BESSEL CAPACITY, HAUSDORFF CONTENT AND THE TANGENTIAL BOUNDARY BEHAVIOR OF HARMONIC FUNCTIONS

H. Aikawa

Abstract. We compare the Bessel capacity with the Hausdorff content. For $E \subset \mathbb{R}^n$ we let $\bar{E}_{\gamma,c} = \bigcup_{x \in E} B(x,c\delta_{E}(x)^{\gamma})$ with $c > 0$ and $0 < \gamma \leq 1$. If E is an open set and $0 < \gamma < 1$, then $\bar{E}_{\gamma,c}$ is larger than E. It is shown that the Bessel capacity of $\bar{E}_{\gamma,c}$ is estimated above by the Hausdorff content of E. This estimation is applied to the tangential boundary behavior of harmonic functions in the upper half space.

1. Introduction

Let $K(r) \equiv 0$ be a nonnegative nonincreasing lower semicontinuous (l. s. c.) function for $r > 0$. For $x \in \mathbb{R}^n$ we define $K(x) = K(|x|)$, and assume that $K(x)$ is locally integrable on \mathbb{R}^n. For $E \subset \mathbb{R}^n$ we define the capacity C_K by

$$C_K(E) = \inf\{ \|\mu\| : K * \mu \geq 1 \text{ on } E \},$$

where $\|\mu\|$ denotes the total mass of a measure μ. Let $k_\alpha(r) = r^{\alpha-n}$ for $0 < \alpha < n$. This is the Riesz kernel of order α. If $K(r) = k_\alpha(r)$, then we write C_α for C_K and call it the Riesz capacity of order α.

Let $h(r)$ be a positive nondecreasing function for $r > 0$ and $h(0) = 0$. Such a function is called a measure function. We define the content M_h by

$$M_h(E) = \inf\{ \sum h(r_j) : E \subset \bigcup B(x_j, r_j) \},$$

where $B(x, r)$ stands for the open ball with center at x and radius r. If $h(r) = r^\beta$, then we write M_β for M_h and call it β-content. There is a close connection between C_α and M_β. The following theorem is well-known (cf. [4, §IV] and [6, Theorems 5.13 and 5.14]).
Theorem A.

(i) If \(M_{n-\alpha}(E) = 0 \), then \(C_{\alpha}(E) = 0 \).

(ii) Let \(n - \alpha < \beta \leq n \). Then \(C_{\alpha}(E) = 0 \) implies \(M_{\beta}(E) = 0 \).

(iii) There is a set \(E \) such that \(C_{\alpha}(E) = 0 \) and \(M_{n-\alpha}(E) > 0 \).

It is easy to see that \(C_{\alpha} \) and \(M_{n-\alpha} \) are both homogeneous of degree \(n - \alpha \). From this fact, we can easily obtain the above (i). However, in view of (iii), \(M_{n-\alpha}(E) = 0 \) is not characterized by \(C_{\alpha}(E) = 0 \). We have only partial comparison (ii).

One of the main purposes of this paper is to compare \(C_{\alpha} \) with a certain quantity, which may be regarded as an \((n - \alpha)\)-dimensional quantity. Hereafter we shall use the following notation. By the symbol \(A \) we denote an absolute positive constant whose value is unimportant and may change from line to line. If necessary, we use \(A_1, A_2, \ldots \), to specify them. We shall say that two positive quantities \(f \) and \(g \) are comparable, written \(f \approx g \), if and only if there exists a constant \(A \) such that \(A^{-1}g \leq f \leq Ag \). By \(|E|\) we denote the Lebesgue measure of \(E \).

For \(c > 0 \) and \(0 < \gamma \leq 1 \) we define

\[
\tilde{E}_{\gamma,c} = \bigcup_{x \in E} B(x, c\delta_E(x)^\gamma),
\]

where \(\delta_E(x) = \text{dist}(x, E^c) \). If \(E \) is an open set and \(0 < \gamma < 1 \), then \(\tilde{E}_{\gamma,c} \) is a proper extension of \(E \). Moreover, if \(E = B(0, r) \) and \(r > 0 \) is small, then \(\tilde{E}_{\gamma,c} \) is a ball with radius comparable to \(cr^{\gamma} \), so that

\[
M_{\beta}(\tilde{E}_{\gamma,c}) \approx r^{\gamma\beta} \approx M_{\beta}(E)^\gamma.
\]

So, one may regard \(M_{\beta}(\tilde{E}_{\gamma,c}) \) as a \(\beta\gamma \)-dimensional quantity. If \(\beta = n \), then \(M_{\beta}(E) \) is comparable with the Lebesgue measure \(|E|\). Let \(g_{\alpha} \) be the Bessel kernel. The Riesz and the Bessel kernels have the same asymptotics as \(r \to 0 \). However, \(g_{\alpha}(r) \) decreases rapidly as \(r \to \infty \) and hence \(g_{\alpha} \) is integrable on \(\mathbb{R}^n \). The capacity \(C_{g_{\alpha}}(E) \) is called the Bessel capacity of index \((\alpha, 1)\) and is denoted by \(B_{\alpha,1}(E) \). It is well known that

\[
C_{\alpha}(E) \approx B_{\alpha,1}(E) \text{ for } E \subset U,
\]

where \(U \) is a bounded set. Thus the Riesz capacity \(C_{\alpha} \) and the Bessel capacity \(B_{\alpha,1} \) have the same null sets. In the previous paper [3] we have proved

Theorem B. Let \(0 < \alpha < n \), \(c = 1 \) and \(\gamma = (n - \alpha)/n \). Then

\[
|\tilde{E}_{\gamma,c}| \leq AB_{\alpha,1}(E),
\]

where \(A > 0 \) depends only on \(n \) and \(\alpha \).

Here we generalize Theorem B to
Theorem 1. Let $0 < n - \alpha < \beta \leq n$, $\gamma = (n - \alpha)/\beta$ and $c > 0$. Then
\[M_\beta(\bar{E}_{\gamma,c}) \leq AB_{\alpha,1}(E), \]
where $A > 0$ depends only on n, α, β and c.

Actually, in [3], general kernels and capacities were treated. Our argument here for Theorem 1 is very different from that of [3] and heavily depends on the Bessel kernel. The case when $\beta = n$ was dealt with in [3]. We see that $M_\beta(E)$ and the Lebesgue measure $|E|$ are comparable in this case. The main idea in [3] was to compare a test measure for the capacity with the Lebesgue measure on a ball whose volume is equal to its capacity. In case $\beta < n$, a difficulty arises from the lack of a measure corresponding to the Lebesgue measure. We shall employ the Frostman lemma and the Besicovitch covering lemma (see Lemmas A and B below). We shall convert the measure given by the Frostman lemma so that the converted measure becomes a test measure for the dual definition of $B_{\alpha,1}$ (see Lemma C below).

We can consider a counterpart of Theorem 1 for L^p-capacity theory. Let $1 < p < \infty$. We define
\[C_{K,p}(E) = \inf\{\|f\|_p^p : K * f \geq 1 \text{ on } E\}. \]
If $K = k_\alpha$, then we write $R_{\alpha,p}(E)$ for $C_{K,p}(E)$ and call it the Riesz capacity of index (α, p). If $K = g_\alpha$, then we write $B_{\alpha,p}(E)$ for $C_{K,p}(E)$ and call it the Bessel capacity of index (α, p). In case $\alpha p < n$, the Riesz capacity $R_{\alpha,p}$ is homogeneous of degree $n - \alpha p$; the Riesz capacity $R_{\alpha,p}(E)$ and the Bessel capacity $B_{\alpha,p}(E)$ are comparable for $E \subset U$, where U is a bounded set.

