Prediction without probability: a PDE approach to a model problem from machine learning

Robert V. Kohn
Courant Institute, NYU

Joint work with Kangping Zhu (PhD 2014) and Nadejda Drenska (in progress)

Mathematics for Nonlinear Phenomena: Analysis and Computation
celebrating Yoshikazu Giga’s contributions and impact
Sapporo, August 2015
Looking back

We met in Tokyo in July 1982, at a US-Japan seminar. Giga came to Courant soon thereafter. We decided to study blowup of $u_t = \Delta u + u^p$. Over the next few years we had a lot of fun.

- Asymptotically self-similar blowup of semilinear heat equations, CPAM (1985)
- Characterizing blowup using similarity variables, IUMJ (1987)
- Nondegeneracy of blowup for semilinear heat equations, CPAM (1989)
Looking back

We met in Tokyo in July 1982, at a US-Japan seminar.

Giga came to Courant soon thereafter. We decided to study blowup of \(u_t = \Delta u + u^p \). Over the next few years we had a lot of fun.

- Asymptotically self-similar blowup of semilinear heat equations, CPAM (1985)
- Characterizing blowup using similarity variables, IUMJ (1987)
- Nondegeneracy of blowup for semilinear heat equations, CPAM (1989)
Looking back

We met in Tokyo in July 1982, at a US-Japan seminar. Giga came to Courant soon thereafter. We decided to study blowup of $u_t = \Delta u + u^p$. Over the next few years we had a lot of fun.

- Asymptotically self-similar blowup of semilinear heat equations, CPAM (1985)
- Characterizing blowup using similarity variables, IUMJ (1987)
- Nondegeneracy of blowup for semilinear heat equations, CPAM (1989)
Over the years

Our paths have crossed many times, and in many ways.

Navier-Stokes

1983, Giga: Time & spatial analyticity of solutions of the Navier-Stokes equations

1983, Caffarelli-Kohn-Nirenberg: Partial regularity of suitable wk solns of the Navier-Stokes eqns

The Aviles-Giga functional

1987, Aviles-Giga: A math’l pbm related to the physical theory of liquid crystal configurations

2000, Jin-Kohn: Singular perturbation and the energy of folds
Over the years

Our paths have crossed many times, and in many ways.

Navier-Stokes

1983, Giga: Time & spatial analyticity of solutions of the Navier-Stokes equations

1983, Caffarelli-Kohn-Nirenberg: Partial regularity of suitable weak solutions of the Navier-Stokes equations

The Aviles-Giga functional

1987, Aviles-Giga: A mathematical problem related to the physical theory of liquid crystal configurations

2000, Jin-Kohn: Singular perturbation and the energy of folds
Over the years

Our paths have crossed many times, and in many ways.

Navier-Stokes

1983, Giga: Time & spatial analyticity of solutions of the Navier-Stokes equations

1983, Caffarelli-Kohn-Nirenberg: Partial regularity of suitable weak solutions of the Navier-Stokes equations

The Aviles-Giga functional

1987, Aviles-Giga: A mathematical problem related to the physical theory of liquid crystal configurations

2000, Jin-Kohn: Singular perturbation and the energy of folds
Over the years

Crystalline surface energies

1998, M-H Giga & Y Giga: Evolving graphs by singular weighted curvature (the first of many joint papers!)

1994, Girao-Kohn: Convergence of a crystalline algorithm for . . . the motion of a graph by weighted curvature

Level-set representations of interface motion

1991, Chen-Giga-Goto: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations

2005, Kohn-Serfaty: A deterministic-control-based approach to motion by curvature

Robert V. Kohn Prediction without probability
Crystalline surface energies

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>M-H Giga & Y Giga</td>
<td>Evolving graphs by singular weighted curvature (the first of many joint papers!)</td>
</tr>
<tr>
<td>1994</td>
<td>Girao-Kohn</td>
<td>Convergence of a crystalline algorithm for ... the motion of a graph by weighted curvature</td>
</tr>
</tbody>
</table>

Level-set representations of interface motion

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>Chen-Giga-Goto</td>
<td>Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations</td>
</tr>
<tr>
<td>2005</td>
<td>Kohn-Serfaty</td>
<td>A deterministic-control-based approach to motion by curvature</td>
</tr>
</tbody>
</table>
Over the years

