb{R}^n,$$

(2)

$$u(0,x) = \varphi(x) \quad \text{for } x \in \mathbb{R}^n$$

has a unique solution $u(t,x)$ for $0 < t < T$ extensible holomorphically to Ω and the extension belongs to $BH^\infty_\infty(\Omega)$.

Let us remark that one may obtain, in the same way as in [2], the solution of (1) global in time and its analyticity in time and space variables under an additional assumption on the polynomial P which guarantees an a priori estimate, involving only the L^p-norm of φ, for the L^p-norm of the solution.

We would like to thank Prof. Saitoh for valuable discussions.
2. Preliminaries

We observe that if \(f \) belongs to \(H^p_0(\Omega) \), then so does the function \(f^*(\tau, x + iy) = \overline{f(\tau, x - iy)} \). Obviously, \(f^*(t, x) = \overline{f(t, x)} \) and \(\|f^*\|_{H^p_0(t)} = \|f\|_{H^p_0(t)} \). Throughout this section we let \(1 \leq p < \infty \). For simplicity we write const. for a positive constant independent of functions \(f, g, \ldots, \) and variables \(t, \tau, x, y, \ldots \). Since the \(p \)-th power of the modulus of a holomorphic function is a subharmonic function, we have from the submean value property

Lemma 1. Let \(f \in H^p(\Omega) \). If \(K \) is a compact subset of \(D \), then \(\{f(\tau, x + iy)\}_{(\tau, y) \in K} \) are uniformly bounded functions of \(x \in \mathbb{R}^n \). Moreover

\[
\sup_{(\tau, y) \in K, |x|=r} |f(\tau, x + iy)| \to 0 \quad \text{as } r \to \infty.
\]

Proof. Suppose \(K \) is a compact subset of \(D \), and let \(\rho = \frac{1}{2} \text{dist}(K, \partial D) > 0 \), \(K_\rho = \{(\tau, y); \text{dist}((\tau, y), K) < \rho\} \). We observe that

\[
(3) \quad \int_{K_\rho} dtdu \int_{\mathbb{R}^n} |f(\tau, x + iy)|^p dx \leq \int_{K_\rho} \|f\|_{H^p([\tau])}^p dtdu \leq \text{const.} \sup_{t_1 \leq \tau \leq t_2} \|f\|_{H^p(t)}^p < \infty,
\]

where \(\tau = t + iu, t_1 = \inf\{|\tau|; (\tau, y) \in K_\rho \} > 0 \) and \(t_2 = \sup\{|\tau|; (\tau, y) \in K_\rho \} < \tau \). Since \(|f|^p \) is a subharmonic function of \(2(n + 1) \) real variables, it follows from the submean value property that

\[
\sup_{(\tau, y) \in K, |x|=r} |f(\tau, x + iy)|^p \leq \text{const.} \rho^{2(n+1)} \int_{K_\rho} dtdu \int_{|x|>r-\rho} |f(\tau, x + iy)|^p dx.
\]

The last term tends to zero as \(r \to \infty \) by (3) and the dominated convergence theorem. The lemma is proved.

Let \(f \in H^p(\Omega) \) and \((\tau, y) \in D \). Since \(\psi(x) = f(\tau, x + iy) \) is a smooth function of \(x \) vanishing at \(\infty \) by Lemma 1, the Gagliardo-Nirenberg inequality (see e.g. [1; Theorem 9.3 in p.24]) applies to \(\psi \). We have

Lemma 2. Let \(f \in H^p_0(\Omega) \) and \(0 < t < T \). Then

\[
\|f\|_{H^p_0(t)} \leq \text{const.} \|f\|_{H^p(t)} + \|\nabla \psi\|_{H^{p/n}_0(t)}^n f \|_{H^p(t)},
\]

\[
\|\nabla \psi\|_{H^{p/n}_0(t)} \leq \text{const.} \|\nabla \psi\|_{H^{p/n}_0(t)}^{1-j/n} \|\psi\|_{H^p(t)}^{j-1/n} \quad \text{for } 0 \leq j \leq n.
\]