Theorem 2. Let $1 < p < \infty$, $0 < n - \alpha p < \beta \leq n$, $\gamma = (n - \alpha p)/\beta$ and $c > 0$. Then
\[M_\beta(\bar{E}_{\gamma,c}) \leq AB_{\alpha,p}(E), \]
where $A > 0$ depends only on n, α, p, β and c.

The proof of Theorem 2 will use the same converted measure as in the proof of Theorem 1, the dual definition of $B_{\alpha,p}$ and the Hedberg–Wolff lemma (see Lemmas D and E). We shall later generalize these theorems, in connection with Nagel-Stein approach regions ([11]). We shall introduce a notion of “thin sets” and combine it with the generalized version of Theorems 1 and 2 to obtain the tangential boundary behavior of harmonic functions given as the Poisson integral of Bessel potentials.

The plan of this paper is as follows. We shall prove Theorems 1 and 2 in Sections 2 and 3, respectively. A theorem similar to Theorem 2 for the case $\alpha p = n$ will be given also in Section 3. In Section 4 we shall introduce the Nagel-Stein approach region and generalize Theorems 1 and 2. The boundary behavior of harmonic functions will be considered in Section 5. Finally, a norm estimate of tangential maximal functions of Poisson integrals will be given in Section 6. We shall observe that our arguments yield different proofs of Ahern-Nagel [2, Theorem 6.2 and Corollary 6.3].

The author would like to thank Professors K. Hatano, F.-Y. Maeda and Y. Mizuta for helpful comments.
2. Proof of Theorem 1

Let us recall the fundamental lemma due to Frostman (see e.g. [4, Theorem 1 on p. 7] and [6, Lemma 5.4]).

Lemma A. Let h be a measure function. Suppose F is a compact set such that $M_h(F) > 0$. Then there is a measure μ supported on F such that

$$\|\mu\| \approx M_h(F),$$

$$\mu(B(x,r)) \leq h(r) \text{ for all } x \in \mathbb{R}^n \text{ and } r > 0.$$

We also need the Besicovitch covering lemma (see e.g. [14, Theorem 1.3.5]).

Lemma B. Let E be a set in \mathbb{R}^n and suppose that $r(x)$ is a positive bounded function on E. Then we can select $\{x_j\} \subset E$ with the following properties:

(i) $E \subset \bigcup_j B(x_j, r(x_j))$.

(ii) The multiplicity of $\{B(x_j, r(x_j))\}$ is bounded by a positive constant N depending only on the dimension. In other words, $\sum \chi_{B(x_j, r(x_j))} \leq N$.

We note the dual definition of C_K.

Lemma C. Let E be an analytic set. Then

$$C_K(E) = \sup\{\|\mu\| : \mu \text{ is concentrated on } E, K * \mu \leq 1 \text{ on } \mathbb{R}^n\}.$$

For each integer ν we let G_ν be the family of cubes

$$Q = \{(x_1, \ldots, x_n) : \frac{k_i}{2^\nu} \leq x_i < \frac{k_i + 1}{2^\nu}, i = 1, \ldots, n\},$$

where k_1, \ldots, k_n are integers. We let $G = \{G_\nu\}_{\nu = -\infty}^\infty$. For a cube Q of side length ℓ we put $\tau_h(Q) = h(\ell)$ and define

$$m_h(E) = \inf\{\sum_{j=1}^{\infty} \tau_h(Q_j) : E \subset \bigcup_{j=1}^{\infty} Q_j, Q_j \in G\}.$$

Then it is easy to see that

$$M_h(E) \approx m_h(E) \text{ for any set } E$$

([4, (1.3) on p. 7]). We observe that m_h has the increasing property.

Lemma 1. Let $\lim_{r \to \infty} h(r) = \infty$. If $E_j \uparrow E$, then $\lim_{j \to \infty} m_h(E_j) = m_h(E)$. In particular, if E is an F_σ-set, then

$$m_h(E) = \sup_{F \subset E} m_h(F).$$

$$-4-$$
Proof. It is clear that \(\lim_{j \to \infty} m_h(E_j) \leq m_h(E) \). Hence, it is sufficient to show the opposite inequality, under the assumption that \(\lim_{j \to \infty} m_h(E_j) < \infty \). Let \(\varepsilon > 0 \). By definition we find cubes \(Q_{j,i} \in G \) such that

\[
E_j \subset \bigcup_{i=1}^{\infty} Q_{j,i},
\]

\[
\sum_{i=1}^{\infty} \tau_h(Q_{j,i}) < m_h(E_j) + \varepsilon 2^{-j}.
\]

Since \(\lim_{j \to \infty} m_h(E_j) < \infty \) and \(\lim_{r \to \infty} h(r) = \infty \), it follows that the side lengths of \(Q_{j,i} \) are bounded. Hence we can select maximal cubes \(Q_1, Q_2, \ldots, Q_\nu, \ldots \) whose union covers \(E = \bigcup_{j=1}^{\infty} E_j \). Now, in the same way as in [12, Theorem 52], we can show

\[
\sum_{\nu=1}^{\infty} \tau_h(Q_\nu) \leq \lim_{j \to \infty} m_h(E_j) + 2\varepsilon,
\]

and hence \(m_h(E) \leq \lim_{j \to \infty} m_h(E_j) + 2\varepsilon \). Since \(\varepsilon > 0 \) is arbitrary, the lemma follows.

As a corollary to (2.1) and Lemma 1 we have the following:

Corollary 1. Let \(\lim_{r \to \infty} h(r) = \infty \). If \(E \) is an \(F_{\sigma} \)-set, then

\[
M_h(E) \approx \sup_{\substack{F \subset E \text{ is compact}}} M_h(F).
\]

Remark. The assumption that \(\lim_{r \to \infty} h(r) = \infty \) is essential in Lemma 1. In fact, suppose that \(\lim_{r \to \infty} h(r) = a < \infty \). Then, by definition, \(m_h(E) \leq a \) for any bounded set \(E \). On the other hand it is easy to see that \(m_h(\mathbb{R}^n) = \infty \) if \(\lim\inf_{r \to 0} h(r)/r > 0 \). Thus the increasing property does not hold in general. This example is suggested by K. Hatano. We observe that [4, (3.2) on p.9] actually requires some additional assumption like \(\lim_{r \to \infty} h(r) = \infty \) or the boundedness of \(E \).

From Lemmas A, C and 1 we show the following lemma.

Lemma 2. Let \(0 < n - \alpha < \beta \leq n \). Then

\[
M_\beta(E) \leq AB_\alpha,1(E),
\]

where \(A > 0 \) depends only on \(n, \alpha \) and \(\beta \).

Proof. Since \(B_{\alpha,1} \) is an outer capacity, i.e.,

\[
B_{\alpha,1}(E) = \inf_{E \subset U, \text{U is open}} B_{\alpha,1}(U),
\]

we may assume that \(E \) is an open set. Let \(F \) be a compact subset of \(E \). By Lemma A there is a measure \(\mu \) on \(F \) such that

\[
\| \mu \| \approx M_\beta(F),
\]

\[
\mu(B(x, r)) \leq r^\beta \text{ for all } x \in \mathbb{R}^n \text{ and } r > 0.
\]

Observe from (2.3) that

\[
g_\alpha \ast \mu(x) = \int_0^\infty g_\alpha(r)d\mu(B(x, r)) = \int_0^\infty \mu(B(x, r))d(-g_\alpha(r)) \\
\leq \int_0^\infty r^\beta d(-g_\alpha(r)) = A_1 < \infty.
\]

Hence Lemma C and (2.2) yield

\[
B_{\alpha, 1}(E) \geq A_1^{-1}\| \mu \| \approx M_\beta(F).
\]

Taking the supremum over all \(F \), we obtain the required inequality from Corollary 1. The lemma follows.