Hamilton-Jacobi approach to spiral growth

2013, Giga-Hamamuki:
Hamilton-Jacobi equations with discontinuous source terms

1999, Kohn-Schulze: A geometric model for coarsening during spiral-mode growth of thin films

Finite-time flattening of stepped crystals

2011, Giga-Kohn:
Scale-invariant extinction time estimates for some singular diffusion equations
Over the years

Hamilton-Jacobi approach to spiral growth

2013, Giga-Hamamuki: Hamilton-Jacobi equations with discontinuous source terms

1999, Kohn-Schulze: A geometric model for coarsening during spiral-mode growth of thin films

Finite-time flattening of stepped crystals

2011, Giga-Kohn: Scale-invariant extinction time estimates for some singular diffusion equations
Over the years

Many thanks for

- your huge impact on our field
- your leadership (both scientific and practical)
- helping our community grow and prosper
- a lot of fun in our joint projects
- your friendship over the years.
Today’s mathematical topic

Prediction without probability: a PDE approach to a model problem from machine learning

1. The problem (“prediction with expert advice”)
2. Two very simple experts
3. Two more realistic experts
4. Perspective
Basic idea: given

- a data stream
- a notion of prediction
- some experts

the overall goal is to beat the (retrospectively) best-performing expert – or at least, not do too much worse.

Jargon: minimize regret.

Widely-used paradigm in machine learning. Many variants, assoc to different types of data, classes of experts, notions of prediction.

Note analogy to a common business news feature . . .
Basic idea: given

- a data stream
- a notion of prediction
- some experts

the overall goal is to beat the (retrospectively) best-performing expert – or at least, not do too much worse.

Jargon: minimize regret.

Widely-used paradigm in machine learning. Many variants, assoc to different types of data, classes of experts, notions of prediction.

Note analogy to a common business news feature . . .
The stock prediction problem

A classic model problem (T Cover 1965, and many people since):

A stock goes up or down (data stream is binary, no probability)

- Investor buys (or sells) \(f \) shares of stock at each time step, \(|f| \leq 1\). Effectively, he is making a prediction.
- Two experts (to be specified soon). Regret wrt a given expert = (expert’s gain) - (investor’s gain).

Typical goal: minimize the worst-case value of regret wrt best-performing expert at a given future time \(T \).

More general goal: Minimize worst-case value of

\[\phi(\text{regret wrt expert 1}, \text{regret wrt expert 2}) \]

at time \(T \). (The “typical goal” is \(\phi(x_1, x_2) = \max\{x_1, x_2\} \).)
The stock prediction problem

A classic model problem (T Cover 1965, and many people since):

A stock goes up or down (data stream is binary, no probability)

- Investor buys (or sells) \(f \) shares of stock at each time step, \(|f| \leq 1\). Effectively, he is making a prediction.
- Two experts (to be specified soon). Regret wrt a given expert = (expert’s gain) - (investor’s gain).

Typical goal: minimize the worst-case value of regret wrt best-performing expert at a given future time \(T \).

More general goal: Minimize worst-case value of

\[\phi(\text{regret wrt expert 1}, \text{regret wrt expert 2}) \]

at time \(T \). (The “typical goal” is \(\phi(x_1, x_2) = \max\{x_1, x_2\} \).)
The stock prediction problem

A classic model problem (T Cover 1965, and many people since):

A stock goes up or down (data stream is binary, no probability)

- Investor buys (or sells) f shares of stock at each time step, $|f| \leq 1$. Effectively, he is making a prediction.
- Two experts (to be specified soon). Regret wrt a given expert = (expert’s gain) - (investor’s gain).

Typical goal: minimize the worst-case value of regret wrt best-performing expert at a given future time T.

More general goal: Minimize worst-case value of

$$\phi(\text{regret wrt expert 1, regret wrt expert 2})$$

at time T. (The “typical goal” is $\phi(x_1, x_2) = \max\{x_1, x_2\}$.)