Proof. Let \(\psi \) be as before the lemma with \(\tau = t e^{i\theta} \). Suppose \(1 \leq j \leq n - 1 \). Then the Gagliardo-Nirenberg inequality says \(\|\nabla \psi\|_{H^{p/n}_0(t)} \leq \text{const.} \|\nabla \psi\|_{H^{p/n}_0(t)}^{j/n} \|\psi\|_{H^p(t)}^{j-1/n} \), and hence

\[
\|\nabla \psi\|_{H^{p/n}_0(t)} \leq \text{const.} \|\nabla \psi\|_{H^{p/n}_0(t)}^{j/n} \|\psi\|_{H^p(t)}^{j-1/n} \leq \text{const.} \|\nabla \psi\|_{H^{p/n}_0(t)} + \|\psi\|_{H^p(t)}.
\]

Taking the supremum with respect to \(\theta \) and \(y \), we obtain

\[
\|\nabla \psi\|_{H^{p/n}_0(t)} \leq \text{const.} \|\psi\|_{H^{p/n}_0(t)} + \|\nabla \psi\|_{H^p(t)} + \|\nabla \psi\|_{H^{p/n}_0(t)} + \|\psi\|_{H^p(t)},
\]

which proves the first assertion. The second can be proved similarly.

In order to handle the nonlinear term, we need a multiplicative property of the norm \(\|f\|_{H^p_0(t)} \).
Lemma 3. If \(f \) and \(g \) belong to \(H^p_n(\Omega) \), then so does \(fg \); for \(0 < t < T \)

\[
\| fg \|_{H^p_n(t)} \leq \text{const.} t^{-n/(2p)} \| f \|_{H^p_n(t)} \| g \|_{H^p_n(t)}.
\]

Proof. Let \(f \) and \(g \) belong to \(H^p_n(\Omega) \). Leibniz’s formula shows \(|(\sqrt{t\nabla})^n (fg)| \leq \text{const.} \sum_{j=0}^n |(\sqrt{t\nabla})^j f| |(\sqrt{t\nabla})^{n-j} g| \). Taking the \(p \)-th power, applying Hölder’s inequality and Lemma 2, and then taking the \(p \)-th root, we obtain

\[
\| (\sqrt{t\nabla})^n (fg) \|_{H^p_n(t)} \leq \text{const.} \sum_{j=0}^n \| (\sqrt{t\nabla})^j f \|_{H^{p/(n-j)}_n(t)} \| (\sqrt{t\nabla})^{n-j} g \|_{H^{n/(n-j)}_n(t)}
\]

\[
\leq \text{const.} t^{-n/(2p)} \| f \|_{H^p_n(t)} \| g \|_{H^p_n(t)}.
\]

Similarly

\[
\| fg \|_{H^p_n(t)} \leq \| f \|_{H^{\infty}(t)} \| g \|_{H^p_n(t)} \leq \text{const.} t^{-n/(2p)} \| f \|_{H^p_n(t)} \| g \|_{H^p_n(t)}
\]

by Lemma 2. Therefore the first assertion of Lemma 2 completes the proof.

Corollary. Let \(P(w_1, \ldots, w_k) \) be a polynomial of degree \(m \geq 1 \) vanishing at the origin. If \(f_1, \ldots, f_k \) belong to \(H^p_n(\Omega) \), then so does \(P(f_1, \ldots, f_k) \); for \(0 < t < T \)

\[
\| P(f_1, \ldots, f_k) \|_{H^p_n(t)} \leq \text{const.} \left\{ \sum_{j=1}^k \| f_j \|_{H^p_n(t)} + t^{-n(m-1)/2p} \left(\sum_{j=1}^k \| f_j \|_{H^p_n(t)} \right)^m \right\}.
\]

Now let us state the main estimate in this section.