Proof of Theorem 1. By (2.1) and Lemma 1 we may assume that \(E \) is a bounded set. Since \(B_{\alpha, 1} \) is an outer capacity, we may furthermore assume that \(E \) is an open set. By Lemma 2 we have only to show that

\[
M_\beta(\widetilde{E}_{\gamma, c} \setminus E) \leq AB_{\alpha, 1}(E).
\]

In view of Corollary 1 it is sufficient to show that

\[
M_\beta(F) \leq AB_{\alpha, 1}(E)
\]

for any compact subset \(F \) of \(\widetilde{E}_{\gamma, c} \setminus E \), since \(\widetilde{E}_{\gamma, c} \setminus E \) is an \(F_\sigma \)-set. By Lemma A we can find a measure \(\mu \) on \(F \) satisfying (2.2) and (2.3).

By definition, for each \(x \in \widetilde{E}_{\gamma, c} \setminus E \), there is \(x^* \in E \) such that \(x \in B(x^*, c\delta_E(x^*)^\gamma) \). We let

\[
r(x) = \sup_{x^* \in E, x \in B(x^*, c\delta_E(x^*)^\gamma)} \delta_E(x^*).
\]

We observe that \(r(x) \) is a positive bounded function on \(\widetilde{E}_{\gamma, c} \setminus E \). We invoke Lemma B and find \(\{x_j\} \subset F \) such that

\[
F \subset \bigcup B(x_j, 2cr_j^\gamma) \text{ with } r_j = r(x_j),
\]

\[
\text{the multiplicity of } \{B(x_j, 2cr_j^\gamma)\} \text{ is bounded by } N.
\]
By definition we can find $x^*_j \in E$ such that

\begin{align}
(2.7) & \quad r_j/2 < \delta_E(x^*_j) \leq r_j, \\
(2.8) & \quad |x_j - x^*_j| < cr_j^\gamma.
\end{align}

We put $\mu_j = \mu|_{B(x_j, 2cr_j^\gamma)}$ and observe from (2.5) and (2.6) that

\begin{equation}
(2.9) \quad \mu \leq \sum \mu_j \leq N \mu.
\end{equation}

From μ_j we construct a measure λ_j as follows: for Borel sets S

\begin{align*}
\lambda_j(S) &= \mu_j(4(S - x^*_j) + x_j) & \text{if } cr_j^\gamma \leq r_j, \\
\lambda_j(S) &= \mu_j(4cr_j^\gamma - 1(S - x^*_j) + x_j) & \text{if } cr_j^\gamma > r_j.
\end{align*}

It is easy to see that

\begin{align}
(2.10) & \quad \lambda_j \text{ is concentrated on } B(x^*_j, \frac{1}{2} \min\{cr_j^\gamma, r_j\}), \\
(2.11) & \quad \|\lambda_j\| = \|\mu_j\|, \\
(2.12) & \quad \lambda_j(B(x, \rho)) = \mu_j(B(x, \rho)) = \|\mu_j\|
\end{align}

for $\rho \geq \max\{|x - x_j| + 2cr_j^\gamma, |x - x^*_j| + \frac{1}{2} \min\{cr_j^\gamma, r_j\}\}$.

Moreover, in view of (2.3)

\begin{equation}
(2.13) \quad \|\lambda_j\| = \|\mu_j\| \leq (2cr_j^\gamma)^\beta;
\end{equation}

for all $x \in \mathbb{R}^n$ and $r > 0$

\begin{align}
(2.14) & \quad \lambda_j(B(x, r)) \leq (4r)^\beta & \text{if } cr_j^\gamma \leq r_j, \\
(2.15) & \quad \lambda_j(B(x, r)) \leq (4cr_j^\gamma - 1r)^\beta & \text{if } cr_j^\gamma > r_j.
\end{align}

It follows from (2.7) that $B(x^*_j, r_j/2) \subset E$ and so from (2.10) that the measure λ_j is concentrated on E. Let $\lambda = \sum \lambda_j$. We claim

\begin{equation}
(2.16) \quad g_\alpha \ast \lambda \leq A_2 \text{ on } \mathbb{R}^n.
\end{equation}

If we have (2.16), then the proof is easy. Since λ is concentrated on E, it follows from Lemma C and (2.11) that

$$B_{\alpha,1}(E) \geq A_2^{-1}\|\lambda\| = A_2^{-1}\sum \|\mu_j\| \geq A_2^{-1}\|\mu\|.$$
This, together with (2.2), yields (2.4).

Let us prove (2.16). Hereafter we fix \(x \in \mathbb{R}^n \). First we claim

\[
\text{(2.17)} \quad g_\alpha \ast \lambda_j(x) \leq A
\]

with \(A \) independent of \(j \) and \(x \). Suppose \(cr_j^\gamma \leq r_j \). Then by (2.14)

\[
g_\alpha \ast \lambda_j(x) = \int_0^\infty \lambda_j(B(x, r))d(-g_\alpha(r)) \leq \int_0^\infty (4r)^\beta d(-g_\alpha(r)) = A < \infty.
\]

Thus (2.17) follows. Suppose \(cr_j^\gamma > r_j \). Then by (2.13) and (2.15)

\[
g_\alpha \ast \lambda_j(x) = \int_0^\infty \lambda_j(B(x, r))d(-g_\alpha(r)) \leq \int_0^{r_j/2} (4cr_j^{\gamma-1}r)^\beta d(-g_\alpha(r)) + (2cr_j^\gamma) \int_{r_j/2}^\infty d(-g_\alpha(r)) \leq Ar_j^{(\gamma-1)\beta} r_j^{\beta+\alpha-n} + Ar_j^\gamma r_j^{\alpha-n} = A < \infty.
\]

Thus (2.17) follows in this case, too.

Let us write

\[
\lambda' = \sum' \lambda_j, \quad \lambda'' = \sum'' \lambda_j,
\]

where \(\sum' \) (resp. \(\sum'' \)) denotes the summation over \(j \) for which \(x \in B(x_j, 2cr_j^\gamma) \) (resp. \(x \notin B(x_j, 2cr_j^\gamma) \)). In view of (2.6), the number of \(j \) appearing in \(\sum' \) is at most \(N \). Hence by (2.17)

\[
\text{(2.18)} \quad g_\alpha \ast \lambda'(x) \leq A.
\]

Next, we consider \(g_\alpha \ast \lambda''(x) \). Let us estimate \(\lambda''(B(x, r)) = \sum'' \lambda_j(B(x, r)) \). In the summation \(\sum'' \), we may consider only \(j \) such that \(\lambda_j(B(x, r)) > 0 \). By (2.10) this implies that \(|x-x_j^*| \leq r + cr_j^\gamma/2 \). In view of the definition of \(\sum'' \), we have \(|x-x_j| \geq 2cr_j^\gamma \). Using these inequalities and (2.8), we obtain

\[
r + cr_j^\gamma/2 \geq |x-x_j^*| \geq |x-x_j| - |x_j-x_j^*| \geq 2cr_j^\gamma - cr_j^\gamma = cr_j^\gamma,
\]

so that \(r \geq cr_j^\gamma/2, |x-x_j^*| \leq 2r, |x_j-x_j^*| \leq 2r \) and \(|x-x_j| \leq 4r \). Hence

\[
\max\{|x-x_j| + 2cr_j^\gamma, |x-x_j^*| + \frac{1}{2} \min\{cr_j^\gamma, r_j\}\} \leq \max\{8r, 3r\} = 8r.
\]

- 8 -
Therefore, (2.12) implies that

\[\lambda_j(B(x, 8r)) = \mu_j(B(x, 8r)) \]

so that

\[\lambda''(B(x, r)) = \sum '' \lambda_j(B(x, r)) \]
\[\leq \sum '' \lambda_j(B(x, 8r)) = \sum '' \mu_j(B(x, 8r)) \]
\[\leq \sum \mu_j(B(x, 8r)) \leq N \mu(B(x, 8r)), \]

where the last inequality follows from (2.9). Hence by (2.3)

(2.19) \[\lambda''(B(x, r)) \leq N(8r)\beta \] for all \(r > 0 \).