Robert V. Kohn Prediction without probability
Very simple experts vs more realistic experts

Recall: stock goes up or down (data stream is binary, no probability)

- Investor buys (or sells) f shares of stock at each time step, $|f| \leq 1$. Effectively, he is making a prediction.
- Two experts, each using a public algorithm to make his choice.

First pass: Two very simple experts – one always expects the stock to go up (he chooses $f = 1$), the other always expects the stock to go down (he chooses $f = -1$).

Second pass: Two more realistic experts – each looks at the last d moves, and makes a choice depending on this recent history.

Essentially an optimal control problem:

- **state space**: \((x_1, x_2) = \text{relative regrets wrt + expert, relative regrets wrt - expert}\).
- **control**: investor’s stock purchase \(|f| \leq 1\).
- **value function**: \(v(x, t) = \text{optimal (worst-case) time-} T \text{ result, starting from relative regrets } x = (x_1, x_2) \text{ at time } t\).

Dynamic programming principle:

\[
v(x_1, x_2, t) = \min_{|f| \leq 1} \max_{b = \pm 1} v(\text{new position}, t + 1) \\
= \min_{|f| \leq 1} \max_{b = \pm 1} v(x_1 + b(1 - f), x_2 - b(1 + f), t + 1)
\]

for \(t < T\), with final-time condition \(v(x, T) = \phi(x)\).
Recall: \((x_1, x_2) = (\text{regret wrt } + \text{ expert, regret wrt } - \text{ expert}),\) where regret = (expert’s gain) - (investor’s gain).

If investor buys \(f\) shares and market goes up, investor gains \(f\), the + expert gains 1, the − expert gains −1. So state moves from \((x_1, x_2)\) to \((x_1 + (1 - f), x_2 + (-1 - f))\).

Similarly, if investor buys \(f\) shares and market goes down, state moves from \((x_1, x_2)\) to \((x_1 - (1 - f), x_2 - (-1 - f))\).

Hence the dynamic programming principle:

\[
v(x_1, x_2, t) = \min_{|f| \leq 1} \max_{b = \pm 1} v(\text{new position}, t + 1)
\]
\[
= \min_{|f| \leq 1} \max_{b = \pm 1} v(x_1 + b(1 - f), x_2 - b(1 + f), t + 1)
\]
In machine learning, one is interested in how regret accumulates over many time steps.

To access this question, it is natural to rescale the problem and look for a continuum limit.

Our problem has no probability. But our rescaling is like the passage from random walk to diffusion.

Our problem shares many features with the two-person-game interpretation of motion by curvature (work with Sylvia Serfaty, CPAM 2006).

So: consider a scaled version of problem: stock moves are $\pm \epsilon$ and time steps are ϵ^2. The value function is still the optimal worst-case time-T result. The principle of dynamic programming becomes

$$w^\epsilon(x_1, x_2, t) = \min_{|f| \leq 1} \max_{b = \pm 1} w^\epsilon(x_1 + \epsilon b(1 - f), x_2 - \epsilon b(1 + f), t + \epsilon^2).$$

We expect that $w(x, t) = \lim_{\epsilon \to 0} w^\epsilon$ should solve a PDE.
The PDE is, roughly speaking, the Hamilton-Jacobi-Bellman eqn assoc to our optimal control problem. Sketch of (formal) derivation:

1. Use Taylor expansion to estimate
 \[w(x_1 + \varepsilon b(1 - f), x_2 - \varepsilon b(1 + f), t + \varepsilon^2). \]

2. Investor chooses \(f \) to make the \(O(\varepsilon) \) terms vanish, since otherwise they kill him; this gives
 \[f = (\partial_1 w - \partial_2 w)/(\partial_1 w + \partial_2 w). \]

3. The \(O(\varepsilon^2) \) terms are insensitive to \(b = \pm 1 \); they give the nonlinear PDE
 \[w_t + 2\langle D^2 w \frac{\nabla^\perp w}{\partial_1 w + \partial_2 w}, \frac{\nabla^\perp w}{\partial_1 w + \partial_2 w} \rangle = 0 \quad \text{with} \quad \nabla^\perp w = (-\partial_2 w, \partial_1 w). \]

 This final-value problem is to be solved with \(w = \phi \) at \(t = T \).
More detailed derivation of pde

