月曜解析セミナー: A uniform coerciveness result for biharmonic operator and its application to a parabolic equation

開催日時
2013年   10月 28日 14時 45分 ~ 2013年   10月 28日 16時 15分
場所
北海道大学理学部3号館210
講演者
吉冨和志(首都大学東京)
 
We establish an $L^{2}$ a priori estimate for solutions to the problem
\[
\left\{
\begin{array}{l}
\Delta^{2}u=f\quad\mbox{in}\quad\Omega,\\
\frac{\partial u}{\partial n}=0\quad\mbox{on}\quad\partial\Omega,\\
-\frac{\partial}{\partial n}(\Delta u)+\beta\alpha u=0\quad\mbox{on}\quad\partial\Omega,
\end{array}
\right.
\]
where $n$ is the outward unit normal vector to $\partial\Omega$, $\alpha$ is a positive function on $\partial\Omega$ and $\beta$ is a nonnegative parameter.  Our estimate is stable under the singular limit $\beta\to\infty$ and cannot be absorbed into the results of S. Agmon, A. Douglis and L. Nirenberg (Comm. Pure Appl. Math. 12 (1959), 623--727).  We apply the estimate to the analysis of the large-time limit of a  solution to the equation $(\frac{\partial}{\partial t}+\Delta^{2})u(x,t)=f(x,t)$ in an asymptotically cylindrical domain $D$, where we impose a boundary condition similar to that above and the coefficient of $u$ in the boundary condition is supposed to tend to $+\infty$ as $t\to\infty$.  Our work here is primarily motivated by that of A. Friedman (Acta Math. 106 (1961), 1--43).

関連項目

研究集会・セミナー・集中講義の一覧へ