Lemma 4. Let \(P(w_1, w_2) \) be a polynomial of degree \(m \) vanishing at the origin. If \(f_1, f_2 \in H^p_n(\Omega) \), then for \(0 < t < T \)

\[
\| P(f_1, f_1^*) - P(f_2, f_2^*) \|_{H^p_n(t)} \leq \text{const.} \left\{ 1 + t^{-n(m-1)/2p} \left(\sum_{j=1}^2 \| f_j \|_{H^p_n(t)} \right)^{m-1} \right\} \| f_1 - f_2 \|_{H^p_n(t)}.
\]

In particular, letting \(f_1 = f \in H^p_n(\Omega) \) and \(f_2 = 0 \), we obtain for \(0 < t < T \)

\[
\| P(f, f^*) \|_{H^p_n(t)} \leq \text{const.} (1 + t^{-n(m-1)/2p} \| f \|_{H^p_n(t)}^{m-1}) \| f \|_{H^p_n(t)}.
\]

Proof. Observe that the polynomial \(P(w_1, w_2) - P(w_3, w_2) \) can be written as \((w_1 - w_3)(Q(w_1, w_2, w_3) + c) \) with a polynomial \(Q \) of degree \(m - 1 \) vanishing at the origin and a constant \(c \). Hence Lemma 3 and its corollary yield

\[
\| P(f_1, f_1^*) - P(f_2, f_2^*) \|_{H^p_n(t)} \leq \text{const.} \| f_1 - f_2 \|_{H^p_n(t)} \left(1 + t^{-n/(2p)} \| Q(f_1, f_2, f_1^*) \|_{H^p_n(t)} \right)
\]

\[
\leq \text{const.} \| f_1 - f_2 \|_{H^p_n(t)} \left\{ 1 + t^{-n(m-1)/(2p)} \left(\sum_{j=1}^2 \| f_j \|_{H^p_n(t)} \right)^{m-1} \right\}.
\]

The norm \(\| P(f_2, f_2^*) - P(f_2, f_2^*) \|_{H^p_n(t)} \) is similarly estimated, and hence the lemma follows.

For the proof of Theorem 2 we prepare
Lemma 5. Suppose $h(z, w) = \sum_{j+k \geq 1} c_{jk} z^j w^k$ be as in Theorem 2. Let $\hat{h}(\rho) = \sum_{m=1}^{\infty} d_m \rho^{m-1}$ with $d_m = m \sum_{j+k=m} |c_{jk}|$. If $f_1, f_2 \in BH^\infty(\Omega)$, then

$$\|h(f_1, f_1^*) - h(f_2, f_2^*)\|_{BH^\infty(\Omega)} \leq \hat{h}(\rho)\|f_1 - f_2\|_{BH^\infty(\Omega)},$$

where $\rho = \max\{\|f_1\|_{BH^\infty(\Omega)}, \|f_2\|_{BH^\infty(\Omega)}\}$. In particular, letting $f_1 = f \in BH^\infty(\Omega)$ and $f_2 = 0$, we obtain

$$\|h(f, f^*)\|_{BH^\infty(\Omega)} \leq \hat{h}(\|f\|_{BH^\infty(\Omega)})\|f\|_{BH^\infty(\Omega)}.$$

Proof. We observe that

$$\|h(f_1, f_1^*) - h(f_2, f_2^*)\|_{BH^\infty(\Omega)} \leq \sum_{j+k \geq 1} |c_{jk}|\|f_1^j f_1^k - f_2^j f_1^k\|_{BH^\infty(\Omega)}$$

$$\leq \sum_{j+k \geq 1} |c_{jk}|\|f_1\|_{BH^\infty(\Omega)}^j \|f_1\|_{BH^\infty(\Omega)}^{j-1} + \cdots + \|f_2\|_{BH^\infty(\Omega)}^{j-1} \|f_1 - f_2\|_{BH^\infty(\Omega)}$$

$$\leq \sum_{j+k \geq 1} j|c_{jk}|\rho^{j-1} \|f_1 - f_2\|_{BH^\infty(\Omega)}.$$