Thus

\[g_\alpha * \lambda''(x) = \int_0^\infty \lambda''(B(x, r))d(-g_\alpha(r)) \leq A \int_0^\infty r^{\beta}d(-g_\alpha(r)) = A < \infty. \]

This, together with (2.18), yields (2.16). The proof is complete.

3. Proof of Theorem 2

Let \(\frac{1}{p} + \frac{1}{q} = 1 \). We have the dual definition of \(C_{K,p} \) ([8, Theorem 14]).

Lemma D. Let \(E \) be an analytic set. Then

\[C_{K,p}(E) = \sup\{\|\mu\|^p : \mu \text{ is concentrated on } E, \|K * \mu\|_q \leq 1\}. \]

Let \(\alpha p \leq n \). We put

\[W^\mu_{\alpha,p}(x) = \int_0^1 \left(\frac{\mu(B(x, r))}{r^{n-\alpha p}} \right)^{q-1} \frac{dr}{r}. \]

Hedberg and Wolff [7] proved the following lemma (see also [1] and [14, Theorem 4.7.5]).

Lemma E. Let \(\alpha p \leq n \). Then

\[\|g_\alpha * \mu\|_q^q \approx \int W^\mu_{\alpha,p}(x)d\mu(x). \]

In the same way as in the proof of Lemma 2, we obtain the following lemma from Lemmas A, D and E.
Lemma 3. Let $1 < p < \infty$ and $0 \leq n - \alpha p < \beta \leq n$. Then

$$M_\beta(E) \leq AB_{\alpha,p}(E),$$

where $A > 0$ depends only on n, α, p and β.

Proof. Since $B_{\alpha,p}$ is an outer capacity, we may assume that E is an open set. Let F be a compact subset of E. By Lemma A there is a measure μ on F satisfying (2.2) and (2.3). Observe from (2.3) that

$$W_{\alpha,p}^\mu(x) \leq \int_0^1 \left(\frac{r^{\beta}}{r^{n-\alpha p}} \right)^{q-1} \frac{dr}{r} = A < \infty,$$

since $n - \alpha p < \beta$. Hence Lemma E yields $\|g_\alpha \ast \mu\|_q \leq A\|\mu\|$, or equivalently

$$\left\| g_\alpha \ast \frac{\mu}{A\|\mu\|^{1/q}} \right\|_q \leq 1.$$

Hence Lemma D and (2.2) yield

$$B_{\alpha,p}(E) \geq \left(\frac{\|\mu\|}{A\|\mu\|^{1/q}} \right)^p = A\|\mu\| \approx M_\beta(F).$$

Taking the supremum over all F, we obtain the required inequality from Corollary 1.

Proof of Theorem 2. We may assume that E is a bounded open set. In view of Lemma 3 and Corollary 1 it is sufficient to show that

$$(3.1) \quad M_\beta(F) \leq AB_{\alpha,p}(E)$$

for any compact set $F \subset \tilde{E}_{r_j,cr_j} \setminus E$. In the same way as in the proof of Theorem 1 we can find a measure μ on F satisfying (2.2) and (2.3). We find balls $B(x_j,2cr_j)$ satisfying (2.5) and (2.6). Let $\mu_j = \mu|_{B(x_j,2cr_j)}$ and let λ_j, λ, λ' and λ'' be as in the proof of Theorem 1. Observe that (2.9)–(2.15) and (2.19) hold. In particular λ is concentrated on E and

$$(3.2) \quad \|\lambda\| \approx \|\mu\| \approx M_\beta(F).$$

If $cr_j^\gamma \leq r_j$, then by (2.14)

$$W_{\alpha,p}^{\lambda_j}(x) \leq A \int_0^1 \left(\frac{4r^{\gamma}}{r^{n-\alpha p}} \right)^{q-1} \frac{dr}{r} = A < \infty.$$
If \(cr_j^\gamma > r_j \), then by (2.13) and (2.15)
\[
W_{\alpha,p}^\lambda(x) \leq A \int_0^1 \left(\frac{\min\{4cr_j^{\gamma-1}r, 2cr_j^\gamma\}}{r^{n-\alpha p}} \right)^{q-1} \frac{dr}{r} \leq A < \infty.
\]
Thus \(W_{\alpha,p}^\lambda(x) \leq A \) in any case, and hence from (2.6) we have \(W_{\alpha,p}^{\lambda'}(x) \leq A \). From (2.19) we have
\[
W_{\alpha,p}^{\lambda''}(x) \leq A \int_0^1 \left(\frac{(8r)^\beta}{r^{n-\alpha p}} \right)^{q-1} \frac{dr}{r} = A < \infty.
\]
Thus \(W_{\alpha,p}^\lambda(x) \leq A \). Hence Lemma E yields \(\|g_\alpha * \lambda\|_q \leq A\|\lambda\|_q \), or equivalently
\[
\left\| g_\alpha * \frac{\lambda}{A\|\lambda\|^{1/q}} \right\|_q \leq 1.
\]
Since \(\lambda \) is concentrated on \(E \), it follows from Lemma D and (3.2) that
\[
B_{\alpha,p}(E) \geq \left(\frac{\|\lambda\|}{A\|\lambda\|^{1/q}} \right)^p = A\|\lambda\| \approx M_\beta(F).
\]
Thus (3.1) follows. The theorem is proved.

Observe that if \(r > 0 \) is small, then
\[
B_{\alpha,p}(B(0,r)) \approx \begin{cases} r^{n-\alpha p} & \text{if } \alpha p < n, \\ \left(\log \frac{1}{r} \right)^{1-p} & \text{if } \alpha p = n. \end{cases}
\]
Therefore, it may be natural to consider a logarithmic expansion in case \(\alpha p = n \).

Theorem 2’. Let \(1 < p < \infty \), \(\alpha p = n \), \(0 < \beta \leq n \) and \(c > 0 \). We put
\[
\varphi(r) = \varphi_{\beta,p}(r) = \begin{cases} \left(\log \frac{1}{r} \right)^{(1-p)/\beta} & , \ 0 < r < 1/2, \\ 2(\log 2)^{(1-p)/\beta r} & , \ r \geq 1/2. \end{cases}
\]
and
\[
\tilde{E}_{\varphi,c} = \bigcup_{x \in E} B(x, c\varphi(\delta_E(x))).
\]
Then
\[
M_\beta(\tilde{E}_{\varphi,c}) \leq AB_{\alpha,p}(E),
\]
where \(A > 0 \) depends only on \(n, \alpha, p, \beta \) and \(c \).

Proof. We can prove the theorem in a way similar to Theorem 2. But for the completeness we give a proof. We observe that \(\varphi(r) \) is a positive continuous increasing function. We may assume that \(E \) is a bounded open set. In view of Lemma 3 and Corollary 1 it is sufficient to show that

\[
M_{\beta}(F) \leq AB_{\alpha,p}(E)
\]

for any compact subset \(F \subset \tilde{E}_{\varphi,c} \setminus E \). In the same way as in the proof of Theorem 1 we can find a measure \(\mu \) on \(F \) satisfying (2.2) and (2.3). Let

\[
\rho(x) = \sup_{x^{*} \in E} \delta_{E}(x^{*})
\]

and observe that \(\rho(x) \) is a positive bounded function on \(\tilde{E}_{\varphi,c} \setminus E \). By Lemma B we find \(\{x_{j}\} \subset F \) such that

\[
F \subset \bigcup B(x_{j}, 2c\varphi(r_{j})) \text{ with } r_{j} = \rho(x_{j}),
\]

(3.5) the multiplicity of \(\{B(x_{j}, 2c\varphi(r_{j}))\} \) is bounded by \(N \).