Dynamic programming principle:

\[w^\varepsilon(x_1, x_2, t) = \max_{|f| \leq 1} \min_{b = \pm 1} w^\varepsilon(x_1 + \varepsilon b(1 - f), x_2 - \varepsilon b(1 + f), t + \varepsilon^2) \]

Taylor expansion:

\[
w(x_1 + \varepsilon b(1 - f), x_2 - \varepsilon b(1 + f), t + \varepsilon^2) \approx w(x_1, x_2, t) + \varepsilon b(1 - f)w_1 - \varepsilon b(1 + f)w_2 \\
+ \frac{1}{2} w_{11}\varepsilon^2 b^2 (1 - f)^2 - w_{12}\varepsilon^2 b^2 (1 - f)(1 + f) + \frac{1}{2} w_{22}\varepsilon^2 b^2 (1 + f)^2 + w_t\varepsilon^2
\]

After substitution and reorganization:

\[
0 \approx \max_{|f| \leq 1} \min_{b = \pm 1} \{ \varepsilon b[(1 - f)w_1 - (1 + f)w_2] \\
+ \varepsilon^2 b^2 \left[\frac{1}{2} w_{11}(1 - f)^2 - w_{12}(1 - f)(1 + f) + \frac{1}{2} w_{22}(1 + f)^2 + w_t \right] \}
\]

Order-\(\varepsilon\) term vanishes when

\[f = \frac{\partial_1 w - \partial_2 w}{\partial_1 w + \partial_2 w}. \]

Note: we expect \(\partial_1 w > 0\) and \(\partial_2 w > 0\). Also: condition \(|f| \leq 1\) is automatic.
Our PDE is geometric. In fact,

$$\partial_t w + 2\langle D^2 w \frac{\nabla \perp w}{\partial_1 w + \partial_2 w}, \frac{\nabla \perp w}{\partial_1 w + \partial_2 w} \rangle = 0$$

can be rewritten as

$$\frac{\partial_t w}{|\nabla w|} = 2\kappa \frac{|\nabla w|^2}{(\partial_1 w + \partial_2 w)^2},$$

where

$$\kappa = -\text{div} \left(\frac{\nabla w}{|\nabla w|} \right)$$

is the curvature of a level set of w. Thus the normal velocity of each level set is

$$v_{\text{nor}} = \frac{2\kappa}{(n_1 + n_2)^2}$$

where κ is its curvature and n is its unit normal.
Our PDE is the linear heat eqn in disguise. In fact, in the rotated (and scaled) coordinate system

\[\xi = x_1 - x_2, \quad \eta = x_1 + x_2, \]

each level set of \(w \) is an evolving graph over the \(\xi \) axis. Moreover, the function \(\eta(\xi, t) \) associated with this graph, defined by

\[w(\xi, \eta(\xi, t), t) = \text{const} \]

solves the linear heat eqn

\[\eta_t + 2\eta_{\xi\xi} = 0 \quad \text{for } t < T. \]

The proof is elementary: one checks that for the evolving graph, the normal velocity is what our PDE says it should be.

Corollary: existence, regularity, and (more or less) explicit solutions for a broad class of final-time data.

Thanks to Y. Giga for this observation.
Main result: If $\phi(x) = w(x, T)$ is smooth, then

$$w(x, t) - C\varepsilon \leq w^\varepsilon(x, t) \leq w(x, t) + C\varepsilon$$

where C is independent of ε. (It grows linearly with $T - t$.)

Method: A verification argument. One inequality is obtained by considering the particular strategy

$$f = (\partial_1 w - \partial_2 w) / (\partial_1 w + \partial_2 w).$$

The other involves showing (as seen in the formal argument) that no other strategy can do better.

For the most standard regret-minimization problem, $\phi(x_1, x_2) = \max\{x_1, x_2\}$ is not smooth. In this case our result is a bit weaker; the errors are of order $\varepsilon|\log \varepsilon|$.