Similarly, $\|h(f_2, f_2^*) - h(f_2, f_2^*)\|_{BH^\infty(\Omega)}$ is dominated by $\sum_{j+k \geq 1} k|c_{jk}|\rho^{j+k-1} \|f_1 - f_2\|_{BH^\infty(\Omega)}$, and hence the lemma follows.

3. Main estimates

In this section we shall deal with the following linear equation:

$$\partial_t u - \Delta u = g \quad \text{for} \ (t, x) \in \mathbb{R}^+ \times \mathbb{R}^n,$$

(4)

$$u(0, x) = \varphi(x) \quad \text{for} \ x \in \mathbb{R}^n$$

It is well known that the solution of (4) is written as

(5) \[u(t, x) = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} \exp\left(\frac{-(x-\xi)^2}{4t}\right)\varphi(\xi) d\xi \]

$$+ \int_0^t ds \int_{\mathbb{R}^n} \frac{1}{(4\pi(t-s))^{n/2}} \exp\left(\frac{-(x-\xi)^2}{4(t-s)}\right) g(s, \xi) d\xi,$$

where $(x-\xi)^2 = (x-\xi) \cdot (x-\xi) = \sum_{j=1}^n (x_j - \xi_j)^2$. Note that we avoid the usual notation $|x-\xi|^2$ for $(x-\xi)^2$ because $(x-\xi)^2$ need not be nonnegative when x is replaced by $x + iy \in \mathbb{C}^n$. Writing the last integral of (5) as

$$\int_0^1 d\sigma \int_{\mathbb{R}^n} \frac{t}{(4\pi t(1-\sigma))^{n/2}} \exp\left(\frac{-(x-\xi)^2}{4t(1-\sigma)}\right) g(\sigma t, \xi) d\xi,$$
we extend (5) to Ω by
\begin{equation}
(6) \quad u(\tau, x + iy) = \frac{1}{(4\pi\tau)^{n/2}} \int_{\mathbb{R}^n} \exp(-\frac{(x + iy - \xi)^2}{4\tau}) \varphi(\xi) d\xi \\
+ \int_0^1 d\sigma \int_{\mathbb{R}^n} \frac{\tau}{(4\pi\tau(1 - \sigma))^{n/2}} \exp(-\frac{(x + iy - \xi)^2}{4\tau(1 - \sigma)}) g(\sigma\tau, \xi) d\xi
\end{equation}
for (\tau, x + iy) \in \Omega, where (4\pi\tau)^{n/2} and (4\pi\tau(1 - \sigma))^{n/2} stand for the single valued branches in the sector \{\tau; |\arg \tau| < \alpha\} which assume positive values on the positive real axis.

Throughout this section we let 1 \leq p \leq \infty. The main estimate in this section is

Lemma 6. Let \(g \in H^p_R(\Omega) \) and suppose \(\int_0^T \| g \|_{H^p_R(t)} dt < \infty \). If \(\varphi \in L^p(\mathbb{R}^n) \), then the function \(u \) given by (6) belongs to \(BH^p_R(\Omega) \):

\[\| u \|_{BH^p_R(\Omega)} \leq \text{const.}(\| \varphi \|_p + \int_0^T \| g \|_{H^p_R(t)} dt). \]

We shall divide the proof into three steps.