By definition we can find \(x_{j}^{*} \in E \) such that

\[
r_{j}/2 < \delta_{E}(x_{j}^{*}) \leq r_{j} \text{ and } |x_{j} - x_{j}^{*}| < c\varphi(r_{j}).
\]

(3.7) We put \(\mu_{j} = \mu|_{B(x_{j}, 2c\varphi(r_{j}))} \) and observe from (3.5) and (3.6) that

\[
\mu \leq \sum \mu_{j} \leq N\mu.
\]

From \(\mu_{j} \) we construct a measure \(\lambda_{j} \) as follows: for Borel sets \(S \)

\[
\lambda_{j}(S) = \mu_{j}(4(S - x_{j}^{*}) + x_{j}) \quad \text{if } c\varphi(r_{j}) \leq r_{j},
\]

\[
\lambda_{j}(S) = \mu_{j}(4c\varphi(r_{j})r_{j}^{-1}(S - x_{j}^{*}) + x_{j}) \quad \text{if } c\varphi(r_{j}) > r_{j}.
\]

It is easy to see that

\[
\lambda_{j} \text{ is concentrated on } B(x_{j}^{*}, \frac{1}{2} \min\{c\varphi(r_{j}), r_{j}\}),
\]

\[
\|\lambda_{j}\| = \|\mu_{j}\| \leq (2c\varphi(r_{j}))^{\beta},
\]

\[
\lambda_{j}(B(x, \rho)) = \mu_{j}(B(x, \rho)) = \|\mu_{j}\|
\]

for \(\rho \geq \max\{|x - x_{j}| + 2c\varphi(r_{j}), |x - x_{j}^{*}| + \frac{1}{2} \min\{c\varphi(r_{j}), r_{j}\}\} \).
and for all \(x \in \mathbb{R}^n \) and \(r > 0 \)

\[
\begin{align*}
\lambda_j(B(x, r)) &\leq (4r)^\beta & &\text{if } c\varphi(r_j) \leq r_j, \\
\lambda_j(B(x, r)) &\leq (4c\varphi(r_j)r_j^{-1}r)^\beta & &\text{if } c\varphi(r_j) > r_j.
\end{align*}
\]

Let \(\lambda = \sum \lambda_j \). It follows from (3.7) that \(B(x_j^*, r_j/2) \subset E \) so that the measure \(\lambda_j \) is concentrated on \(E \), and so is \(\lambda \). We claim

(3.8) \[W_{\alpha,p}^{\lambda_j}(x) \leq A \]

with \(A \) independent of \(j \) and \(x \). If \(c\varphi(r_j) \leq r_j \), then

\[
W_{\alpha,p}^{\lambda_j}(x) \leq A \int_0^1 \frac{(4r)^\beta}{r} dr = A < \infty,
\]

so that (3.8) follows. If \(c\varphi(r_j) > r_j \), then

\[
W_{\alpha,p}^{\lambda_j}(x) \leq A \int_0^1 \min\{ (4c\varphi(r_j)r_j^{-1}r)^\beta, (2c\varphi(r_j))^{\beta(q-1)} \} \frac{dr}{r}
\]

\[
\leq \begin{cases} A\varphi(r_j)^{\beta(q-1)} \left(\frac{1}{\beta(q-1)} + \log \frac{1}{r_j} \right) & \text{if } 0 < r_j < 1, \\
A\varphi(r_j)^{\beta(q-1)} \frac{1}{\beta(q-1)} r_j^{-\beta(q-1)} & \text{if } r_j \geq 1,
\end{cases}
\]

so that in view of the definition of \(\varphi \) we have (3.8) in this case, too. Let us write

\[
\lambda' = \sum' \lambda_j, \quad \lambda'' = \sum'' \lambda_j,
\]

where \(\sum' \) (resp. \(\sum'' \)) denotes the summation over \(j \) for which \(x \in B(x_j, 2c\varphi(r_j)) \) (resp. \(x \notin B(x_j, 2c\varphi(r_j)) \)). In view of (3.6) the number of \(j \) appearing in \(\sum' \) is at most \(N \). Hence (3.8) implies that

(3.9) \[W_{\alpha,p}^{\lambda'}(x) \leq A. \]

In the same way as in the proof of Theorem 1 we estimate \(\lambda''(B(x, r)) \). Observe that if \(x \notin B(x_j, 2c\varphi(r_j)) \) and \(\lambda_j(B(x, r)) > 0 \), then \(|x - x_j| + 2c\varphi(r_j) < 8r \), so that \(\lambda_j(B(x, 8r)) = \mu_j(B(x, 8r)) \) and (2.19) holds. Therefore

\[
W_{\alpha,p}^{\lambda''}(x) \leq A \int_0^1 (8r)^{\beta(q-1)} \frac{dr}{r} = A < \infty.
\]

This, together with (3.9), yields

\[W_{\alpha,p}^{\lambda} \leq A \text{ on } \mathbb{R}^n. \]

Hence Lemmas D and E and (2.2) imply

\[B_{\alpha,p}(E) \geq A\|\lambda\| \approx \|\mu\| \approx M_\beta(F). \]

Thus (3.4) follows. The theorem is proved.
4. Generalization

Let Ω be a set in \mathbb{R}^{n+1} with $\Omega \cap \partial \mathbb{R}^{n+1} = \{0\}$. For simplicity we assume that $\Omega \supset \{(0, y) : y > 0\}$. Put $\Omega(y) = \{x : (x, y) \in \Omega\}$. We say that Ω satisfies the Nagel-Stein condition (abbreviated to (NS)), if

(i) $|\Omega(y)| \leq Ay^n$ with $A = A(\Omega)$;
(ii) there is $a_0 > 0$ such that $(x_1, y_1) \in \Omega$ and $|x - x_1| < a_0(y - y_1) \implies (x, y) \in \Omega$.

It is easy to see that $\Omega(y)$ is an increasing set function of y, i.e., if $y_1 < y_2$, then $\Omega(y_1) \subset \Omega(y_2)$. For E we put

$$e_{E; \gamma,c; \Omega} = \bigcup_{x \in E} (x + \Omega(c\delta_E(x)^\gamma)).$$

We have a generalization of Theorems 1, 2 and 2'.

Theorem 3. Let $1 \leq p < \infty$, $0 < \alpha < n$, $0 \leq n - \alpha p < \beta \leq n$, $\gamma = (n - \alpha p)/\beta$, $c > 0$ and let $\varphi(r) = \varphi_{\beta,p}(r)$ be as in (3.3) if $\alpha p = n$. Let Ω satisfy (NS). Then

$$M^\beta(e_{\gamma,c; \Omega}) \leq AB_{\alpha,p}(E) \quad \text{if } \alpha p < n,$$

$$M^\beta(e_{\varphi,c; \Omega}) \leq AB_{\alpha,p}(E) \quad \text{if } \alpha p = n,$$

where $A > 0$ depends only on n, α, p, β, c and Ω.

We shall prove this theorem as a corollary to Theorems 1, 2 and 2' and the following lemma.

Lemma 4. Let $0 < \beta \leq n$ and let Ω satisfy (NS). If V is an open subset of \mathbb{R}^n, then

$$M^\beta \left(\bigcup_{x \in V} (x + \Omega(\delta_V(x))) \right) \leq AM^\beta(V),$$

where $\delta_V(x) = \text{dist}(x, V^c)$ and $A > 0$ depends only on β, Ω and n.

We assume Lemma 4, then the proof of Theorem 3 is easy.

