We consider α-Gauss curvature flow with flat sides, which is given by the flow

$$\frac{\partial X}{\partial t}(x, t) = -K^\alpha(x, t)\nu(x, t)$$

where ν denotes the unit outward normal vector and $1/2 < \alpha \leq 1$. This flow is related to the deformation of 2-dimensional compact convex surfaces in \mathbb{R}^3 moving with collision from any random angle.

Let Σ_0 be a compact convex initial surface and $\alpha > 0$. Then there exists viscosity solution Σ_t which has uniform Lipschitz bound for $0 < t < T_0$, [2]. For $\frac{1}{2} < \alpha \leq 1$, Σ_t has a uniform $C^{1,1}$-estimate for $0 < t < T_0$, [2, 12]. The C^∞_0-regularity of the strictly convex part of the surface and the smoothness of the interface between the strictly convex part and flat side have been studied for $\alpha = 1$ in [10]. For n-dimensional compact convex hypersurfaces and $\alpha \leq \frac{1}{n}$, it becomes more singular and the solution gets regular instantaneously. On the other hand, if $\alpha > \frac{1}{n}$, it becomes degenerate and the flat side of the hypersurface persists for a moment, [2, 4].

We assume that the initial surface Σ_0 has only one flat side, namely that at t we have $\Sigma_t = \Sigma^1_t \cup \Sigma^2_t$ where Σ^1_t is the flat side and Σ^2_t is strictly convex part of Σ_t. The intersection between two regions is the free boundary $\Gamma_t = \Sigma^1_t \cap \Sigma^2_t$. Then the lower part of the surface Σ_0 can be written as a graph $z = f(x)$ and we can also write the lower part of Σ_t as $z = f(x, t)$ for $x \in \Omega \subset \mathbb{R}^2$ where Ω is an open subset of \mathbb{R}^2.

In this talk, we prove that there exists smooth solution if Σ_0 is smooth and strictly convex and that there is $C^{1,1}$-viscosity solution before the collapsing time if Σ_0 is only convex. Furthermore, we show that Σ^1_t will stay for a while. We also discuss Γ_t remains smooth on $0 < t < T_0$ under the following conditions for the function f, where T_0 is the vanishing time of Σ^1_t.

Condition 1. Set $\Lambda(f) = \{f = 0\}$ and $\Gamma(f) = \partial \Lambda(f)$.

\[\text{Department of Mathematics, Hokkaido University.}\]
\[\text{This talk is based on joint work with Ki-ahm Lee and Eunjai Rhee.}\]
(I) (Nondegeneracy Condition)
The function f vanishes of the order $d_{st}(X, \Lambda(f))^\frac{\alpha-1}{2}$ and the interface $\Gamma(f)$ is strictly convex so that $\Gamma(f)$ moves with finite nondegenerate speed. Setting $g = (\beta f)^{\frac{1}{\beta}}$, we assume that at time $t = 0$ the function g satisfies the following nondegeneracy condition: at $t = 0$,

$$0 < \lambda < |Dg(X)| < \frac{1}{\lambda} \quad \text{and} \quad 0 < \lambda^2 < D^2_{st}g(X) < \frac{1}{\lambda^2}$$

(2)

for all $X \in \Gamma_0$ and some positive number $\lambda > 0$, where D^2_{st} denotes the second order tangential derivative at Γ. Then the initial speed of free boundary has the speed, at $t = 0$,

$$0 < \lambda^{\alpha-1} < |\gamma_t| < \frac{1}{\lambda^{4\alpha-1}}.$$

(3)

(II) (Before Focusing of Flat Side)

Let T be any number on $0 < T < T_0$, so that Σ^1_t is non-zero. Since the area is non-zero, Σ^1_t contains a disc D_{ρ_0} for some $\rho_0 > 0$. We assume that

$$D_{\rho_0} = \{X \in \mathbb{R}^2 : |X| \leq \rho_0\} \subset \Sigma^1_t \quad \text{for} \ 0 \leq t \leq T_0.$$

(4)

(III) (Graph on a Neighborhood of the Flat Side)

Without loss of generality, we assume that

$$\max_{x \in \Omega(t)} f(x, t) \geq 2, \quad 0 \leq t \leq T_0.$$

(5)

where $\Omega(t) = \{X = (x, y) \in \mathbb{R}^2 : |Df(X, t)| < \infty\}$. Set

$$\Omega^p(t) = \{x \in \mathbb{R}^2 : f(x, y, t) \leq f(P)\}.$$

(6)

The following is the first our main result. Let us assume $\frac{1}{2} < \alpha \leq 1$.

Theorem 2. For a compact convex initial surface Σ_0, any viscosity solution Σ_t of (1) is $C^{1,1}$ for $0 < t < T_0$. Furthermore, Σ^2_t is smooth for $0 < t < T_0$.

In [8], authors proved the following short time existence of C^{∞}_s-solution with a flat side. From the conditions (2), our linearized equation is in the same class of operators considered in [8]. Hence their Schauder theory can apply to our linearized equation and then we get the short time existence by the application of implicit function theorem as in [8].
Theorem 3. [Short Time Regularity] [8] Let us assume that $g = (\beta f)^{\frac{1}{2}}$ is of class $C^{2+\gamma}$ up to the interface $z = 0$ at time $t = 0$, for some $0 < \gamma < 1$, and satisfies Conditions 1 for f. Then there exists a time $T > 0$ such that the equation (1) admits a solution $\Sigma(t)$ on $0 \leq t \leq T$. Moreover, the function $g = (\beta f)^{\frac{1}{2}}$ is smooth up to the interface $z = 0$ on $0 < t \leq T$. In particular, the interface $\Gamma(t)$ will be a smooth curve for all t in $0 < t \leq T$.

Then we have the long time regularity of the solution.

Theorem 4. [Long Time Regularity] Under the assumptions of Theorem 3, $g = (\beta f)^{\frac{1}{2}}$ remains smooth up to the interface $z = 0$ on $0 < t < T$ for all $T < T_0$. In addition, the interface Γ_t will be smooth curve for all t in $0 < t < T_0$.

References