Lemma 7. Let \(g \in H^p(\Omega) \) and suppose \(\int_0^T \| g \|_{H^p(t)} dt < \infty \). Then the function
\begin{equation}
(7) \quad u(\tau, x + iy) = \int_0^1 d\sigma \int_{\mathbb{R}^n} \frac{\tau}{(4\pi\tau(1 - \sigma))^{n/2}} \exp(-\frac{(x + iy - \xi)^2}{4\tau(1 - \sigma)}) g(\sigma\tau, \xi) d\xi
\end{equation}
belongs to \(BH^p(\Omega) \) and for \(0 < t < T \)

\[\| u \|_{H^p(t)} \leq \exp\left(\frac{\beta^2 \sec \alpha}{4}\right) \sec^{n/2} \alpha \int_0^t \| g \|_{H^p(s)} ds. \]

Proof. Let us prove first the norm estimate. Cauchy’s theorem (together with Lemma 1 if \(1 \leq p < \infty \)) implies that \(u(\tau, x + iy) = \int_0^1 v(\tau, x + iy; \sigma) d\sigma \) with \(v \) defined by
\begin{equation}
(8) \quad \int_{\mathbb{R}^n} \frac{\tau}{(4\pi\tau(1 - \sigma))^{n/2}} \exp(-\frac{(x + iy - \xi - iy\sqrt{\sigma})^2}{4\tau(1 - \sigma)}) g(\sigma\tau, \xi + iy\sqrt{\sigma}) d\xi.
\end{equation}

By an elementary calculation

\[|\exp(-\frac{(x + iy - \xi - iy\sqrt{\sigma})^2}{4\tau(1 - \sigma)})| \leq \exp\left(\frac{\beta^2 \sec \alpha}{4}\right) \exp\left(-\frac{(x - \xi + y(1 - \sqrt{\sigma}) \tan \theta)^2 \cos \alpha}{4t(1 - \sigma)}\right) \]

for \((\tau, x + iy) = (te^{i\theta}, x + iy) \in \Omega \). Hence a change of variable shows that \(v(te^{i\theta}, x + iy; \sigma) \) is dominated in modulus by

\[\exp\left(\frac{\beta^2 \sec \alpha}{4}\right) \times \int_{\mathbb{R}^n} \frac{t}{(4\pi t(1 - \sigma))^{n/2}} \exp(-\frac{\xi^2 \cos \alpha}{4t(1 - \sigma)}) |g(\sigma te^{i\theta}, x + y(1 - \sqrt{\sigma}) \tan \theta - \xi + iy\sqrt{\sigma})| d\xi. \]

\(-6\)
Therefore Minkowski’s inequality for integrals (see e.g. [3; p.271]) yields
\[\|u(te^{i\theta}, \cdot + iy)\|_p \leq \exp\left(\frac{\beta^2 \sec \alpha}{4} \right) \int_0^1 \|v\|_{H^p(t)} dt, \]
which implies the required inequality.

In order to show that \(u \) is holomorphic, we put \(u_\varepsilon(\tau, x + iy) = \int_\varepsilon^1 v(\tau, x + iy; \sigma) d\sigma \) for \(\varepsilon > 0 \). Let \(K \) be a compact subset of \(D \). Then by Lemma 1
\[\sup_{(\tau, y) \in K, \xi \in \mathbb{R}^n, \varepsilon \leq \sigma \leq 1} |g(\sigma \tau, \xi + iy\sqrt{\sigma})| < \infty. \]
Hence the dominated convergence theorem shows the continuity of \(u_\varepsilon \), and then Fubini’s theorem and Morera’s theorem yield that \(u_\varepsilon \) is holomorphic. The norm estimate implies that \(\{u_\varepsilon\}_{\varepsilon > 0} \) forms a Cauchy sequence in \(BH^p(\Omega) \) and that the limit \(u \) must be holomorphic in \(\Omega \) and belong to \(BH^p(\Omega) \).