Proof of Theorem 3. We prove the theorem only in the case $\alpha p < n$, since the case $\alpha p = n$ is similarly proved. First we claim that

$$(4.1) \quad e_{E; \gamma,c; \Omega} \subset \bigcup_{x \in e_{E; \gamma,c}} (x + \Omega(\delta_{E; \gamma,c}(x))).$$

Suppose $x \in E$. By definition $B(x, c\delta_E(x)^\gamma) \subset e_{E; \gamma,c}$, so that $c\delta_E(x)^\gamma \leq \delta_{E; \gamma,c}(x)$. Hence

$$e_{E; \gamma,c; \Omega} = \bigcup_{x \in E} (x + \Omega(c\delta_E(x)^\gamma)) \subset \bigcup_{x \in E} (x + \Omega(\delta_{E; \gamma,c}(x))) \subset \bigcup_{x \in e_{E; \gamma,c}} (x + \Omega(\delta_{E; \gamma,c}(x))).$$
Thus (4.1) follows. Combining (4.1), Lemma 4 with \(V = \tilde{E}_{\gamma,c} \) and Theorems 1 and 2, we obtain

\[
M_\beta(\tilde{E}_{\gamma,c};\Omega) \leq M_\beta \left(\bigcup_{x \in \tilde{E}_{\gamma,c}} (x + \Omega(\delta_{\tilde{E}_{\gamma,c}}(x))) \right) \leq A M_\beta(\tilde{E}_{\gamma,c}) \leq A B_{\alpha,p}(E).
\]

Thus the theorem is proved.

For a proof of Lemma 4 we consider the Whitney decomposition of \(V \), i.e. \(Q_k \) are closed cubes with sides parallel to the axes with the following properties:

(i) \(\bigcup Q_k = V \);
(ii) the interiors of \(Q_k \) are mutually disjoint;
(iii) \[
\text{(4.2) } \text{diam}(Q_k) \leq \text{dist}(Q_k, V^c) \leq 4 \text{diam}(Q_k)
\]

([13, Theorem 1 on p.167]). Let \(\tilde{Q}_k \) be the cube which has the same center as \(Q_k \) but is expanded by the factor \(9/8 \). Then

\[
\text{(4.3) } \text{the multiplicity of } \tilde{Q}_k \text{ is bounded by } N_1,
\]

where \(N_1 \) depends only on the dimension \(n \) ([13, Proposition 3 on p.169]). In view of (4.2) we can choose a constant \(c_0, 0 < c_0 < 1 \), with the property that

\[
\text{(4.4) } B(x, c_0 \delta_V(x)) \cap Q_k \neq \emptyset \implies B(x, c_0 \delta_V(x)) \subset \tilde{Q}_k.
\]

Using these facts, we can prove the following lemma.

Lemma 5. Suppose \(V \) is an open subset of \(\mathbb{R}^n \). Then there is a covering \(\mathcal{B} = \{B(x_j, r_j)\} \) of \(V \) such that

\[
\text{(4.5) } r_j \geq \delta_V(x_j),
\]

\[
\text{(4.6) } \sum_j r_j^\beta \leq A M_\beta(V),
\]

where \(A > 0 \) depends only on the dimension \(n \) and \(\beta \).

Proof. Since \(V \) is an open set, it follows that \(M_\beta(V) > 0 \). By definition we can find a covering \(\{B(\xi_j, \rho_j)\} \) of \(V \) such that

\[
\text{(4.7) } \sum_j \rho_j^\beta \leq 2 M_\beta(V).
\]

From this covering we construct a covering \(\mathcal{B} \) with the required properties.
Let $\bigcup_k Q_k$ be the Whitney decomposition of V and let \tilde{Q}_k be the expanded cube as before the lemma. We let

\[K_1 = \{ k : \text{there is } B(\xi_j, \rho_j) \text{ meeting } Q_k \text{ such that } \rho_j \geq c_0 \delta_V(\xi_j) \}, \]

\[K_2 = \{ k : \text{if } B(\xi_j, \rho_j) \text{ meets } Q_k, \text{ then } \rho_j < c_0 \delta_V(\xi_j) \}, \]

where c_0 is the constant appearing in (4.4).

First suppose $k \in K_1$. We can find $j = j(k)$ such that $B(\xi_j, \rho_j) \cap Q_k \neq \emptyset$ and $\rho_j \geq c_0 \delta_V(\xi_j)$. Let $\xi \in B(\xi_j, \rho_j) \cap Q_k$. We have from (4.2)

\[\text{diam}(Q_k) \leq \text{dist}(Q_k, V^c) \leq \delta_V(\xi) \leq \delta_V(\xi_j) + \rho_j \leq (1 + c_0^{-1})\rho_j. \]

Hence $Q_k \subset B(\xi_j, (2 + c_0^{-1})\rho_j)$, so that

\[(4.8) \quad \bigcup_{k \in K_1} Q_k \subset \bigcup_{k \in K_1} B(\xi_j(k), (2 + c_0^{-1})\rho_j(k)), \]

\[(4.9) \quad (2 + c_0^{-1})\rho_j(k) \geq (2 + c_0^{-1})c_0 \delta_V(\xi_j(k)) \geq \delta_V(\xi_j(k)). \]

Second suppose $k \in K_2$. Since $\rho_j < c_0 \delta_V(\xi_j)$ for $B(\xi_j, \rho_j) \cap Q_k \neq \emptyset$, we obtain from (4.4) that

\[Q_k \subset \bigcup_{B(\xi_j, \rho_j) \cap Q_k \neq \emptyset} B(\xi_j, \rho_j) \subset \tilde{Q}_k. \]

From the first inclusion we have

\[
|Q_k| \leq A \sum_{B(\xi_j, \rho_j) \cap Q_k \neq \emptyset} \rho_j^n = A|Q_k| \sum_{B(\xi_j, \rho_j) \cap Q_k \neq \emptyset} \left(\frac{\rho_j}{\text{diam}(Q_k)} \right)^n
\leq A|Q_k| \sum_{B(\xi_j, \rho_j) \cap Q_k \neq \emptyset} \left(\frac{\rho_j}{\text{diam}(Q_k)} \right)^\beta,
\]

so that the second inclusion yields

\[\text{diam}(Q_k)^\beta \leq A \sum_{B(\xi_j, \rho_j) \cap Q_k \neq \emptyset} \rho_j^\beta \leq A \sum_{B(\xi_j, \rho_j) \subset \tilde{Q}_k} \rho_j^\beta. \]

Hence

\[(4.10) \quad \sum_{k \in K_2} \text{diam}(Q_k)^\beta \leq A \sum_{k \in K_2} \sum_{B(\xi_j, \rho_j) \subset \tilde{Q}_k} \rho_j^\beta \leq AN_1 \sum_j \rho_j^\beta, \]

where the last inequality follows from (4.3). Note that $Q_k \subset B(x_{Q_k}, \text{diam}(Q_k))$ with x_{Q_k} being the center of Q_k. We have from (4.2)

\[(4.11) \quad \delta_V(x_{Q_k}) \leq \text{dist}(Q_k, V^c) + \text{diam}(Q_k) \leq 5 \text{diam}(Q_k). \]
We observe from (4.7), (4.8) and (4.10) that
\[B = \left\{ B(\xi_j(k), (2 + c_0^{-1})\rho_j(k)) : k \in K_1 \right\} \cup \left\{ B(x_{Q_k}, 5 \text{diam}(Q_k)) : k \in K_2 \right\} \]
is a covering of \(V \) and
\[
\sum_{k \in K_1} ((2 + c_0^{-1})\rho_j(k))^\beta \leq (2 + c_0^{-1})^\beta \sum_j \rho_j^\beta \leq 2(2 + c_0^{-1})^\beta M_\beta(V),
\]
\[
\sum_{k \in K_2} (5 \text{diam}(Q_k))^\beta \leq A \sum_j \rho_j^\beta \leq AM_\beta(V).
\]
Thus (4.6) follows. We obtain from (4.9) and (4.11) that our covering \(B \) satisfies (4.5).