Robert V. Kohn
Prediction without probability
Goal: show that
\[w^\varepsilon(x, t) \leq w(x, t) + C\varepsilon. \]

Strategy: Estimate \(w^\varepsilon(z_0, t_0) \) by finding a sequence \((z_1, t_1), (z_2, t_2), \ldots (z_N, t_N)\) such that
- \(t_{j+1} = t_j + \varepsilon^2 \) for each \(j \), and \(t_N = T \).
- \(w^\varepsilon(z_{j+1}, t_{j+1}) \geq w^\varepsilon(z_j, t_j) \) for each \(j \).
- \(w(z_{j+1}, t_{j+1}) = w(z_j, t_j) + O(\varepsilon^3). \)

Since \(N = (T - t_0)/\varepsilon^2 \), it follows easily that
\[w(z_0, t_0) = w(z_N, t_N) + O(\varepsilon). \]

Since \(w^\varepsilon = w \) at the final time \(T \), we get
\[w^\varepsilon(z_0, t_0) \leq w^\varepsilon(z_N, t_N) = w(z_N, t_N) \leq w(z_0, t_0) + C\varepsilon. \]
Sketch of one inequality, cont’d

The sequence: Recall the dynamic programming principle

\[w^\varepsilon(z_0, t_0) = \min_{|f| \leq 1} \max_{b = \pm 1} w^\varepsilon \left(z_0 + \varepsilon b \left(\frac{f-1}{f+1} \right), t_0 + \varepsilon^2 \right) \]

A specific choice of \(f \) gives an inequality; the choice from formal argument gives

\[\left(\frac{f-1}{f+1} \right) = 2 \frac{\nabla^\perp w}{\partial_1 w + \partial_2 w} \]

evaluated at \((z_0, t_0)\). Call this \(v_0 \). Then

\[w^\varepsilon(z_0, t_0) \leq \max_{b = \pm 1} w^\varepsilon \left(z_0 + \varepsilon b v_0, t_0 + \varepsilon^2 \right) . \]

Let \(b_0 \) achieve the max, and set \(z_1 = z_0 + \varepsilon b_0 v_0, t_1 = t_0 + \varepsilon^2 \); we have

\[w^\varepsilon(z_0, t_0) \leq w^\varepsilon(z_1, t_1) . \]

Iterate to find \((z_j, t_j), j = 2, 3, \ldots\)
Proof that \(w(z_{j+1}, t_{j+1}) = w(z_j, t_j) + O(\varepsilon^3) \): use the PDE. (Note: since \(w \) is smooth, Taylor expansion is honest.)

Using the specific choice of \((z_1, t_1)\) we get

\[
w(z_1, t_1) = w(z_0, t_0) + \text{terms of order } \varepsilon \text{ vanish} + \varepsilon^2 \left(\partial_t w + 2\langle D^2 w \frac{\nabla w}{\partial_1 w + \partial_2 w}, \frac{\nabla w}{\partial_1 w + \partial_2 w} \rangle \right) + O(\varepsilon^3)
\]

in which the RHS is evaluated at \((z_0, t_0)\).

Using the PDE for \(w \) this becomes the desired estimate

\[
w(z_1, t_1) = w(z_0, t_0) + \text{terms of order } \varepsilon^2 \text{ vanish} + O(\varepsilon^3).
\]

The argument applies for any \(j \). Error terms come from \(O(\varepsilon^3) \) terms in Taylor expansion; so the implicit constant is uniform if \(D^3 w \) and \(w_{tt} \) are uniformly bounded for all \(x \in \mathbb{R} \) and all \(t < T \).
1. The problem ("prediction with expert advice")
2. Two very simple experts
3. Two more realistic experts
4. Perspective
More realistic experts

So far our experts were very simple (independent of history). Now let’s consider two history-dependent experts.

Keep \(d\) days of history. Typical state is thus \(m = (0001011)_2 \in \{0, 1, \ldots , 2^d - 1\}\). It is updated each day.

Each expert’s prediction is a (known) function of history. The \(q\) expert buys \(f = q(m)\) shares; the \(r\) expert buys \(f = r(m)\) shares.

Otherwise no change: the goal is to optimize the (worst-case) time-\(T\) value of regret wrt best-performing expert, or more generally

\[
\phi(\text{regret wrt } q\ \text{expert}, \text{regret wrt } r\ \text{expert})
\]
Dynamic programming becomes a mess

Problem: Dynamic programming doesn’t work so well any more. Apparently

\[\text{state} = (\text{regret wrt } q \text{ expert, regret wrt } r \text{ expert, history}) \]

so we’re looking for \(2^d \) distinct functions of space and time, \(w_m(x_1, x_2, t) \). Dynamic programming principle can be formulated (coupling all \(2^d \) functions). We seem headed for a system of PDEs.