Lemma 8. Let \(g \in H^p_\alpha(\Omega) \) and suppose \(\int_0^T \|g\|_{H^p(t)} dt < \infty \). Then the function \(u(\tau, x + iy) \) given by (7) belongs to \(BH^p_\alpha(\Omega) \) and for \(0 < t < T \)
\[\|u\|_{H^p(\sigma)} \leq \text{const.} \int_0^t \|g\|_{H^p(s)} ds. \]

Proof. Let \((\tau, x + iy) = (te^{i\theta}, x + iy) \in \Omega \). In view of Lemmas 2 and 7, it suffices to estimate \(\| (\sqrt{t} \nabla)^n u \|_{H^{p}(t)} \). We split \(u \) into \(u_1(\tau, x + iy) = \int_0^{1/2} v(\tau, x + iy; \sigma) d\sigma + \int_{1/2}^1 v(\tau, x + iy; \sigma) d\sigma \) with \(v(\tau, x + iy; \sigma) \) given by (8). Differentiation under the integral sign yields that if \(0 < \sigma < 1/2 \), then \((\sqrt{t} \nabla)^n v(te^{i\theta}, x + iy; \sigma) \) is bounded in modulus by
\[
\int_{\mathbb{R}^n} tQ_n(|x - \xi|, |y|(1 - \sqrt{\sigma}), \sqrt{t(1 - \sigma)}) \exp\left(-\frac{(x - \xi)^2 \sec \alpha}{4t(1 - \sigma)}\right) |g(\sigma te^{i\theta}, \xi + iy\sqrt{\sigma})| d\xi,
\]
\[
\leq \int_{\mathbb{R}^n} 2^{n/2} tQ_n(|\eta|, \beta, 1) \exp\left(-\frac{\eta^2 \sec \alpha}{2}\right) |g(\sigma te^{i\theta}, x - \sqrt{\eta} + iy\sqrt{\sigma})| d\eta,
\]
where \(Q_n \) is a homogeneous polynomial of degree \(n \) whose coefficients are all positive. Hence Minkowski’s inequality for integrals shows that
\[\| (\sqrt{t} \nabla)^n u_1(te^{i\theta}, \cdot + iy) \|_p \leq \text{const.} \int_0^{1/2} t\|g\|_{H^p(t)} d\sigma \leq \text{const.} \int_0^{t/2} \|g\|_{H^p(s)} ds. \]

Writing \(v(\tau, x + iy; \sigma) \) as
\[\int_{\mathbb{R}^n} \frac{\tau}{(4\pi \tau(1 - \sigma))^{n/2}} \exp\left(-\frac{(\xi + iy - iy\sqrt{\sigma})^2}{4\tau(1 - \sigma)}\right) g(\sigma \tau, x - \xi + iy\sqrt{\sigma}) d\xi, \]
and differentiating under the integral sign, we can estimate \((\sqrt{t} \nabla)^n u_2 \) in the same way as in Lemma 7. We have
\[\| (\sqrt{t} \nabla)^n u_2(te^{i\theta}, \cdot + iy) \|_p \leq \text{const.} \int_0^{1/2} \frac{t}{\sqrt{\tau}} \| (\sqrt{\tau} \nabla)^n g \|_{H^p(t)} d\sigma \leq \text{const.} \int_0^{t/2} \|g\|_{H^p(s)} ds. \]

The lemma follows.

Now Lemma 6 follows from Lemma 8 and
Lemma 9. Let $\varphi \in L^p(\mathbb{R}^n)$. Then the function

$$u(\tau, x + iy) = \frac{1}{(4\pi \tau)^{n/2}} \int_{\mathbb{R}^n} \exp\left(-\frac{(x + iy - \xi)^2}{4\tau}\right) \varphi(\xi) d\xi$$

belongs to $BH^p(\Omega)$ and $\|u\|_{BH^p(\Omega)} \leq \text{const} \cdot \|\varphi\|_p$.