The lemma is proved.

Proof of Lemma 4. First we claim
\[
(4.12) \Omega(y) \subset x + \Omega(y + \frac{2}{a_0} |x|),
\]
where \(a_0 \) is the constant appearing in (NS). We may assume that \(x \neq 0 \). Suppose \(\xi \in \Omega(y) \). Then \((\xi, y) \in \Omega \) and
\[
|\xi - x| = |x| < 2|x| = a_0(y + \frac{2}{a_0} |x| - y).
\]
Hence (NS) implies that \(\xi - x \in \Omega(y + 2|x|/a_0) \), or equivalently \(\xi \in x + \Omega(y + 2|x|/a_0) \).

The claim is proved.

By Lemma 5 we find a covering \(B = \{ B(x_j, r_j) \} \) of \(V \) satisfying (4.5) and (4.6). Suppose \(x \in B(x_j, r_j) \). Then \(|x - x_j| < r_j \) and \(\delta_V(x) \leq 2r_j \) by (4.5), so that
\[
\Omega(\delta_V(x)) \subset x_j - x + \Omega(\delta_V(x) + \frac{2}{a_0} |x - x_j|) \subset x_j - x + \Omega(A_3r_j)
\]
with \(A_3 = 2 + 2/a_0 \) by (4.12). Hence \(x + \Omega(\delta_V(x)) \subset x_j + \Omega(A_3r_j) \), so that
\[
\bigcup_{x \in B(x_j, r_j)} (x + \Omega(\delta_V(x))) \subset x_j + \Omega(A_3r_j).
\]
By [11, Lemma 1 (d)] we find points \(u_{j,\nu} \) (\(\nu = 1, ..., M \)) such that
\[
\Omega(A_3r_j) \subset \bigcup_{\nu=1}^M B(u_{j,\nu}, 3A_3r_j),
\]
where the number \(M \) depends only on \(\Omega \). Therefore
\[
\bigcup_{x \in V} (x + \Omega(\delta_V(x))) \subset \bigcup_{j} \bigcup_{\nu=1}^M B(x_j + u_{j,\nu}, 3A_3r_j).
\]
Hence by (4.6)
\[
M_\beta \left(\bigcup_{x \in V} (x + \Omega(\delta_V(x))) \right) \leq \sum_{j} \sum_{\nu=1}^M (3A_3r_j)^\beta \leq AM_\beta(V).
\]
The lemma is proved.
5. Boundary behavior of harmonic functions

In what follows we are interested in the boundary behavior of harmonic functions in \(\mathbb{R}^{n+1}_+ \). In [3] we introduced the notion of thinness at the boundary. For a set \(E \subset \mathbb{R}^{n+1}_+ \) we put \(E_t = \{ (x,y) \in E : 0 < y < t \} \) and \(E^* = \bigcup_{(x,y) \in E} B(x,y) \). We recall that \(B(x,y) \) is the \(n \)-dimensional ball with center at \(x \) and radius \(y \), so that \(E^* \) is a set on the boundary \(\mathbb{R}^n = \partial \mathbb{R}^{n+1}_+ \). We shall combine the above notation and write simply \(E^*_t \) for \((E_t)^*\), i.e.,

\[
E^*_t = \bigcup_{0 < y < t} B(x,y).
\]

Definition. Let \(E \subset \mathbb{R}^{n+1}_+ \). We say that \(E \) is \(B_{\alpha,p} \)-thin at \(\partial \mathbb{R}^{n+1}_+ \) if

\[
\lim_{t \to 0} B_{\alpha,p}(E^*_t) = 0.
\]

For a function \(f \) on \(\mathbb{R}^n = \partial \mathbb{R}^{n+1}_+ \) we denote by \(PI(f) \) its Poisson integral, i.e.

\[
PI(f)(x,y) = \int_{\mathbb{R}^n} \frac{A_n y}{(|x-z| + y)^{(n+1)/2}} f(z) dz,
\]

where \(A_n > 0 \) is such that \(PI(1) = 1 \). In [3] we have proved

Theorem C. Let \(1 \leq p < \infty \) and \(\alpha p \leq n \). Let \(\Omega \subset \mathbb{R}^{n+1}_+ \) and suppose \(\Omega \cap \partial \mathbb{R}^{n+1}_+ = \{0\} \). Suppose \(f \in L^p(\mathbb{R}^n) \). Then there is a set \(E \subset \mathbb{R}^{n+1}_+ \) such that \(E \) is \(B_{\alpha,p} \)-thin at \(\partial \mathbb{R}^{n+1}_+ \) and that

\[
\lim_{t \to 0} B_{\alpha,p}(E^*_t) = 0.
\]

for \(B_{\alpha,p} \)-a.e. \(x \in \partial \mathbb{R}^{n+1}_+ \), i.e. there is a set \(F \subset \partial \mathbb{R}^{n+1}_+ \) such that \(B_{\alpha,p}(F) = 0 \) and (5.1) holds at every \(x \in \partial \mathbb{R}^{n+1}_+ \setminus F \).

Using Theorem 3, we can show

Theorem 4. Let \(1 \leq p < \infty \), \(0 < \alpha < n \), \(0 \leq n - \alpha p < \beta \leq n \), \(\gamma = (n - \alpha p)/\beta \), \(c > 0 \) and let \(\varphi(r) = \varphi_{\beta,p}(r) \) be as in (3.3) if \(\alpha p = n \). Suppose \(\Omega \) satisfies (NS). Let

\[
\Omega_{\gamma,c} = \{(x,y) : x \in \Omega(cy^\gamma)\} \quad \text{and} \quad \Omega_{\varphi,c} = \{(x,y) : x \in \Omega(c\varphi(y))\}.
\]

If \(E \) is \(B_{\alpha,p} \)-thin at \(\partial \mathbb{R}^{n+1}_+ \), then

\[
M_{\beta} \left(\bigcap_{t>0} \{ x : (x + \Omega_{\gamma,c}) \cap E_t \neq \emptyset \} \right) = 0 \quad \text{if} \ \alpha p < n,
\]

\[
M_{\beta} \left(\bigcap_{t>0} \{ x : (x + \Omega_{\varphi,c}) \cap E_t \neq \emptyset \} \right) = 0 \quad \text{if} \ \alpha p = n.
\]
In other words, there is a set \(F \subset \partial \mathbb{R}^{n+1}_+ \) of \(\beta \)-dimensional Hausdorff measure zero such that for \(x \in \partial \mathbb{R}^{n+1}_+ \setminus F \), \(\Omega_{\gamma,c} \) and \(\Omega_{\varphi,c} \) lie eventually outside \(E \), i.e., there is \(t = t_x > 0 \) such that \(E_t \cap (x + \Omega_{\gamma,c}) = \emptyset \) and \(E_t \cap (x + \Omega_{\varphi,c}) = \emptyset \).

Proof. We prove the theorem only in the case \(\alpha p < n \), since the case \(\alpha p = n \) is similarly proved. We can easily show that

\[
\{ x \in \mathbb{R}^n : (x + \Omega_{\gamma,c}) \cap E \neq \emptyset \} \subset \bigcup_{x \in E^*} \{ x - \Omega(c\delta_{E^*}(x)^\gamma)) \},
\]

where \(\delta_{E^*}(x) = \text{dist}(x, E^*) \) ([3, Lemma 2]). We apply Theorem 3 with \(E \) replaced by \(E^* \). Then

\[
M_\beta(\{ x \in \mathbb{R}^n : (x + \Omega_{\gamma,c}) \cap E \neq \emptyset \}) \leq M_\beta \left(\bigcup_{x \in E^*} \{ x - \Omega(c\delta_{E^*}(x)^\gamma)) \} \right) \leq AB_{\alpha,p}(E^*).
\]

Apply this inequality with \(E \) replaced by \(E_t \). Then the definition of thinness implies that

\[
M_\beta(\{ x \in \mathbb{R}^n : (x + \Omega_{\gamma,c}) \cap E_t \neq \emptyset \}) \leq AB_{\alpha,p}(E_t^*) \to 0 \quad \text{as} \quad t \to 0.
\]

Thus the theorem follows.