However:

(a) Regret accumulates slowly while states change rapidly; so value function should be approx indep of state.

(b) Investor should choose \(f \) to achieve market indifference (at leading order in Taylor expansion).

(c) Accumulation of regret occurs at order \(\epsilon^2 \) (in Taylor expansion).

Using these ideas, we will again get a scalar PDE in the limit \(\epsilon \to 0 \).
Problem: Dynamic programming doesn’t work so well any more. Apparently

\[\text{state} = (\text{regret wrt q expert, regret wrt r expert, history}) \]

so we’re looking for 2^d distinct functions of space and time, $w_m(x_1, x_2, t)$. Dynamic programming principle can be formulated (coupling all 2^d functions). We seem headed for a system of PDEs.

However:

(a) Regret accumulates slowly while states change rapidly; so value function should be approx indep of state.

(b) Investor should choose f to achieve market indifference (at leading order in Taylor expansion).

(c) Accumulation of regret occurs at order ε^2 (in Taylor expansion).

Using these ideas, we will again get a scalar PDE in the limit $\varepsilon \to 0$.

Identifying the PDE

Formal derivation: ignore dependence of value function \(w(x_1, x_2, t) \)
on \(\varepsilon \) and \(m \); now

\[
x_1 = \text{regret wrt } q \text{ expert, } x_2 = \text{regret wrt } r \text{ expert.}
\]

If investor chooses \(f \) and market goes up/down (\(b = \pm 1 \)),

\[
x_1 \text{ changes by } b\varepsilon(q(m) - f), \quad x_2 \text{ changes by } b\varepsilon(r(m) - f).
\]

So market indifference at order \(\varepsilon \) requires

\[
w_1(q(m) - f) + w_2(r(m) - f) = -w_1(q(m) - f) - w_2(r(m) - f).
\]

Solve for \(f \): if current state is \(m \), then investor should choose

\[
f = (w_1q(m) + w_2r(m))/(w_1 + w_2).
\]

Accumulation of regret is at order \(\varepsilon^2 \). With \(f \) set by market indifference, change in \(w \) is \(\varepsilon^2 \) times

\[
w_t + \frac{1}{2} (q(m) - r(m))^2 \langle D^2 w, \nabla \nabla^\perp w \rangle.
\]

Worst-case scenario is the one that makes regret accumulate fastest.
Identifying the PDE

Formal derivation: ignore dependence of value function $w(x_1, x_2, t)$ on ε and m; now

$$x_1 = \text{regret wrt q expert}, \ x_2 = \text{regret wrt r expert.}$$

If investor chooses f and market goes up/down ($b = \pm 1$),

$$x_1 \text{ changes by } b\varepsilon(q(m) - f), \ x_2 \text{ changes by } b\varepsilon(r(m) - f).$$

So market indifference at order ε requires

$$w_1(q(m) - f) + w_2(r(m) - f) = -w_1(q(m) - f) - w_2(r(m) - f).$$

Solve for f: if current state is m, then investor should choose

$$f = (w_1 q(m) + w_2 r(m))/(w_1 + w_2).$$

Accumulation of regret is at order ε^2. With f set by market indifference, change in w is ε^2 times

$$w_t + \frac{1}{2} (q(m) - r(m))^2 \left\langle D^2 w \frac{\nabla^\perp w}{\partial_1 w + \partial_2 w}, \frac{\nabla^\perp w}{\partial_1 w + \partial_2 w} \right\rangle.$$

Worst-case scenario is the one that makes regret accumulate fastest.
Identifying the PDE

Formal derivation: ignore dependence of value function \(w(x_1, x_2, t) \) on \(\varepsilon \) and \(m \); now

\[
x_1 = \text{regret wrt } q \text{ expert, } x_2 = \text{regret wrt } r \text{ expert.}
\]