Proof. Let $(te^{i\theta}, x + iy) \in \Omega$. In the same way as in the proof of Lemma 7, we see that $u(te^{i\theta}, x + iy)$ is bounded in modulus by

$$\frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} \exp\left(-\frac{(x - \xi)^2 \cos \theta + y^2 \sin \theta}{4t}\right) |\varphi(\xi)| d\xi$$

$$\leq \exp\left(\frac{\beta^2 \sec \alpha}{4}\right) \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} \exp\left(-\frac{\xi^2 \cos \alpha}{4t}\right) |\varphi(x - \xi)| d\xi.$$

Hence Minkowski’s inequality for integrals yields

$$\|u\|_{H^p(t)} \leq \exp\left(\frac{\beta^2 \sec \alpha}{4}\right) \text{sec}^{n/2} \alpha \|\varphi\|_p.$$

By differentiation under the integral sign we have

$$|(\sqrt{t}\nabla)^n u(te^{i\theta}, x + iy)| \leq \int_{\mathbb{R}^n} Q_n(|x - \xi|, |y|, \sqrt{t}) \exp\left(-\frac{(x - \xi)^2 \cos \alpha}{4t}\right) |\varphi(\xi)| d\xi,$$

where Q_n is a homogeneous polynomial of degree n whose coefficients are all positive, whence by a change of variable and Minkowski’s inequality for integrals

$$\|(\sqrt{t}\nabla)^n u\|_{H^p(t)} \leq \|\varphi\|_p \int_{\mathbb{R}^n} Q_n(|\eta|, \beta, 1) \exp\left(-\frac{\eta^2 \cos \alpha}{4}\right) d\eta = \text{const} \cdot \|\varphi\|_p.$$

Therefore Lemma 2 completes the proof.
4. Proof of Theorems

Let us first note that it is sufficient to show that (1) has a solution \(u \) in \(BH^p_n(\Omega) \); and that (2) has a solution \(u \) in \(BH^\infty(\Omega) \).

Lemma 10. Let \(\beta' > \beta \) and \(\Omega' = \{ (\tau, x + iy); 0 < |\tau| < T, |\arg \tau| < \alpha, |y| < \beta' \sqrt{|\tau|} \} \). Then

\[
BH^p_\infty(\Omega) \subset BH^p(\Omega').
\]

In particular, if (1) (resp. (2)) has a solution in \(BH^p_n(\Omega') \) (resp. \(BH^\infty(\Omega') \)), then it belongs to \(BH^p_\infty(\Omega) \) (resp. \(BH^\infty_\infty(\Omega) \)).

Proof. Let \(f \in BH^p(\Omega') \) and \((\tau, y) \in D \). Applying Cauchy’s integral formula to \(f(\tau, x + iy) \) with fixed \(x_2, \ldots, x_n \), we obtain that if \(0 < r < (\beta' - \beta) \sqrt{|\tau|} \), then

\[
\left| \frac{\partial}{\partial x_1} f(\tau, x + iy) \right| \leq \frac{1}{2\pi r} \int_0^{2\pi} |f(\tau, x + iy + (re^{i\theta}, 0, \ldots, 0))| d\theta.
\]

Hence Minkowski’s inequality for integrals yields \(\| \sqrt{r} \frac{\partial f}{\partial x_1} \|_{H^p(\Omega)} \leq \frac{1}{\beta' - \beta} \| f \|_{BH^p(\Omega')} \). Therefore, in general, \(\| f \|_{BH^p_\infty(\Omega)} \leq \text{const.} \| f \|_{BH^p(\Omega')} \) for \(m \geq 1 \), and the implication follows.

