幾何学コロキウム Binet-Legendre metric and applications of Riemannian results in Finsler geometry

開催日時
2017年   3月 3日 16時 30分 ~   18時 00分
場所
北海道大学理学部3号館3ー204室
講演者
Vladimir Matveev (University of Jena)
 
【開始時間が変更されました!】

Abstract. We introduce a construction that associates a Riemannian metric $g_F$ (called the \emph{Binet-Legendre} metric) to a given Finsler metric $F$ on a smooth manifold $M$. The transformation $F \mapsto g_F$ is $C^0$-stable and has good smoothness properties, in contrast to previously considered constructions. The Riemannian metric $g_F$ also behaves nicely under conformal or isometric transformations of the Finsler metric $F$ that makes it a powerful tool in Finsler geometry. We illustrate that by solving a number of named problems in Finsler geometry. In particular we extend a classical result of Wang to all dimensions. We answer a question of Matsumoto about local conformal mapping between two Berwaldian spaces and use it to investigation of essentially conformally Berwaldian manifolds. We describe all possible conformal self maps and all self similarities on a Finsler manifold. We also classify all compact conformally flat Finsler manifolds. We solve a conjecture of Deng and Hou on locally symmetric Finsler spaces. We prove smoothness of isometries of Holder-continuous Finsler metrics. We construct new ``easy to calculate'' conformal and metric invariants of finsler manifolds. The results are based on the papers arXiv:1104.1647, arXiv:1409.5611,
arXiv:1408.6401, arXiv:1506.08935, arXiv:1406.2924 partially joint with M. Troyanov (EPF Lausanne) and Yu. Nikolayevsky (Melbourne)

関連項目

研究集会・セミナー・集中講義の一覧へ