If investor chooses \(f \) and market goes up/down \((b = \pm 1)\),

\[
x_1 \text{ changes by } b\varepsilon(q(m) - f), \quad x_2 \text{ changes by } b\varepsilon(r(m) - f).
\]

So market indifference at order \(\varepsilon \) requires

\[
w_1(q(m) - f) + w_2(r(m) - f) = -w_1(q(m) - f) - w_2(r(m) - f).
\]

Solve for \(f \): if current state is \(m \), then investor should choose

\[
f = (w_1 q(m) + w_2 r(m))/(w_1 + w_2).
\]

Accumulation of regret is at order \(\varepsilon^2 \). With \(f \) set by market indifference, change in \(w \) is \(\varepsilon^2 \) times

\[
w_t + \frac{1}{2} (q(m) - r(m))^2 \left\langle D^2 w \frac{\nabla^\perp w}{\partial_1 w + \partial_2 w}, \frac{\nabla^\perp w}{\partial_1 w + \partial_2 w} \right\rangle.
\]

Worst-case scenario is the one that makes regret accumulate fastest.
Recall: accumulation of regret per step at state m is

$$\frac{1}{2} (q(m) - r(m))^2 \langle D^2 w \frac{\nabla \perp w}{\partial_1 w + \partial_2 w}, \frac{\nabla \perp w}{\partial_1 w + \partial_2 w} \rangle.$$

Essentially a problem from graph theory: seek

$$\lim_{N \to \infty} \max_{\text{paths of length } N} \frac{1}{N} \sum_{j=1}^{N} (q(m_j) - r(m_j))^2.$$

In fact:

- It suffices to consider cycles.
- There are good algorithms for finding optimal cycles.
Identifying the PDE, cont’d

Thus finally: the PDE is

\[
wt + \frac{1}{2} C_* \left\langle D^2 w \frac{\nabla \perp w}{\partial_1 w + \partial_2 w}, \frac{\nabla \perp w}{\partial_1 w + \partial_2 w} \right\rangle = 0,
\]

where

\[
C_* = \max_{\text{cycles}} \frac{1}{\text{cycle length}} \sum (q(m_j) - r(m_j))^2.
\]

Summarizing: for two history-dependent experts,

- Investor’s choice of \(f \) depends on the state as well as on \(\nabla w(x) \); it achieves leading-order market indifference.

- The value function \(w \) solves (almost) the same eqn as before (still reducible to the linear heat eqn!). All that changes is the “diffusion coefficient.”

- Rigorous analysis still uses a verification argument (though there are some new subtleties).
Can something similar be done for many history-dependent experts?

- If there are K experts then $w = w(x_1, \cdots, x_K, t)$.
- Market indifference at order ε still gives a formula for f.
- Accumulation of regret sees $D^2 w$ and Dw (not just a scalar quantity built from them); so the graph problem depends nontrivially on $D^2 w$ and Dw.
- The formal PDE is much more nonlinear than for two experts. (Analysis: in progress.)
Mathematical messages

- Stock prediction problem has a continuous-time limit. Reduction to linear heat eqn provides a rather explicit solution.

- It provides another example where a deterministic two-person game leads to 2nd order nonlinear PDE. (For earlier examples, see Kohn-Serfaty CPAM 2006 and CPAM 2010.)

- Our analysis was elementary, since PDE is linked to linear heat eqn. In other settings, when PDE solution is not smooth, convergence has been proved (without a rate) using viscosity methods.
Stepping back

Comparison to the machine learning literature

- ML is mostly discrete. It was known that for the unscaled game, worst-case regret after N steps is of order \sqrt{N} (compare: our parabolic scaling). Our analysis gives the prefactor.

- ML guys are smart. For the classic problem of minimizing worst-case regret, Andoni & Panigrahy found the same strategies that come from our analysis (arXiv:1305.1359) – but didn’t have the tools to prove they’re optimal.

- The link to a linear heat eqn gives surprisingly explicit solutions in the continuum limit.
Stepping back

Is this just a curiosity?

Key point: since behavior over many time steps is of interest, continuous time viewpoint should be useful.

But: the stock prediction problem is very simple: a binary time series and a linear “loss function.” What about other examples?

One might ask: when is worst-case regret minimization a good idea? Not obvious...
Happy Birthday, Yoshi!