偏微分方程式セミナー: Absence of embedded eigenvalues for the Schr\”odinger operator on manifold with ends

開催日時
2012年   7月 9日 16時 30分 ~ 2012年   7月 9日 17時 30分
場所
北海道大学理学部3号館309室
講演者
伊藤 健一 (筑波大学数理物質系数学域)
 
We consider a Riemannian manifold with, at least,
one expanding end, and prove the absence of
$L^2$-eigenvalues for the Schr\"odinger operator
above some critical value. The critical value is
computed from the volume growth rate of the end
and the potential behavior at infinity. The end
structure is formulated abstractly in terms of some
convex function, and the examples include asymptotically
Euclidean and hyperbolic ends.
The proof consists of a priori superexponential
decay estimate for eigenfunctions and the absence
of superexponentially decaying eigenfunctions, both
of which employs the Mourre-type commutator
argument.
This talk is based on the recent joint work with
E.Skibsted (Aarhus University).

関連項目

研究集会・セミナー・集中講義の一覧へ