Proof of Theorem 1. Define the mapping \(M \) on \(BH^p_n(\Omega) \) by \(Mv = u \), where \(u \) is the function defined by (6) with \(g = P(v, v^*) \). Let \(m \) be the degree of \(P \). Then Lemmas 4 and 6 yield that \(Mv \in BH^p_n(\Omega) \) and

\[
\|Mv\|_{BH^p_n(\Omega)} \leq C_1 \|\varphi\|_p + C_2(T + T^{1-n(m-1)/(2p)} \|v\|_{BH^p_n(\Omega)})^2 \|v\|_{BH^p_n(\Omega)}.
\]

If \(v_1 \) and \(v_2 \) belong to \(BH^p_n(\Omega) \), then \(Mv_1 - Mv_2 \) is the function defined by (6) with \(g = P(v_1, v_1^*) - P(v_2, v_2^*) \) and \(\varphi = 0 \), and hence Lemmas 4 and 6 again yield

\[
\|Mv_1 - Mv_2\|_{BH^p_n(\Omega)} \leq C_3 \left\{ T + T^{1-n(m-1)/(2p)} \left(\sum_{j=1}^2 \|v_j\|_{BH^p_n(\Omega)}^{m-1} \right) \right\} \|v_1 - v_2\|_{BH^p_n(\Omega)},
\]

where \(C_1, C_2 \) and \(C_3 \) are positive constants independent of \(v, v_1, v_2 \) and \(T \). Let \(R = 2C_1 \|\varphi\|_p \) and take \(T > 0 \) so small that

\[
C_2(T + T^{1-n(m-1)/(2p)} R^{m-1}) R < \frac{R}{2},
\]

\[
C_3(T + T^{1-n(m-1)/(2p)} (2R)^{m-1}) < 1.
\]

This is possible by the hypothesis on the degree of \(P \). Then \(M \) is a contraction mapping from the closed ball \(\{ f \in BH^p_n(\Omega); \|f\|_{BH^p_n(\Omega)} \leq R \} \) to itself, and hence has a unique fixed point \(u \). The restriction of this function \(u \) on \(\mathbb{R}^+ \times \mathbb{R}^n \) is the solution of (1). The theorem is proved.

Proof of Theorem 2. Define the mapping \(M \) on \(BH^\infty(\Omega) \) by \(Mv = u \), where \(u \) is the function defined by (6) with \(g = h(v, v^*) \). Let \(\tilde{h} \) be as in Lemma 5. Then Lemmas 5 and 7 yield that \(Mv \in BH^\infty(\Omega) \) and

\[
\|Mv\|_{BH^\infty(\Omega)} \leq C_4 \|\varphi\|_\infty + C_5 T \tilde{h}(\|v\|_{BH^\infty(\Omega)}) \|v\|_{BH^\infty(\Omega)};
\]
if \(v_1 \) and \(v_2 \) belong to \(BH^\infty(\Omega) \), then

\[
\|Mv_1 - Mv_2\|_{BH^\infty(\Omega)} \leq C_6 T \tilde{h}(\rho) \|v_1 - v_2\|_{BH^\infty(\Omega)},
\]

where \(\rho = \max\{\|v_1\|_{BH^\infty(\Omega)}, \|v_2\|_{BH^\infty(\Omega)}\} \); \(C_4, C_5 \) and \(C_6 \) are positive constants independent of \(v, v_1, v_2 \) and \(T \). Let \(R = 2C_4\|\varphi\|_{\infty} \) and take \(T > 0 \) so small that

\[
C_5 T \tilde{h}(R) R < \frac{R}{2},
\]

\[
C_6 T \tilde{h}(R) < 1.
\]

Then \(M \) is a contraction mapping from the closed ball \(\{f \in BH^\infty(\Omega); \|f\|_{BH^\infty(\Omega)} \leq R\} \) to itself, and hence has a unique fixed point \(u \). The restriction of this function \(u \) on \(\mathbb{R}^+ \times \mathbb{R}^n \) is the solution of (2). The theorem is proved.

Remark. Let \(u \) be the extension of the solution of (1) or (2). Then

\[
\lim_{(\tau, y) \to (0, 0), (\tau, y) \in D} \|u(\tau, \cdot + iy) - \varphi\|_p = 0.
\]

This may be considered to be a complex extension of the initial condition.

References