釜山国立大‐北大ジョイントシンポジウム/PNU-HU Joint Symposium

開催日時
2017年   12月 19日 10時 00分 ~ 2017年   12月 19日 17時 50分
場所
理学部3・4号館
講演者
世話人 久保英夫、田邊顕一郎、洞彰人
 
1.講演会(場所:理学部4号館 4-501)
10:00-10:30 古畑 仁 氏(北海道大学)
10:40-11:10 正宗 淳 氏(北海道大学)
11:20-11:50 Siomona Settepanella 氏(北海道大学)

2.ポスターセッション(場所:理学部3号館5階コモンスペース)
13:30-14:30
発表者:
吉川功剛(研究員)、斎藤逸人(D3)、Albert Rodriguez Mulet(D2)、Guo Weili(D2)、
Tan Nhat Tran(D1)、植田優基(D1)、福田一貴(D1)

3.数学教室談話会(場所:理学部4号館4-501)
14:45-15:35 Young-Jun Choi 氏(釜山国立大学)
16:00-16:50 Ji-Hun Yoon 氏(釜山国立大学)
17:00-17:50 Juncheol Pyo 氏(釜山国立大学)

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
1.講演会 10:00-11:50 @4-501
古畑 仁 氏
“Sasakian statistical manifolds and hypersurfaces”
A differential-geometric review on statistical manifolds will be given.We introduce a notion of Sasakian statistical structure and construct it on an odd-dimensional sphere, which is a rare example of compact statistical manifolds. This talk is based on a recent joint work with Hasegawa I., Okuyama Y., Sato K. and Shahid, M.H.

正宗 淳 氏
“On the construction of non-trivial harmonic functions under certain integrable conditions”
It is well known that any complete manifold enjoys the $L^p$ Liouville property with any 1<p<infinity but not with p=1.  We will show how the L2 Liouville property fails on an incomplete manifold and we will provide a systematic way to break the L1 Liouville property of a complete manifold.

Simona Settepanella 氏
“Pappus's Variety in Grassmannian Gr(3,n). ”
In 1989 Manin and Schechtman considered a family of arrangements of hyperplanes generalizing classical braid arrangements which they called discriminantal arrangements. Such an arrangement depends on a choice $\A=\{H^0_1,...,H^0_n\}$ of collection of hyperplanes in general position in $\CC^k$. It consists of parallel translates $H_1^{t_1},...,H_n^{t_n}, (t_1,...,t_n) \in \CC^n$
which fail to form a generic arrangement in $\CC^k$. Recently, in 2016, Libgober and Settepanella gave a necessary and sufficient condition on generic arrangement $\A=\{H^0_1,...,H^0_n\}$ in
$\CC^k$ for multiplicity $3$ intersections of rank $2$ to appear in the intersection lattice of the associated discriminantal arrangement. Arrangements $\A$ in $\CC^k$ verifying this condition are called "non very generic".
In 2017, Sawada, Settepanella and Yamagata proved that, in case $k=3$ the non very generic arrangements $\A$ of cardinality $n$ in $\CC^3$ are points in a well defined degree $2$ hypersurface in the projective Grassmannian $Gr(3,n)$. In particular they showed that this hypersurface is product of quadrics and that points in certain intersection of those quadrics correspond to arrangement containing $6$ lines in Pappus's configuration or $12$ lines in Hesse configuration. They also provided a new proof of Pappus's Theorem. This is a joint work with S. Sawada and S. Yamagata.

2.ポスターセッション 13:30-14:30@5階コモンスペース

3.数学教室談話会 14:45-17:50@4-501
詳細はこちら

以上

関連項目

研究集会・セミナー・集中講義の一覧へ