偏微分方程式セミナー(2018/10/19): Boundedness of solutions to the Cauchy problem for an attraction-repulsion chemotaxis system

開催日時
2018年   10月 19日 16時 30分 ~ 2018年   10月 19日 17時 30分
場所
北海道大学理学部3号館3-309室
講演者
永井 敏隆 氏 (広島大学)
 
We consider the Cauchy problem for an attraction-repulsion chemotaxis system in two-dimensional space. The system consists of three partial differential equations; a drift-diffusion equation incorporating terms for both chemoattraction and chemorepulsion, and two elliptic equations. It is known that there is a blowing-up solution in finite time to the Cauchy problem in the attractive dominant case where the coefficient of the attractant is larger than that of the repellent.
In this talk, we discuss the boundedness of nonnegative solutions to the Cauchy problem.

世話人:黒田 紘敏、浜向 直

関連項目

研究集会・セミナー・集中講義の一覧へ