As a corollary to Theorems C and 4 we have

Theorem 5. Let \(1 \leq p < \infty \), \(0 < \alpha < n \), \(0 \leq n - \alpha p < \beta \leq n \), \(\gamma = (n - \alpha p)/\beta \), \(c > 0 \) and let \(\varphi(r) = \varphi_{\beta,p}(r) \) be as in (3.3) if \(\alpha p = n \). Suppose \(\Omega \) satisfies (NS) and let \(\Omega_{\gamma,c} \) and \(\Omega_{\varphi,c} \) be as in Theorem 4. If \(f \in L^p(\mathbb{R}^n) \), then there is a set \(F \subset \partial \mathbb{R}^{n+1}_+ \) of \(\beta \)-dimensional Hausdorff measure zero such that

\[
\lim_{P \to x} \int_{P \times x + \Omega_{\gamma,c}} |f| = g_\alpha \ast f(x) \quad \text{for all} \quad c > 0 \quad \text{if} \quad \alpha p < n,
\]

\[
\lim_{P \to x} \int_{P \times x + \Omega_{\varphi,c}} |f| = g_\alpha \ast f(x) \quad \text{for all} \quad c > 0 \quad \text{if} \quad \alpha p = n
\]

at every \(x \in \partial \mathbb{R}^{n+1}_+ \setminus F \).

Let \(\Omega \) be the nontangential cone \(\{ (x,y) : |x| < y \} \). Then the approach regions in Theorem 5 are represented as \(\Omega_{\gamma,c} = \{ (x,y) : |x| < cy^\gamma \} \) and \(\Omega_{\varphi,c} = \{ (x,y) : |x| < c\varphi(y) \} \). Hence our Theorem 5 particularly yields the following corollary.

Corollary 2. Let \(1 \leq p < \infty \), \(0 < \alpha < n \), \(0 \leq n - \alpha p < \beta \leq n \), \(\gamma = (n - \alpha p)/\beta \), \(c > 0 \) and let \(\varphi(r) = \varphi_{\beta,p}(r) \) be as in (3.3) if \(\alpha p = n \). If \(f \in L^p(\mathbb{R}^n) \), then there is a set \(F \subset \partial \mathbb{R}^{n+1}_+ \) such that \(M_\beta(F) = 0 \) and

\[
\lim_{P \to x} \int_{P \times x + \Omega_{\gamma,c}} |f| = g_\alpha \ast f(x) \quad \text{for all} \quad c > 0 \quad \text{if} \quad \alpha p < n,
\]

\[
\lim_{P \to x} \int_{P \times x + \Omega_{\varphi,c}} |f| = g_\alpha \ast f(x) \quad \text{for all} \quad c > 0 \quad \text{if} \quad \alpha p = n
\]
at every \(x \in \partial \mathbb{R}^{n+1}_+ \setminus F \).

Remark. Ahern and Nagel [2, Corollary 6.3] showed the above corollary for \(\alpha p < n \) by using a different method. Mizuta [9] studied the tangential boundary behavior of harmonic functions with gradient in \(L^p \). If \(p \geq 2 \), then his result improves Corollary 2. Ahern and Nagel [2, Corollary 7.3] also gave the same result.

6. Integration with respect to Hausdorff content

For a function \(F \) on \(\mathbb{R}^n = \partial \mathbb{R}^{n+1}_+ \) we denote by \(NF(x) \) the nontangential maximal function of the Poisson integral of \(F \), i.e.

\[
NF(x) = \sup_{x+\Gamma} |PI(F)|,
\]

where \(\Gamma = \{(x, y) : |x| < y\} \) is the nontangential cone with vertex at the origin. Similarly, we define a tangential maximal function by

\[
\mathcal{M}_{\gamma,c}F(x) = \sup_{x+\Omega_{\gamma,c}} |PI(F)| \quad \text{and} \quad \mathcal{M}_{\varphi,c}F(x) = \sup_{x+\Omega_{\varphi,c}} |PI(F)|,
\]

where \(\Omega_{\gamma,c} \) and \(\Omega_{\varphi,c} \) are as in Theorem 4. We define the integral of \(u \geq 0 \) with respect to the Hausdorff content \(M_\beta \) by

\[
\int u^p dM_\beta = \int_0^\infty M_\beta(\{x : u(x) > t\}) dt^p.
\]

If \(\beta = n \), then the above integral is comparable to the usual Lebesgue integral.

Theorem 6. Let \(1 < p < \infty, 0 < \alpha < n, 0 \leq n - \alpha p < \beta \leq n, \gamma = (n - \alpha p)/\beta, c > 0 \) and let \(\varphi(r) = \varphi_{\beta,p}(r) \) be as in (3.3) if \(\alpha p < n \). Suppose \(\Omega \) satisfies (NS). If \(f \in L^p(\mathbb{R}^n) \), then

\[
\int \mathcal{M}_{\gamma,c}(g_\alpha * f)^p dM_\beta \leq A\|f\|_p^p, \quad \text{if } \alpha p < n,
\]

\[
\int \mathcal{M}_{\varphi,c}(g_\alpha * f)^p dM_\beta \leq A\|f\|_p^p, \quad \text{if } \alpha p = n,
\]

where \(A > 0 \) depends only on \(n, \alpha, p, c, \beta \) and \(\Omega \).

Proof. We prove the theorem only in the case \(\alpha p < n \), since the case \(\alpha p = n \) is similarly proved. Let \(t > 0, E = \{(x, y) : |PI(g_\alpha * f)(x, y)| > t\} \) and \(E^* \) be as in Section 5. It is easy to see that \(E^* = \{x : N(g_\alpha * f)(x) > t\} \) and \(\{x : \mathcal{M}_{\gamma,c}(g_\alpha * f)(x) > t\} = \{x \in \mathbb{R}^n : (x + \Omega_{\gamma,c}) \cap E \neq \emptyset\} \). Hence, by (5.2) and Hansson’s theorem ([5] and [10, 3.7]),

\[
\int \mathcal{M}_{\gamma,c}(g_\alpha * f)^p dM_\beta = \int_0^\infty M_\beta(\{x : \mathcal{M}_{\gamma,c}(g_\alpha * f)(x) > t\}) dt^p
\]

\[
\leq A \int_0^\infty B_{\alpha,p}(\{x : N(g_\alpha * f)(x) > t\}) dt^p
\]

\[
\leq A \int_0^\infty B_{\alpha,p}(\{x : g_\alpha * Nf(x) > t\}) dt^p
\]

\[
\leq A\|Nf\|_p^p \leq A\|f\|_p^p,
\]

\[
- 20 -
\]
where the second inequality follows from the obvious inequality $N(g_\alpha \ast f) \leq g_\alpha \ast Nf$ (cf. [10, p.344]). The theorem is proved.

Remark. If $\beta = n$, then Theorem 6 is included in [10, Theorem 3.8]. If $\beta < n$, then Theorem 6 improves [10, Theorem 3.12]. Ahern and Nagel [2, Theorem 6.2] showed Theorem 6 for $\alpha p < n$ by using a different method.

References

Department of Mathematics
Faculty of Science
Kumamoto University
Kumamoto 860, Japan

Present address. Department of Mathematics, Shimane University, Matsue 690, Japan