偏微分方程式セミナー: Almost everywhere regularity for weak mean curvature flow

開催日時
2012年   5月 21日 16時 30分 ~ 2012年   5月 21日 17時 30分
場所
北大理学部3号館202室
講演者
利根川 吉廣(北大理学研究院)
 
One parameter family of k-dimensional surfaces in
n-dimensional Euclidean space (or more generally Riemannian manifold) is
called mean curvature flow (MCF) if the velocity of motion is equal to
its mean curvature vector at each point and time. Since MCF is a
gradient flow for k-dimensional surface area, one can define a
generalized version of MCF utilizing its variational structure. I
explain my recent result which proves almost everywhere smoothness for
such generalized MCF.

関連項目

研究集会・セミナー・集中講義の一覧へ